
Article

The Impact of Agro-Economic Factors on GHG
Emissions: Evidence from European Developing and
Advanced Economies
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Abstract: Environmental degradation by greenhouse gas (GHG) emissions has been an important
challenge of sustainable economic development and climate changes control. Industry is the
major source of CO2 emissions, whereas 84% of global anthropogenic methane and nitrous-oxide
emissions emerge from agriculture. The impact of agro-economic factors on GHG emissions
in European developing economies (Southeastern Europe in focus) as compared with European
advanced economies has been examined in this paper. The results have confirmed the
existence of significant differences in impact of these factors depending on the level of economic
development. For both groups of economies, we have confirmed the Environmental Kuznets
Curve (EKC) hypothesis (inverted U-shaped relationship between GDP per capita and carbon
dioxide emissions), but different sectoral outputs, too. We have also established different
impacts of agro emission sources. In developing economies, we have recognized livestock
breeding as a predominant factor and recommended measures for reducing the emissions in this
sector, following developed economies. The findings may be useful to European developing
economies as a support to implementation of binding commitments emerging from the UN
Framework Convention on Climate Change (UNFCCC). In the panel analysis, we have taken into
consideration the non-stationarity of the series, heterogeneity of the sample, and also examined a
dynamic specification.

Keywords: GHG emissions; agro-economic factors; European developing economies; European
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1. Introduction

The trend of global warming caused by increased GHG emissions has been pronounced in
the last several decades. Climate changes influenced by GHG emissions have caused temperature
increase of up to 2 ˝C [1]. Emissions of CO2 total 58.8% out of the overall GHG emissions in the
world. The existing global energetic system and economic development are directly responsible for
such result [2]. CO2 emissions (metric tons per capita) in highly advanced economies total on average
12.5 and in middle-income developed ones 3.3, whereas in low-income developed economies they
total 0.28 [3]. However, more recently, large developing countries also show a pronounced growth
of impact on pollution, inter alia, because they have the highest concentration of world’s population,
which has an increasingly emphasized need for energy consumption.
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The EKC has been used in the literature to explain the connection between economic growth
and GHG emissions. In advanced economies, the EKC curve mainly has the shape of an inverted
letter U (EKC hypothesis). Namely, with economic growth, emissions grow to a certain extent, and
then, at one moment, the start to decline, no matter that economic growth continues (when GDP
per capita increases, a portion of excess income is typically allocated for environmental problems
and consequently emissions decline) [4–7]. The structure of economic growth, as well as the impact
of some sectors on pollution, differ from one country to the other [2]. With advanced economies
in post-industrial period, the service sector has an increasing share of total GDP, and thus in total
pollution level. In addition, in developing economies, the participation of agricultural sector in
total GHG emissions is increasing. However, the majority of global warming still emerges from
industry [8].

Agriculture contributes 10%–12% of overall global GHG emissions, where 60% relates to
global N2O, 50% to global CH4 and less than 1% to CO2 [9]. When including GHG emissions
emerging from the forestry sector, agriculture might have a share of 17%–30% of overall global
anthropogenic GHG emissions. In 2005, developing economies increased their agricultural GHG
emissions by 32%, whereas advanced countries decreased their share by 12% [10]. Major sources of
agricultural GHG emissions are N2O from land (38%), CH4 from enteric fermentation (32%), N2O
and CH4 from biomass combustion (12%), and N2O and CH4 from manure management (7%). The
significance of these sources differs at the regional level depending on the level of the country’s
economic development.

Empiric investigations of the impact of agriculture on climate change and respective measures
for reduction of the emissions are numerous [11–15]. Most of these investigations relate to advanced
European and world economies as well as to large developing economies (i.e. India, China, and Brazil).

The principal objective of this investigation is to conduct a comparative analysis of economic
and agro factors impact on GHG emissions in developing European economies with a focus on
Southeastern Europe, in comparison with advanced European economies. In accordance with
previously mentioned studies, we have considered as economic factors the economic growth and
indicators that reflect the impact of individual sectors, specifically industrial, service and agricultural
sectors. We have also tested EKC hypothesis for both groups of economies. Complementary to
former investigations, in addition to economic, the analysis has also included indicators that cover
the main sources of agricultural GHG emissions (including forestry). The suggestion for GHG census
in developing economies (which is in preparation or in the process of realization) is to take into
consideration the country-specific emissions factors [16]. For this purpose, this study will identify
these factors as well as the intensity of the impact on GHG emissions. The measures for GHG
emissions mitigation following the advanced economies have also been considered, aimed at more
successful implementation of environmental protection strategies in these countries where it has not
been fully implemented. To the best of our knowledge, the impact of agro-economic factors on GHG
emission as well as the implementation of mitigation practices in European developing economies,
has not been investigated yet.

The remainder of this paper is organized as follows: Section 2 is a survey of the literature.
Section 3 describes data, conceptual framework and methodology. In Section 4, the results of empiric
analysis have been presented. Section 5 consists of the comparative analysis and discussion of
obtained results as well as recommendations for reduction of emissions in European developing
economies. Concluding considerations have been given at the end.

2. Literature Review

In the existing literature, the connection between GHG emissions and economic development
has already been established [4,6,17–19]. The analysis of this type is very complex and it depends
on a number of factors, like: size of the economy, sectorial structure, development of technology,
etc. Most of the investigations relate either to a specific country or to an entire geographic region.

16291



Sustainability 2015, 7, 16290–16310

The papers focusing on a specific country have too narrow focus, whereas the ones relating to an
entire region most frequently have too generalized conclusions. Thus, several authors investigate
determinants CO2 for Austria, BRIC countries and EU countries [6,20,21].

Complementary to former investigations, Al Mamun et al. considered the countries divided
according to the level of their economic development (lower income, lower middle income, upper
middle income, high income OECD countries and high income non-OECD countries) [2]. In addition,
they have included into their consideration the share of individual sectors in GDP, in order to include
the structural versatility of economies. Duro et al. show that the structure of sectors has impact on
international non-equivalence of CO2 emissions per capita [22] .

In some studies, EKC hypothesis has been confirmed [1,6,23,24]. However, there are studies
that have established different dependence between economic growth and CO2 emissions. Thus, it
is established that EKC has the shape of letter N for China (the initial deterioration of environmental
conditions and then economic growth causing an improvement of the environment; however, despite
the efforts of environment-friendly development, environmental circumstances cannot get better
continually) and the shape of letter U for Japan (these results suggest that economic growth is not
the only way to improve the quality of the environment and that the resulting EKC hypothesis is
inconclusive) [4]. A cubic dependence of letter N for Austria has been established [20].

Investigating the connection between good governance and CO2, Gani also included sectorial
outputs as important indicators of versatility of economies. In addition, he has established a
strong support of EKC hypothesis for developing economies at the global level. However, in his
considerations he has not performed geographical division of the economies, which might neglect
significant factors that can influence the output variable.

