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Abstract: Different variables affect the performance of the Stirling engine and are 

considered in optimization and designing activities. Among these factors, torque and power 

have the greatest effect on the robustness of the Stirling engine, so they need to be 

determined with low uncertainty and high precision. In this article, the distribution of torque 

and power are determined using experimental data. Specifically, a novel polynomial 

approach is proposed to specify torque and power, on the basis of previous experimental 

work. This research addresses the question of whether GMDH (group method of data 

handling)-type neural networks can be utilized to predict the torque and power based on 

determined parameters. 
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1. Introduction 

Reducing use of fossil fuels is a significant energy quest of the world today, and many researchers are 

seeking ways to harness alternative energy resources and developing enhanced energy conversion systems. 

The Stirling engine can be very efficient, having the same theoretical energy efficiency as the Carnot 

engine for transforming heat to work. It is environmentally advantageous and can mitigate CO2 

emissions from combustion. 

An important energy conversion system that can contribute to these goals is the Stirling engine, which 

can generate electrical power with high thermal efficiency. It is an external combustion engine that works 

within an extensive temperature interval and provides opportunity of enhanced combustion control. 

Stirling engines works utilize expansion and compression processes of a working fluid (e.g., gases such 

as hydrogen, helium and air) [1,2]. The efficiency of a Stirling engine varies with charge pressure, 

mechanical connections, temperature difference between the cold and hot reservoirs, regenerator 

efficiency, heat transfer coefficient, impermeability ratio and physical and thermal properties of the 

working fluid (e.g., thermal conductivity, viscosity, heat capacity) [3]. 

Many efforts at manufacturing and enlarging of Stirling engine have been put forth by companies and 

research organizations. The period of new Stirling engine improvement began in 1937 by the Philips 

Company, which developed Stirling engine sizes up to 336 kW [4]. More recently, Prodesser [5] built a 

Stirling engine that is fueled with biomass to produce electric power, and that can generate an electric 

power of 3.2 kW while achieving a pressure of 33 bars. Sripakagorn and Srikam [6] built a beta-type 

Stirling engine that operated at a medium temperature range and generated 95.4 W of electric power with 

internal conditions of 773 K and 7 bar. Karabulut et al. [7] built a Stirling engine capable of generating  

183 W of electric power using a working fluid of helium that attains a pressure of 4 bar. Cheng and Yu [8] 

investigated numerically a beta-type Stirling engine to identify the effects of various parameters, including 

non-isothermal effects and the performance of the regenerative channel. Chen et al. [9] developed a 

numerical approach for assessing a c-type Stirling engine so as to permit prediction of various 

geometrical and process characteristics, and showed that regeneration effectiveness influences efficiency 

and engine speed influences engine power the most. Formosa and Despesse [10] developed a model to 

investigate heat exchanger efficiency and regenerator flaws for a Stirling engine, and examined the 

effects of regeneration on thermal efficiency and output power. Also, a smart model to predict Stirling 

heat engine power output using an evolutionary approach was developed by Ahmadi et al. [11–17]. 

System identification methods are able to demonstrate and estimate the behaviors of unidentified 

and/or very complicated systems on the basis of specified input–output data, for various fields of 

engineering [18]. Calculation approaches for these methods [19], which involve specification in an 

uncertain environment, have attracted considerable attention from researchers. The most common 

calculation approaches include neural networks, fuzzy logic and evolutionary algorithms, and these have 

contributed significantly to improving understanding of recognition and control issues for complicated, 

non-linear systems. 

Various investigations have been performed on methods for utilizing evolutionary algorithms  

for system recognition [20–24]. Amongst these, the group method of data handling (GMDH) is  

a self-organizing technique that creates a progressively more complex approach on the basis of  

the assessment of its effectiveness for an assortment of multi-input, single-output data couples (Xi,yi)  
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(i = 1,2,…,M). GMDH was introduced by Ivakhnenko [25] as a multivariate analysis approach for 

complicated systems modeling and recognition. GMDH can be utilized to avoid the complexity of 

obtaining former information with the algebraic approach of the progression. Thus, GMDH can be 

utilized to demonstrate complicated systems without having particular information of the systems. 

GMDH operates by creating an analytical function in a feed forward network on the basis of  

a quadratic node transfer function [26], in which constants are obtained by a regression procedure.  

The actual GMDH approach, where method factors are approximated via a least squares approach,  

can be categorized based on comprehensive initiation and partial initiation to illustrate the combinatorial 

(COMBI) and multi-layered iterative algorithms (MIA), correspondingly [27]. 

Presently, the employment of self-organizing networks has increased the effectiveness of the GMDH 

approach for a wide variety of fields and applications [25–31]. There have been many attempts in the 

past to assemble population-based stochastic search methods such as evolutionary approaches like 

ANNs (artificial neural network), particularly since such evolutionary methods are helpful for 

complicated problems having large search spaces with many local optimums [32]. A review of 

evolutionary approaches within ANNs is presented in [33]. Genetic algorithms have been utilized in 

feed-forward GMDH style NNs, in which a neuron explores its optimum assortment of connections with 

the previous layer [34]. 