In our study, we have considered European economies divided by their level of economic
development and included differences emerging from their sectorial structure. Although European
economies have been included in previous investigations, to our knowledge, there are no studies
in which the impact of economic growth has been studied together with sectorial outputs on GHG
emissions for European developing economies where the economies of Southeastern Europe are the
most represented.

The investigations studying the sources of agricultural GHG emissions are numerous as well as
studies on impact reduction techniques. Smith discussed the possibility of mitigation of agricultural
GHG emissions for EU 27 countries and the UK [9] . He established that soil carbon sequestration in
croplands has the largest potential for reduction, whereas the economic potentials are to a high extent
lower. Lesschen et al. concluded that livestock breeding has a significant impact on global warming
with circa 10% of the total GHG emissions in the EU 27 [15]. The largest portion of this emerges
from the dairy production sector, followed by cattle-raising. Enteric fermentation (is a digestive
process by which carbohydrates are broken down by microorganisms) is the main source of GHG
emissions in the European livestock sector (36%), followed by N2O soil emissions (28%). Tubiello et al.
discussed the sources from agriculture, forestry and change of land use (LUCF) [13]. They established
growth of the emissions from agriculture, decrease in deforestation rates and decrease in forest
sinks. They conclude that the mitigation of GHG emissions intensity is evident, but should the
adequate measures not be implemented, future emissions may rise up to 30% by 2050. Hirschfeld et al.
analyzed the sources of agricultural GHG emissions in Germany and established that the largest
rate of 16% in Germany arises from cattle farming, followed by arable farming on moorland (15%),
grassland use of moorland (13%) and mineral fertilizer use (8%) [11]. In addition, 71% of agricultural
GHG emission relates to animal products including animal feed, and only 29% to production of
crops, excluding animal feed. They established the mitigation potentials of agricultural production
in Germany and pointed out that the transformation of conventional production into the organic
farming is one of major potentials, together with eating habits of consumers change. Tuomisto et al.
also established that organic farming in Europe has generally lower impact on agricultural GHG
emissions in comparison to conventional farming [25].
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In our study, we have dealt with impact of agro-factors, which are recognized in the literature
as the major sources of agricultural GHG emissions. European developing economies have been our
focus (which, to the highest extent include the countries of Southeastern Europe) as they have not
been the subject of separate investigations yet.

Developing economies face many challenges when constructing national inventories of
greenhouse gas (GHG) emissions, such as lack of activity data, insufficient measurements for deriving
country-specific emission factors, and a limited basis for estimating GHG mitigation options [26].
For European developing economies, the results of our study can be useful for the implementation
of Intergovernmental Panel on Climate Change (IPCC) recommendations for GHG inventory [27].
Namely, the majority of developing economies implement the method Tier 1 (which imply the
inventory of default average value of emissions factors). However, the recommendation is to use
the method Tier 2 (which imply the inventory of country-specific emissions factors for the largest
sources of emissions). The results of this study will contribute to identification of such sources, by
estimating the intensity of some agro factors impact.

3. Data, Conceptual Framework and Methodology

3.1. Data

For panel analysis, 18 European advanced economies and 11 developing economies were used,
over the period 1960–2012 for CO2 emissions, as well as five time points (1990, 2000, 2005, 2008,
and 2010) for agro emissions of other GHG (methane and nitrous-oxide). European advanced
economies (based on [28] (p.148)) considered in the analysis are: Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Iceland, Ireland, Italy, Malta, Netherlands, Norway, Portugal, Spain,
Sweden, Switzerland, and the United Kingdom. European developing economies (based on [28]
(p.150)), covered by the analysis are: Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Hungary,
Macedonia, Montenegro, Poland, Romania, Serbia and Turkey. The data have been taken from World
Development Indicators [29]. Missing data are a huge problem, especially in developing countries.
Thus, the data have been prepared in a way that missing values have been replaced with average
ones for the country and then normalized.

3.2. Conceptual Framework

The main research issues discussed in the paper are:

(1) How do the agro-economic factors influence the emission of GHG in European developing
economies in comparison with advanced economies?

(2) What are the measures for GHG emissions mitigation in agriculture in European developing
economies following the advanced economies?

Most anthropological GHG emissions are from emissions of carbon dioxide emitted by the
combustion of fossil fuels [30,31], as well as by the agricultural emissions of methane and
nitrous-oxide [10].

In accordance with this, two dependent variables have been used in the work: CO2_pc (CO2 per
capita), including the emission of CO2 from the combustion of fossil fuels expressed in metric tons
per capita; and GHG_pc, which includes agro emissions of methane and nitrous-oxide expressed in
metric tons of CO2 equivalent per capita.

Starting from Grossman et al. [32], who were the first to test EKC for the level of urban emission
until now, there have been many studies investigating the impact of economic growth on environment
pollution in various countries and regions around the world [4,6,7,33]. Different sectors have different
shares of economic growth and thus also in CO2 emissions [1,2].

Consistent with these findings, in this paper, as the economic factors influencing CO2 emissions,
the following substantial variables are discussed: GDP_pc, economic growth that reflects the size of
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overall economy; AVA, the size of agricultural sector; IVA, the size of industrial sector; and SVA, the
size of the sector of services.

Most anthropogenic emissions of GHG (the majority of which are methane and nitrous-oxide)
emerge from agriculture (up to 84% of global anthropogenic emissions [10]). The largest portion
of this comes from cattle-breeding, owing to the process of cattle’s digestion, storage of natural
fertilizers, and farming crops for livestock (forage). The share in emissions due to artificial
fertilizers and pesticides in agricultural land used for farming crops and livestock feed [11,14,15]
is also significant. Forestland is an important source of primary and secondary emissions of
nitrous-oxide [34]. Agricultural land use change, like draining of moist land, and the cutting down
of forests and turning them into arable land or pastures, leads to increased emissions of these
gases [10,13]. There is a large number of more recent papers that indicate that the growth of urban
population influences the growth of CO2 emissions [35,36]. Urban areas consume more than 66%
of global energy and generate more than 70% of global GHG emission [35]. They have established
that the emissions scale of CO2 is commensurate to the size of urban population. However, there
are also investigations that have established that, more recently, time urbanization does not have
an impact per se, as it depends on other factors like the level of revenues, etc. [37] or showing
negative influences owing to better awareness and implementation of adequate measures [38]. Rural
population increasingly consumes commercial energy and has a positive impact on emissions [39].

Consistent with these findings, in this paper, as agro factors, the following substantial variables
are also discussed: Fertilizer—quantity of nutrients used per unit of arable land; AgrLand—surface
area of agricultural land per capita expressed in square kilometers; Forest—surface area of forest land
per capita expressed in square kilometers; CropIndex—index of all crops output with the exception
of forage; FoodIndex—index of all crops output that have nutritive value (also including the crops
for forage); LivestIndex—index of livestock products output (meat, milk, cheese, eggs, wool, honey,
etc.); and RuralPopGrow—annual rural population growth (negative value of this indicator shows
the growth of urban population).

The impact of agro factors on emission of CO2 from fossil fuels combustion emerges mainly from
production of fertilizers and use of mechanization when plowing land, crop and forage harvesting,
cutting forests as well as energy consumption in output of livestock products [40,41].

This is the reason why we have also considered the impact of agro factors on CO2 emissions from
fossil factors (although, as we have already mentioned, their impact is much higher on emissions of
other GHG).

3.3. Method

In this paper, we have applied the analysis of panel data, which includes observations of several
individuals (in our case countries) through several time periods. Panel analysis settles the problem of
data unavailability for a larg number of time periods required for time series analyses. Panel analysis
solves the problems that cannot be resolved by analyses of time series or individual cross-sections
of data [42]. It enables researchers to have greater flexibility in modeling the differences in behaviors
among the individuals through time. In addition, panel analysis is increasingly used in investigations
of the impacts on GHG emissions [38,43] because, opposite to the estimate by Granger, causality
among the variables estimates the character of effect and interactive impact of variables (provides for
establishing the determinants of emissions). For these reasons, we have chosen the method of panel
analysis for investigation of agro-economic factors impact on GHG emissions.

Basic linear regression model in panel analysis has the following form:

yit “ α ` xitβ ` µi ` λt ` εit (1)

where i = 1, N individual (country) index and t = 1, T time index.
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In Equation (1), disturbance term has been expressed through three components: µi represents
unobserved individual effect, λt represents unobserved time effect and εit is a random or idiosyncratic
error term. Individual effects do not vary in time and they depend exclusively on observed
cross-sections (for instance, surface area of land, geographic location of land, civil war—as some of
the developing economies suffered civil wars during the time of observation, etc.). On the other hand,
time effects enable taking into consideration some factors typical for the observed time period that are
common to all countries (for example, global economic crisis, global climatic conditions, technological
progress, etc.).

First of all, we have estimated the POOLING model by application of ordinary last square
(OLS) method, and then random effect (RE) model by application of generalized least squares (GLS)
methods. By adding the country and time fixed effects (FE), we have estimated FE model and first
difference (FD) models and conducted standard tests of panel analysis [44–53]. Multicollinearity of
regressors may lead to inaccurate statistical conclusions. For multicollinearity testing, we used in
our work unit root from Variance Inflation Factor (VIF) [44]. A very significant issue is the danger
of spurious regressions when the data (dependent variable and regressors) are non-stationary. For
stationarity of variables testing, we have used two types of tests, common unit root test [54] and
individual unit root tests [55,56]. With series suffering from cross-section dependence, we applied in
our work cross-sectional de-meaning, thus eliminating cross dependence [54,55]. Thereafter, we have
applied standard panel unit root tests on transformed series.

In the event of heteroscedasticity and series correlation, robust covariance matrix estimation
according to White [44,45,57–59] was applied, as well as robust estimation by means of General
Feasible Generalized Least Squares method (GFGLS) [44,45].

In our work, we have also estimated the dynamic panel model in order to consider the
assumption that present values of emissions depend on emissions from previous periods. In dynamic
panel models Equation (2), lagged values of dependent variable (not diminishing the generality, an
event was presented when only the first lag of dependent variable has been included, which we
used in our work) occur as endogenous regressors that are correlated with unobserved effects, which
makes standard estimators inconsistent.

yit “ ρyit´1 ` xitβ ` µi ` λt ` εit (2)

where i = 1,...,N individual (country) index and t = 1,...,T time index.
To estimate the dynamic model, we have used Generalized Method of Moments (GMM) [45,60],

which has predominantly been designed for “lower case T, capital N“ panels (several time periods
and many cross-sections). In panel analysis with capital T, dynamic bias becomes statistically
insignificant and FE model gives better results [60]. Applied GMM method permits regressors that
are not strictly exogenous; that is, those that are correlated with past and present occurrences of
errors, fixed effects, heteroscedasticity and serial correlation within the cross-sections, but not among
them. Arellano et al. suggested the model to be previously differentiated in order to eliminate fixed
effects and to use GMM, that is the matrix of instruments made of all exogenous variables and
lagged dependant variable in level [61]. This model is known as Difference GMM. They have also
suggested the test for autocorrelation in GMM model, which is especially important when the lags
are used as instruments. Blundell et al. extended the model into a system consisting of an equation
in first differences and equation in levels [62]. In this model, known as System GMM, the matrix of
instruments has been constructed in such a manner as to include instruments in levels for equation
in differences as well as the instruments in first differences for equation in levels. In the event of
heteroscedasticity and autocorrelation, applied GMM method permits the use of robust covariance
matrix [45,63]. Validity of model and instruments is established by means of Saragan test of over
identifying restrictions which in applied GMM estimator was also implemented for the event of
heteroscedasticity [60]. In addition, serial correlation in the first-differenced errors at an order higher
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than 1 implies that moment conditions used by estimator are not valid. Estimator at the end also
gives Wald statistics for null hypothesis that all coefficients other than the constant are null.

4. Empirical Results

For panel analysis, the statistical R packages plm, sandwich and lmtest were used [45,49,57,64].
For testing the impact of agro-economic factor on CO2 emissions, we have derived empiric model

Equation (3):

ln CO2_pcit “ α ` β1it ln Fertilizerit ` β2it ln AgrLandit `

β3it ln Forestit ` β4it ln CropIndexit ` β5it ln FoodIndexit ` β6it ln LivestIndexit `

β7it ln RuralPopGrowit ` β8it ln AVAit ` β9it ln IVAit ` β10it ln SVAit `

β11it ln GDP_pcit ` β12it ln sqGDP_pcit ` µi ` λt ` εit

(3)

For testing the impact of agro factors on emission of other GHG emissions (methane and
nitrous-oxide), we have derived empiric model Equation (4):

ln GHG_pcit “ α ` β1it ln Fertilizerit ` β2it ln AgrLandit `

β3it ln Forestit ` β4it ln CropIndexit ` β5it ln FoodIndexit ` β6it ln LivestIndexit `

β7it ln RuralPopGrowit ` β8it ln AVAit ` β9it ln GDP_pcit ` µi ` λt ` εit

(4)

We have estimated empirical model Equation (3) first by means of OLS for both groups of
economies (advanced and developing), including the interaction terms and we have established
that majority of interaction terms is significant, which indicates that there are statistically significant
differences between these two groups of economies (the results of this estimate have not been
presented in this paper, but they are available upon request). For this reason, we have estimated
the two panels separately, panel of advanced economies and panel of developing economies.

The results of panel analysis for advanced economies (balanced panel for n = 18 economies and
T = 53 years with 954 observations) have been presented in Table 1 (the results of panel tests have
been presented in Table A1).

Table 1. Determinants of CO2 emissions from fuel combustion for advanced economies.