In the present work, a model is developed incorporating GMDH and Stirling engine  

experimental [35,36] outcomes for the first time. The results are verified against experimental values.  

In the study, 112 configuration numbers, obtained from prior experimental works [35,36], are utilized 

for both training the polynomial NN and estimation. Inputs for the NN model are temperature of the hot 

working fluid, pressure and fuel, while the outputs are torque and power. The GMDH-style NN is 

developed to determine the input–output relationship in the form of polynomials. Such NN recognition 

progression requires some optimization approaches to specify the best network topology. In this regard, 

the Genetic Algorithms (GAs) are organized in a novel model to specify the complete topology of the 

GMDH-style NNs, i.e., the neurons’ number throughout every hidden layer and their connection 

conformation. Singular Value Decomposition (SVD) is employed to identify the optimum constants of 

quadratic formulations for predicting of torque and power. 

2. Principles of Modeling Using GMDH Types of Artificial Neural Networks 

An approach can be expressed as an assortment of neurons where various pairs throughout every 

layer are associated via a quadratic polynomial through the GMDH algorithm and, consequently, 

generate fresh neurons throughout the further layer. Such information can be used in modeling to link 
outputs to inputs. The accepted definition of the recognition issue is to determine a function f̂  that can 

be roughly utilized in place of real one, f , with the intention of estimating output ŷ  for a specified 

input vector 1 2 3 nX ( x ,x ,x ,...,x )  that is close to its real output y. For specified M observations of 

multi-input–single-output data couples the real target can be expressed as follows: 

1 2 3 1 2 3i i i i iny f ( x , x , x ,..., x ) ( i , , , ...M )   (1)

Now, a GMDH style NN is trained to estimate the target values  for any specified input vector

1 2 3i i i inX ( x ,x ,x ,...,x )  as follows: 

if̂



Sustainability 2015, 7 2246 

 

1 2 3 1 2 3i i i i in
ˆŷ f ( x ,x ,x ,...,x ) ( i , , , ...M )   (2)

In this step, the issue is to specify a GMDH style NN in order to minimize the square of  

the difference between the real target and the estimated one, as follows: 

2

1 2 3
1

M

i i i in i
i

ˆ ˆf ( x ,x ,x ,...,x ) y min


     (3)

The overall relation between input and output parameters can be formulated by a complex discrete 

form of the Volterra functional series as follows: 

1 1 1 1 1 1

n n n n n n

i i ij i j ijk i j k
i i j i j k

y a a x a x x a x x x ...
     

        
(4)

which is recognized as the Kolmogorov–Gabor polynomial [25,27–29]. This full algebraic arrangement 

can be represented by a system of partial quadratic polynomials containing only two parameters 

(neurons) as follows: 

2 2
1 2 3 4 5i j i j i j i jŷ G( x ,x ) a a x a x a x a x a x x        (5)

In this regard, such partial quadratic sketch is utilized reversely throughout a network of linked 

neurons to form the universal arithmetic correlation of input and output parameters specified in  
Equation (4). The coefficients ia  in Equation (5) are specified by regression approaches in order to 

minimize the difference between real output y  and the determined one ŷ  for each pair of input 

parameters ji xx , . 

In actuality, it can be observed that a hierarchy of polynomials is built utilizing the quadratic form 

provided in Equation (5) whose constants are acquired via least-squares logic. Then, the constants  
of every quadratic function iG  are obtained to optimally fit the output throughout the entire set of  

output–input data pairs, as follows: 

2
M

i i
i

( y G )
E min

M


 


 

In simple terms, in the GMDH approach the probabilities are provided of two autonomous parameters 

out of the entire n input parameters being chosen. This is done with to create the regression polynomial in 
Equation (5) that best fits the dependent observations 1 2i( y ,i , ,...M )  through least-squares logic. 

Accordingly, 
1

2 2

n n( n )  
 

 
 neurons are assembled throughout the prime hidden layer of the feed 

forward NN from the observations 1 2i ip iq{( y ,x ,x );(i , ,...M)}  for various  nqp   ,...,2,1,  . That 

is, it is now promising to build data trebles  Mixxy iqipi ,,2,1(;),,( ....      from observations utilizing 

such  nqp   ,...,2,1,   sets as follows: 

M
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1 1 1

2 2 2

3 3

p q

p q

p q M

x x y

x x y
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 
 
 
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Utilizing the quadratic sub-formulation type of Equation (5) for every row of M data trebles,  

the subsequent matrix formula can be straightaway gained as 

Aa Y  (6)

 1 2 3 4 5a a , a , a , a , a , a   (7)