Variable Model 1 †,†† Model 2 Model 3 Model 4 Model 5

Constant ´0.008 ´0.250 0.011 *** ´0.010 ***
Fertilizer 0.192 . 0.086 ´0.129 0.046 . 0.051 ***
AgrLand 0.051 ´0.117 ** ´0.118 * 0.051 0.044 ***

Forest 0.002 0.039 0.028 ´0.069 * ´0.093
CropIndex ´0.090 0.022 ´0.089 0.026 0.027 ***
LivestIndex 0.797 ** 0.655 * 0.484 * ´0.037 ´0.037 ***

RuralPopGrow ´0.114 ´0.032 ´0.025 0.030 0.025 ***
AVA ´0.074 0.039 0.173 ** 0.063 * 0.065 ***
IVA 0.211 0.089 0.227 0.086 * 0.086 ***
SVA 0.220 ´0.049 ´0.021 0.039 0.043 ***

GDP_pc ´0.042 ´0.115 ** ´0.121 * 0.028 ** 0.066 ***
sqGDP_pc ´0.031 ***
R-squared 0.418 0.315 0.259 0.044 0.960

Residual standard error (SE) 0.230 0.173 0.154 0.059 0.059
† Model 1—Pooling—HC consistent coefficients; Model 2—RE (“two ways”)—HC consistent coefficients;
Model 3—FE (“within”, “two ways”)—HC consistent coefficients; Model 4—FD—coefficients; Model 5—FD
GFGLS (“within”)—coefficients; †† Signif. codes: 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.

The first column presents the pooled model. Owing to correlation of regressor FoodIndex with
regressors LivestIndex and CropIndex, we have excluded it from the model. We have established that

16296



Sustainability 2015, 7, 16290–16310

there is no multicollinearity for other regressors as the root from VIF for all of them is less than two
(the multicollinearity of regressors test results are available upon request).

The tests of homoscedasticity and serial non-correlation have rejected the null hypothesis. For
that reason, we have thus applied robust estimation to the table and they have presented HC
(heteroscedasticity and series correlation) consistent coefficients. Pesaran CD test [51] rejects null
hypothesis on cross-sectional (cs) independence. However, since N < T (18 < 53), correlation of cs
residuals does not have an impact on consistency of model and accuracy of SE. The results of Chow
test are strongly against the rejection of null hypothesis on poolability of slope coefficients.

Null hypothesis on insignificance of unobserved effects (individual, time and two ways) has
been rejected on basis of Lagrange Multiplier test. On the basis of the results of this test, we have
added country and time effects and estimated “two ways“ RE and FE model. The results have
been presented in the second and third column. Like in pooling model, heteroscedasticity and
serial correlation has been established and consequently robust estimation applied. By F test, we
have established the significance of fixed country and two ways effects. Hausman test is strongly
against the rejection of null hypothesis that country and time effects are random variables that are
uncorrelated with regressors.

In the event of non-stationarity of regressors and dependable variable, there is a danger of
spurious regression. The tests of stationarity (common and individual unit root tests) indicate that
almost all series in levels are non-stationary, whereas they are stationary in first differences (the results
of unit root tests have not been presented here but they are available upon request). This is why we
have estimated FD model and the result has been presented in the fourth column of the Table 1 (due
to heteroscedasticity, we have applied robust estimation). Wooldridge’s first-difference test confirms
that FD model is better than FE; that is, the residuals in FE model follow a random walk.

Almost all of the estimated models have a low coefficient of determination (R-squared) and
especially FD model. For robust estimation, we have also applied General FGLS on series in first
differences (FD GFGLS). The results have been presented in the last column of the table. This model
gives the best values for R-squared and RSE.

The results of panel analysis for developing economies (balanced panel for n = 11 countries and
T = 53 years with 583 observations) have been presented in Table 2 (the results of panel tests have
been presented in the Table A2).

Table 2. Determinants of CO2 emissions from fuel combustion for developing economies.

Variable Model 1 †, †† Model 2 Model 3 Model 4 Model 5

Constant 0.388 ** 0.028 0.006 *** 0.007 ***
Fertilizer ´0.027 0.006 0.003 0.018 0.016 ***
AgrLand 0.120 ´0.006 ´0.007 0.006 . 0.010 ***

Forest 0.123 ** 0.221 *** 0.240 *** ´0.005 ´0.094 .
CropIndex ´0.018 0.175 ** 0.164 ** 0.035 0.028 ***
LivestIndex 0.307 *** ´0.078 *** ´0.098 ** 0.067 *** 0.041 ***

RuralPopGrow 0.203 0.088 0.085 ´0.011 ´0.003 ***
AVA ´0.065 0.029 0.040 ´0.083 ´0.084 ***
IVA 0.720 ** 0.454 *** 0.438 *** 0.239 *** 0.244 ***
SVA 0.439 * 0.141 0.135 ´0.098 . ´0.092 ***

GDP_pc 0.228 . 0.009 0.008 0.054 * 0.171 ***
sqGDP_pc ´0.149 ***
R-squared 0.720 0.572 0.516 0.088 0.969

Residual standard error (SE) 0.180 0.099 0.094 0.060 0.060
† Model 1—Pooling—HC consistent coefficients; Model 2—RE (“two ways”)—HC consistent coefficients;
Model 3—FE (“within”, “two ways”)—HC consistent coefficients; Model 4—FD—coefficients; Model 5—FD
GFGLS (“within”)—coefficients; †† Signif. codes: 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.
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Similar to the advanced economies panel, we have excluded the regressor FoodIndex because the
correlation and other regressor have not shown multicollinearity. Slope coefficients are constant, on
the basis of Chow test. Like the previous panel, the existence of unobserved effect, heteroscedasticity
and serial correlation has been established (in accordance with this, country and time effects have
been added and robust estimation HC coefficients have been applied), random model is consistent,
fixed country and time effects are significant, data are non-stationary in level and stationary in first
differences, FD model is more efficient than FE model and General FGLS model on the series in first
differences gives the best values for R-squared and RSE.

In empirical model Equation (4), we have established statistically significant differences between
the advanced and developing economies, therefore we have also considered two separate panels (the
results are available upon request).

The results of panel analysis for advanced economies (balanced panel for n = 18 economies and
T = 5 years with total of 90 observations) have been presented in Table 3 (the results of panel tests
have been presented in Table A3).

Table 3. Determinants of agro GHG (methane and nitrous-oxide) emissions for advanced economies.

Variable Model 1 †,†† Model 2 Model 3 Model 4 Model 5 Model 6

Constant 0.441 ** ´0.161 ´0.021 * ´0.025 ***
Fertilizer 0.645 ** 0.181 ** 0.061 0.123 . 0.096 * 0.106 .
AgrLand 0.217 *** 0.019 ´0.071 0.021 0.018 0.021

Forest 0.212 ** 0.167 * 0.232 . 0.163 0.176 0.048 *
CropIndex 0.413 ´0.196 . ´0.271 * ´0.137 ´0.036 ´0.130
LivestIndex 0.019 0.183 0.158 0.144 * 0.031 0.002 .

RuralPopGrow ´0.113 ´0.012 ´0.009 ´0.022 ´0.021 ´0.061
AVA 0.031 0.139 * 0.114 0.095 ** 0.072 ** 0.032 *

GDP_pc 0.043 ´0.030 ´0.049 ´0.015 ´0.002 ´0.001
GHG_pc (-1) 0.853 ***

R-squared 0.615 0.277 0.269 0.248 0.980 0.977
Residual standard error (SE) 0.230 0.060 0.054 0.051 0.053 0.062

† Model 1—Pooling—HC consistent coefficients; Model 2—RE (“two ways”)—HC consistent coefficients;
Model 3—FE (“within”, “two ways”)—HC consistent coefficients; Model 4—FD—coefficients; Model 5—FD
GFGLS (“within”)—coefficients; †† Signif. codes: 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.

Regressor FoodIndex has been excluded due to correlation in the same way as in the previous
panels. On the basis of Chow test, slope coefficients are constant. Studentized Breusch–Pagan test
opposes rejection of null hypothesis on homoscedasticity. However, the tests of autocorrelation
of residuals and serial correlation reject the null hypothesis, thus the HC coefficients have been
presented in the table. Pesaran CD test opposes rejection of null hypothesis on cs independence,
therefore there is no danger of contemporaneous correlation. It has been established that there are
unobserved countries and “two ways“ effects so the “two ways“—RE and “individual“—FE models
(F test has established the significance of country fixed effects and insignificance of “two ways“
fixed effects) were estimated. Hausman test is against the rejection of null hypothesis on RE model
consistence. Wooldridge’s first-difference test is against the rejection of null hypothesis that FD model
is more efficient than FE model. Since T = 5 is a minor case, we have not treated the stationarity of
series. General FGLS model on series in level gives robust estimation with determination coefficient
of approximately 96%.

Finally, since N > T, we have also estimated a dynamic panel model in order to consider the
possibility present emission depends on previous levels of emissions. We have applied System GMM
estimator (this estimator is the preferable dynamic panel model in many applications [65]), where we
used as valid instruments all exogenous variables and the first lag of the endogenous (dependent)
variable, in level and in first difference (lags of higher order have no statistically significant impact).
The results have been presented in the last column of Table 3. The results of Sargan test are against
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rejection of null hypothesis on validity of model and instruments. Zero second-order autocorrelation
in the first-differenced errors implies no evidence of model misspecification. Wald test rejects null
hypothesis that all coefficients other than the constant are zero.

The results of panel analysis for developing economies (balanced panel for n = 10 countries and
T = 5 years with a total of 50 observations) have been presented in Table 4 (the results of panel tests
have been presented in Table A4).

Regressor FoodIndex has been excluded owing to correlation in the same way as in the previous
panels. Chow test shows that slope coefficients are constant. By the analysis it has been established
that heteroscedasticity is not present. In pooling model, AR (1) (autoregressive model of order 1)
errors have been detected, for which reason HC coefficients have been presented. Unobserved
country effects have been confirmed and, in accordance with this, “individual“ RE and FE models
estimated. Hausman test (chisq = 27.8317, df = 8, p-value = 0.0005073) has shown that RE model is
inconsistent and for this reason it has not been presented in the table. In FE model, serial correlation
and cs dependence have not been established. Fixed country effects are significant. FD estimator
is statistically insignificant (F-statistic: 1.06477 on 8 and 31 DF, p-value: 0.41212), therefore, it has
not been presented in the table. Robust estimation by General FGLS, with determination coefficient
of circa 84% has been presented in the third column. Dynamic estimator has been presented in the
last column. In dynamic specification, the first lag of independent variable occurs as endogenous
regressor as it has been established that the lags of higher order do not have statistically significant
impacts. The results of Sargan test, zero second-order autocorrelation and Wald test imply no
evidence of model misspecification.

Table 4. Determinants of agro GHG (methane and nitrous-oxide) emissions for developing economies.

Variable Model 1 †,†† Model 2 Model 3 Model 4

Constant ´0.279
Fertilizer 0.611 *** ´1.207 ** ´0.686 ** 0.155
AgrLand 0.244 . ´0.069 ´0.050 0.002

Forest 0.154 1.265 ** 0.708 . ´0.213 .
CropIndex ´0.488 ´0.058 ´0.024 0.049
LivestIndex 0.423 . 0.435 0.291 0.344 **

RuralPopGrow ´0.356 0.071 0.114 ´0.157
AVA ´0.103 0.133 . 0.090 . 0.014 .

GDP_pc ´0.498 * ´0.135 ´0.114 ´0.077
GHG_pc (-1) 0.786 ***

R-squared 0.368 0.461 0.842 0.801
Residual standard error (SE) 0.393 0.184 0.197 0.231

† Model 1—Pooling—HC consistent coefficients; Model 2—RE (“two ways”)—HC consistent coefficients;
Model 3—FE (“within”, “two ways”)—HC consistent coefficients; Model 4—FD—coefficients; Model 5—FD
GFGLS (“within”)—coefficients; †† Signif. codes: 0; “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “ ” 1.

5. Discussion of Results

Although some European developing economies do not have quantified obligations of GHG
gases reduction, as members of United Nations Framework Convention on Climate Changes
(UNFCCC) they have committed themselves to submit the national report on its implementation.
In the scope of the mentioned report it is necessary to make an inventory of emissions of gases with
greenhouse effect, where this analysis may provide additional support.

On basis of model 5 (Table 1), for advanced economies, as far as the economic factors are
concerned, we have established that economic growth (GDP_pc) has a small positive impact, whereas
the squared amount (sqGDP_pc) has a negative impact, which have confirmed EKC hypothesis for
these countries (Figure 1). This result is consistent with the findings of Han et al. who have empirically
proved the EKC hypothesis for 19 OECD countries [66], as well as with the findings of Acaravci et al.,
which have confirmed the EKC hypothesis for some of EU countries [6]. The results also show
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that in advanced European economies the impact of sectoral outputs is positive and statistically
significant, which coincides with Al Mamun et al.. From model 5, we see that the impact of the
industrial sector (IVA) is the largest, followed by the agricultural (AVA) and service (SVA) sectors with
similar values. These results clearly suggest that the size of the industrial sector also determines to
the highest extent the growth of CO2 emissions, which coincides with [1]. Al Mamun et al. established
that services sector in highly advanced world economies has an increasing share of CO2 emissions,
whereas for agriculture they have established a decreasing share owing to the application of modern
technologies [2].

In addition, one can notice a positive, statistically significant impact of artificial fertilizers use
on CO2 emissions, due to combustion of fuel aimed at production, transportation and application of
fertilizer. The surface area of agricultural land (AgrLand) also has a somewhat less positive impact
due to the use of fuel for cultivation and adaptation, as well for as crops production (CropIndex)
owing to the application of fuel for land cultivation, harvesting, etc. Livestock (LivestIndex) has a
negative statistically significant impact (use of fuel in production of forage, meat, milk and other
livestock products). This might be explained by the fact that other factors have much higher impacts
in this model, which stresses, with high accuracy, their interdependent impact. However, Models 1–3
point to positive and statistically significant impact of livestock-breeding as an individual factor. On
the basis of model 5, the size of forestland (Forest) does not have a statistically significant impact on
CO2 emissions. This finding might be explained by the fact that in advanced European economies
forest cutting and their change into arable land is performed in a controlled manner. With model 4, we
have a statistically significant negative impact of forest size. This might be explained by the fact that
forests influence mitigation of CO2 emissions absorption during the photosynthesis and by storing C
in the biomass.
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Figure 1. Estimation of EKC for advanced economies.

Table 2 presents the results of model estimate for European developing economies. According
to model 5, growth of GDP per capita for these economies has significantly higher statistical impact
on CO2 emission compared to advanced economies. This finding shows that advanced economies
have higher preferences towards environment quality. Squared economic growth (sqGDP_pc) has
statistically significant negative impact, which confirms the dependence of emission on economic
growth in the form of an inverted U, whereas we have also confirmed the EKC hypothesis for
developing economies (Figure 2). A large number of previously mentioned studies has confirmed
this hypothesis for developing economies [1,2,19].

Although, for both groups of countries, EKC has the shape of an inverted U, in developing
economies EKC increases progressively unlike advanced economies where the EKC growth is slower.
According to Panayotou et al., developing and developed countries find themselves on different
sides of the EKC. Developing countries find themselves where the U.K. was 150 years ago, the U.S.
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100 years ago, and Japan 50 years ago: when income growth, structural change, capital accumulation,
and trade all contributed to rapidly growing CO2 emissions [67]. The main reason for the rapid
growth of emission in developing economies is the use of inappropriate technologies. According
to Galeotti et al., considering that many developing countries are on the verge of industrialization,
effective technological cooperation should be put in place to reach a sound cooperation between
developed and developing countries. In the absence of such policies, governments of developing
countries will pursue increases in per capita income with existing technology and this will adversely
affect overall CO2 emissions [68].
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With sectorial outputs for developing economies, model 5 shows that industrial sector has the
highest positive impact among all examined factors, whereas the services and agricultural sectors
have negative impact. Opposite to advanced economies, where the sectorial output is almost on an
equal footing, this finding shows that in developing economies industrial sector has a predominating
impact. However, with model 1, which does not include country and time effects, it is interesting
that the service sector has a positive, statistically significant impact. Growth of rural population
(that is decrease of urban population) statistically makes impact on mitigation of CO2 emissions
in developing economies, which was expected. However, in advanced economies, this impact is
positive, which is explained by the fact that the rural population consumes increasingly more energy
owing to larger use of technology.

This finding is in harmony with [39]. On total CO2 emissions from fuels combustion in
developing economies, the second largest positive impact, after industrial sector, belongs to livestock
breeding. This might be explained by the fact that modern (green) technologies in livestock breeding,
fodder and livestock output, which, as a rule are used in advanced economies, are used to a lesser
extent here. Use of artificial fertilizers (Fertilizer), cultivation and adaptation of agricultural land
(AgrLand) and crops breeding (CropLand) have statistically significant, but lower impact on CO2

increase as compared to livestock breeding, different form advanced economies. The reason for this
is smaller scope of production and use of agro-chemical agents and technology, and thus also lower
fuel consumption. Forests have statistically significant and high impact on mitigation of emitted CO2,
which shows that in these countries degradation of forests is not present and that climatic conditions
are favorable for CO2 absorption and its storage in forest soil during the process of photosynthesis.

The impact of agro-factors on CO2 emissions mainly emerges from the use of fuel in agricultural
production, as well as, to a small extent, from carbon-dioxide emissions from agricultural lands
(which by its large portion is again absorbed by photosynthesis and stored in the soil by natural
circulation of this gas in agro systems). Net flux of agricultural emissions of CO2, as compared to the
total emissions, is rather small.
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However, agro-factors have much higher impacts on emissions of other GHG emisions (methane
and nitrous-oxide). The main sources of these gases in agriculture are microbiological transformation
of nitrogen from arable land and applied fertilizers as well as decomposition of organic matters in the
process of livestock digestion and from stored fertilizers emission. However, forest fires also have an
impact on concentration of these gases. Forests in which land cultivation is performed (agroforestry),
draining and adaptation of forest and wetland into the arable land and pastures, restoration of
degraded arable land, etc. also have impacts.

Table 3 features the results of model estimates for impact of agro factors on other GHG
for advanced European economies. Dynamic model presented in the sixth column has the best
performances, therefore we will use this model for the analysis.

According to this model, statistically significant impacts on increase of GHG (N2O and CH4)
emissions is attributed to production and use of artificial fertilizers and forests, whereas livestock
breeding has a lower impact. Surface area of agricultural land does not have a statistically significant
impact, which points to the fact that in European economies land use change is performed in a
controlled manner and to a lower extent.

Increased use of artificial fertilizers and its main ingredient nitrogen results in larger quantity
of this ingredient in land than the crops can effectively use, and thus by emitting of this
surplus in form of nitrous-oxide. Global disturbances of natural circulation of nitrogen caused by
increased anthropogenic emission of this gas result in increasing decomposition of nitrogen in forest
ecosystems [34]. As a result, especially acid forestland consists of larger quantities of nitrogen, which
causes higher N2O emissions. This also depends on climatic conditions, traits of land and vegetation.
In Northern and Western Europe, to which most advanced economies belong, forestland is rich in
carbon and has a high rate of acidity (opposite to Mediterranean and Balkan economies, where the
land has lower acidity and contains a high rate of clay). This is the reason why the forests in Northern
and Western European countries have impacts on increase of GHG emissions (coefficient with Forest
is positive and statistically significant).

In developed countries, livestock breeding has a small positive statistically significant impact
owing to implementation of adequate strategies for GHG emissions mitigation, some of them being
adding dietetic additives in fodder, efficient storage of fertilizers, efficient strategies of calves fattening
in more juvenile age, in order to shorten their life and thus the CH4 emissions from the process of digestion, etc.

Dynamic model 6 includes, as a regression variable, GHG emissions from the previous year.
The results indicate that the quantity of these gases emitted in previous year has high and
statistically significant impact, because, inter alia, the concentration of these gases increases from
year to year much more than it is absorbed in natural agro systems. Accumulated quantities
of anthropogenic emissions of these gases have impact on their increasingly higher emission.
Atmospheric concentration of nitrous oxide approximately increases by 0.25% each year [34]. This
finding on impact of accumulated emissions from previous year is a very robust finding in our work.

Models 2 and 3 show that crop production that does not include forage (CropIndex) has a
negative impact on increase of GHG emissions. Forage production is included in outcome of livestock
products (LivestIndex), which has positive impact on GHG emissions. Therefore, production of
livestock products, including forage, has greater impact on the environment than crop production
for people. Approximately 60% of arable land in Germany is used for this purpose, and only 30%
for crops necessary for human nutrition [11]. This shows increased consumption of meat and dairy
products in comparison with cereals and vegetables. Decreases in consumption of these products
could have double benefit, in regards to both health and ecology.

The increase of rural population does not have statistically significant impact on GHG emissions.
Increase of agro sector output (AVA) has statistically positive impact on increase of emissions of CH4

and N2O, which is in harmony with the findings in [10].
Table 4 presents the results of estimate of GHG emissions model for European developing economies.
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On the basis of dynamic model 4, in European developing economies, which mainly belong to
the Mediterranean and Balkans regions, forests have statistically negative impact on GHG emission,
opposite to advanced European economies. This is the consequence of Mediterranean climate and
properties of land that consists of a higher rate of clay and lower acidity; thus, lower quantities of
nitrogen are absorbed [34]. Negative coefficient shows that the forests in this region absorb in nitrogen
circulation cycle more of the nitrogen from the air than they emit. This is consistent with the findings in [34].

The impact of land area is statistically insignificant, like in advanced economies. Use of artificial
fertilizers has positive, but not statistically significant impacts. Organic production generally has
a positive impact on the environment because the land has higher contents of organic substances
and smaller losses of nutrients [25]. However, constraints for implementation of organic agriculture
in developing economies are significant, including demanding procedures, education of producers,
decline of yields, level of income, etc. Model 4 shows that Livestock production (LivestIndex) has
the largest positive impact on GHG emissions, opposite to advanced economies where the largest
impact of use of fertilizers has been recorded (Fertilizer). This shows that in European developing
economies modern technologies are insufficiently used in breeding and nutrition of livestock, storage
of fertilizers and output of livestock products.

The recommendations for mitigating the emissions of GHG that emerges from the livestock
production, for these economies are: combining of diary with meat production (slaughtering of older
cows that do not produce quality milk any longer), instead of sole calves fattening, thus decreasing the
production of forage for animals; rational use of forage (putting additives in the form of antibiotics,
probiotic and vaccines that influence methane emissions mitigation in the digestion process); and
efficient management of artificial fertilizer [10,25]. One of the main actuating factors for overcoming
the constraints in implementation of these recommendations is the change of mind set and education
of farmers as well as the financial support of agrarian policy at the state level.

Crop production for human nutrition does not have statistical impact on GHG emissions.
However, in all models, a positive coefficient has been obtained (although statistically insignificant),
opposite to advanced economies where there has been a negative coefficient in all models.
A conclusion derived from this is that more vegetable products are consumed for nutrition in
developing economies than in advanced economies.

Models 2 and 3 indicate the statistically significant negative impact of use of artificial fertilizers.
This finding shows that in European developing economies artificial fertilizers are used less
than the natural ones, therefore from this source the emissions of N2O are much lower than in
advanced economies.

The impact of emission level from the previous year, like in the case of advanced economies, has
a very high significance threshold. This robust finding on impact of accumulated emissions from the
previous year has been obtained owing to the results of dynamic model 4.

The impact of the agro sector is statistically significant and positive, as we expected, like
in advanced economies and it is consistent with the fact that a high rate of total CH4 and N2O
emissions (even up to 84%) emerges from this sector. GDP per capita growth has no statistical
impact on GHG emissions in developing economies, which coincides with the finding for advanced
European economies.

In general, it may be stated that there are significant differences of environmental impact
depending on the level of economic development. Predominating factors of impact on GHG
emissions identified for advanced economies are the use of artificial fertilizers, whereas for
developing countries these are the sources from livestock breeding. Identified sources might be used
for the implementation of an inventory of GHG emissions for developing economies, since they have
committed themselves to UNFCCC. Namely, model results indicate country-specific factors and the
intensity of its impact on GHG emissions and present an important input for the realization of the
GHG inventory and mitigation strategies considered in developing countries

16303



Sustainability 2015, 7, 16290–16310

6. Conclusions

Emissions of GHG are the main cause of climate changes. UNFCCC has foreseen the scenario
for all the countries on how to reduce emissions. According to the obligations emerging from
Kyoto Protocol, countries have been divided into two groups, on the basis of their industrial
development level into advanced and developing economies. Whereas the highly-industrialized
countries, grouped into Annex I, have to reduce GHG emissions by 5%–10%, developing countries,
including the countries of Southeastern Europe, do not have such obligation; however, they have to
participate in the so-called “Program of Clean Development“. This defines their binding commitment
to make a GHG emissions sources inventory.

Identification of impact of sources on GHG emissions is significant for implementation of
the assumed binding commitments, especially as regulation is concerned. Opposite to advanced
European and global economies and large global developing economies, in which, in the literature,
this impact has been considerably studied already, there is no similar analysis for developing
economies focusing on Southeastern Europe.

Thus, in this study, the impact of agro-economic factors on GHG emissions in European
developing countries (especially Southeastern Europe countries) has been analyzed in comparison
to advanced European economies as well as with consideration to measures for reducing GHG
emissions from agriculture in these countries.

The research has been conducted by econometric panel analysis, taking into consideration
non-stationarity of time series, including the effects of countries and time periods, which might have
a significant impact on emissions, as well as dynamic specification, which provides for investigation
of impact of emissions from previous periods. Complementary to some other methods that estimate
the impact of individual independent variables on the dependent variable, this method estimates
the interdependent impact of independent variables, enabling the establishment of determinants of
the emissions. When estimating the parameters, the models were obtained with high coefficient
of determination and small standard error, therefore; the interdependence of factors has been
established with high level of accuracy. The results have shown that there are significant differences
of impact on emissions depending of the level of economic development of analyzed countries.

For both groups of economies, EKC hypothesis has been confirmed as well as the strongest
impact of industrial sector on CO2 emissions, which emerge from combustion of fossil fuels.
In developing economies, service and agricultural sectors do not influence the increase of CO2

emissions, which is the opposite of advanced European economies where the impact of all three
sectors is positive with relatively small differences. The finding that in advanced countries the growth
of rural population has small, but positive effect on CO2 emissions is interesting, and opposite to
developing economies where this impact is negative.

For developing economies, it has been established that livestock breeding has a predominant
impact on agricultural GHG emissions (methane and nitrous-oxide), as opposed to advanced
economies where the use of artificial fertilizers has the largest impact. In developing economies,
mainly those from the Southeastern Europe, the land area of forests has statistically negative
impact on emissions of methane and nitrous-oxide, due to the characteristics of soil, which is the
opposite of advanced European economies where a positive impact has been recorded. On basis of
dynamic model, it has been established for both groups of countries that accumulated quantities of
anthropogenic emissions of these gases influence their increasingly higher emission.

On the basis of the obtained results, recommendations of measures for reducing the impact
on agro GHG emissions in livestock the breeding sector for developing economies, which has been
identified as the main source, have been given. As one of the ways to reduce agro emissions, measures
have been recommended for transition from conventional to organic agricultural production.
Recommended measures represent a support to creators of internal agrarian policies of discussed
developing economies for their implementation of binding commitments resulting from the UN
Framework Convention.
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Mainly the developing economies of Southeastern Europe and their comparison with advanced
European economies have been the subject of interest of this investigation. Future investigations may
embrace wider region which includes the remaining European countries, as well as the comparison
with developing economies from the other parts of the world.
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Apendix: Results of Panel Tests

Panel tests [44–53]:

1. Heteroskedasticity: Studentized Breusch-Pagan test
2. Autocorrelated (1) errors: Breusch-Godfrey test
3. Serial correlation: Breusch-Godfrey/Wooldridge test
4. Cross sectional dependence: Pesaran CD test
5. Wooldridge’s first-difference testNull: FD
6. Poolability: Chow test
7. Unobserved individual effect: Lagrange Multiplier Test—(Honda)
8. Unobserved time effect: Lagrange Multiplier Test—(Honda)
9. Unobserved twoways effect: Lagrange Multiplier Test—(Honda)

10. Fixed effect significance: F test
11. Time fixed effect significance: F test
12. Twowas fixed effect significance: F test
13. Hausman test: vcovHC robust (Null: RE consist.)
14. Sargan test
15. Autocorrelation test (1)
16. Autocorrelation test (2)
17. Wald test for coefficients

Table A1. Results of panel tests for models in Table 1.

Panel Test Model 1 † Model 2 Model 3 Model 4

1
BP = 109.203,

df = 10,
p-value < 2.2e-16

BP = 190.089,
df = 78,

p-value = 2.4e-11

2
LM test = 583.741,

df = 1,
p-value < 2.2e-16

3
chisq = 526.643,

df = 53,
p-value < 2.2e-16

chisq = 566.282,
df = 53,

p-value < 2.2e-16

4 z = 18.729,
p-value < 2.2e-16

z = 6.632,
p-value = 3.321e-11

z = 0.518,
p-value = 0.6041
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Table A1. Cont.

Panel Test Model 1 † Model 2 Model 3 Model 4

5 chisq = 0.060,
p-value = 0.8071

6
F = 0.554, df1 = 520,

df2 = 371,
p-value = 1

7 normal = 47.501,
p-value < 2.2e-16

8 normal = 7.059,
p-value = 1.681e-12

9 normal = 38.580,
p-value < 2.2e-16

10
F = 37.653,

df1 = 17, df2 = 926
p-value < 2.2e-16

11 F = ´7.969, df1 = 35,
df2 = 891, p-value = 1

12
F = 5.158, df1 = 52,

df2 = 874,
p-value < 2.2e-16

13
chisq = 6.343,

df = 10,
p-value = 0.786

chisq = 118.681,
df = 10,

p-value < 2.2e-16
† Model 1—Pooling; Model 2—RE (random.method = “amemiya”, “twoways”); Model 3—FE (“within”,
“twoways”); Model 4—FD.

Table A2. Results of panel tests for models in Table 2.

Panel Test Model1 † Model 2 Model 3 Model 4

1
BP = 84.887,

df = 10,
p-value = 5.5e-14

BP = 84.887,
df = 10,

p-value = 5.5e-14

2 LM test = 450.575, df = 1,
p-value < 2.2e-16

3 chisq = 393.969, df = 53,
p-value < 2.2e-16

chisq = 386.77,
df = 53, p-value < 2.2e-16

4 z = 15.115,
p-value < 2.2e-16

z = 2.190,
p-value = 0.02849

z = ´2.528,
p-value = 0.0115

5 chisq = 0.266,
p-value = 0.606

6 F = 1.33, df1 = 468,
df2 = 53, p-value = 0.01

7 normal = 39.987,
p-value < 2.2e-16

8 normal = 4.516,
p-value = 6.3e-06

9 normal = 31.468,
p-value < 2.2e-16

10
F = 54.704,

df1 = 10, df2 = 562,
p-value < 2.2e-16

11 F = –4.482, df1 = 42,
df2 = 520, p-value = 1

12
F = 8.467,

df1 = 52, df2 = 510,
p-value < 2.2e-16

13 chisq = 1.077,
df = 10, p-value = 0.1

chisq = 138.352, df = 10,
p-value < 2.2e-16

† Model 1—Pooling; Model 2—RE (random.method = “amemiya”, “twoways”); Model 3—FE (“within”,
“twoways”); Model 4—FD.
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Table A3. Results of panel tests for models in Table 3.

Panel Test Model 1 † Model 2 Model 3 Model 4 Model 6

1 BP = 9.048, df = 8,
p-value = 0.338

2 LM test = 48.144, df = 1,
p-value = 3.96e-12

3
chisq = 24.224,

df = 5,
p-value = 0.0002

chisq = 28.272,
df = 5,

p-value = 3.2e-05

4 z = ´1.114,
p-value = 0.265

z = ´0.886,
p-value = 0.376

5 chisq = 2.782,
p-value = 0.095

6 F = 0.87, df1 = 32,
df2 = 45, p-value = 0.657

7 normal = 11.399,
p-value < 2.2e-16

8 normal = ´1.471,
p-value = 0.141

9 normal = 7.02,
p-value = 2.22e-12

10
F = 57.642,

df1 = 17, df2 = 64,
p-value < 2.2e-16

12
F = 1.835, df1 = 4,

df2 = 60,
p-value = 0.134

13
chisq = 1.377,

df = 8,
p-value = 0.995

chisq = 3.375,
df = 8,

p-value = 0.909

14 chisq(16) = 18
(p-value = 0.3239)

15 normal = ´0.8241667
(p-value = 0.40984)

16 normal = ´0.6338902
(p-value = 0.52615)

17 chisq(9) = 14750.19
(p-value = < 2.22e-16)

† Model 1—Pooling; Model 2—RE (random.method = “amemiya”,”twoways”); Model 3—FE (“within”,
“individual”); Model 4—FD; Model 6—SYS GMM (“ld”, “onestep”, “individual”).

Table A4. Results of panel tests for models in Table 4.

Panel Test Model 1 † Model 2 Model 4

1 BP = 3.912, df = 8,
p-value = 0.865

2 LM test = 9.978, df = 1,
p-value = 0.001584

3 chisq = 4.709, df = 5,
p-value = 0.4525

4 z = ´1.168,
p-value = 0.243

6 F = 1.7, df1 = 32, df2 = 5,
p-value = 0.2912

7 normal = 3.6092,
p-value = 0.0003071

8 normal = ´1.077,
p-value = 0.281

9 normal = 1.790,
p-value = 0.0734

10 F = 12.653, df1 = 9,
df2 = 32, p-value = 2.84e-08

14 chisq(16) = 10
(p-value = 0.86663)

15 normal = ´1.206876
(p-value = 0.22748)

16 normal = 1.280697
(p-value = 0.2003)

17 chisq(9) = 1951.815
(p-value = < 2.22e-16)

† Model 1—Pooling; Model 2—FE (“within”, “individual”); Model 4—SYS GMM (“ld”, “onestep”, “individual”).
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