 1 2 3
T

MY y , y , y ,...y  (8)

Here, a  denotes for the vector of unidentified constants for the quadratic polynomial in  

Equation (5), and Y denotes the vector of output values from observations. Thus, the following 

expression can be formulated: 


















22

2
2

2
22222

2
1

2
11111

1

1

1

MqMpMqMpMqMp

qpqpqp

qpqpqp

xxxxxx

xxxxxx

xxxxxx

A  (9)

The least-squares approach from the analysis of the multiple-regression effect leads to the following 

standard expression: 

1T Ta ( A A ) A  (10)

This equation specifies the vector of the best constants of Equation (5) for the entire array of M data 

trebles. Note that this technique is iterated for every neuron of the further hidden layer accompanied  

by the connectivity structure of the NN. Such an answer from standard equations is more exactly 

vulnerable to improve deviations and, more outstandingly, to boost the individuality of the 

aforementioned formulas [37–42]. 

There are two central concepts included in a GMDH type of artificial neural network scheme,  

i.e., topology identification and the parametric [37–42] utilization of the GA for designing the structure 

for GMDH type of NNs. Stochastic techniques are generally utilized throughout the process of training 

of NNs in terms of connected coefficients or weights, and have been effectively implemented and 

demonstrated to be superior to conventional gradient-based approaches. 

In the most GMDH types of NNs, neurons throughout any layer are linked to a neuron in  

a neighboring layer, as indicated earlier for techniques I and II that report in references [30–35].  

With this improvement, a straightforward programming pattern can be used for the genotype of any 

individual throughout the population, as previously suggested [33,37,38]. The programming scheme is 

presented in Figure 1. 



Sustainability 2015, 7 2248 

 

 

Figure 1. A generalized GMDH network structure of chromosome. 

GMDH NNs (GS-GMDH) should be capable of demonstrating various lengths and sizes of such NNs. 

throughout a GS-GMDH NN, as demonstrated in Figure 1, neuron ad inside the principal hidden layer 

is attached to the output layer by straightforwardly extending the further hidden layer. Thus, it is 

relatively simple to perceive that the designation of the network’s output includes ad double as abbcadad. 

That is, a cybernetic neuron named adad is assembled throughout the further hidden layer and utilized 

within the same layer to create the output neuron, as illustrated in the Figure 1. 

This procedure occurs when a neuron is delivered to particular neighboring hidden layers and links 

to an alternative neuron in the succeeding hidden layer (2nd, or 3rd, or 4th, etc.). Throughout this 

programming pattern, the number of replications is determined as n~2  in which neuron is subject to  

the number of approved hidden layers, n~ . Note that a chromosome such as ababbcbc, is different from 

chromosome ababacbc, and thus it is not a usable individual in the GS-GMDH networks and has to  

be re-written straightforwardly as abbc. 

Now it is possible to generate two offsprings from two parents by implementing the GA operatives 

of mutation and crossover. The process of selection is performed on the basis of a natural roulette wheel 

selection approach for selecting two parents generating two offsprings [33,37,38]. 

The combination of a GA into the scheme of GMDH style NNs commences by demonstrating  
each network as a string of consecutive sub-strings of sequential numbers. The fitness,  , of each  

whole string of representative numbers which characterizes a GMDH style NN approach is assessed  

as follows: 

1

E
   (11)

where E denotes the mean square of error (MSE) in Equation (10), which is minimalized inside the 
evolutionary progression by exploiting the magnitude of fitness,  . 

The evolutionary progression is initiated by arbitrarily producing an initial population of 

representative series, as a proposed solution. Then, genetic operations such as mutation, crossover and 

roulette wheel selection are performed on the overall population of representative series to improve the 
solution progressively. In this regard, GMDH style NN approaches with increasingly rising fitness,  , 

are created until no additional substantial progress is possible. 

To determine the integrity and reliability of the proposed polynomial models for modeling  

torque and output power of the Stirling engine, the correlation of determination (R2), as a mean absolute 

percentage of error (MAPE), and root mean square error (RMSE) which are used, expressed  

as follows [43–45]: 
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3. Results and Discussion 

In the present work, a model is developed with respect to GMDH and Stirling engine (Philips M102C 

engine) experimental outcomes for the first time [35,36]. The results are verified against experimental 

values. Also, statistical properties of data set are shown in Table 1. 

Table 1. Statistical properties of the data set used in this study. 

 hT  (°C) P  (bar) F  (
gr

min
) Output Power (W) Torque (N.m) Ref. 

Input (600–900) (4.14–12.41) (2.5–7.8) - - [35,36]
Output - - - (36–500) (0.19–3.7) [35,36]

Based on the approach described in the preceding section, the polynomial generated for the Stirling 

engine for torque is formulated as follows: 

2 2

2 2

2

4.19018 0.013268 0.00270926 0.00000990598 2.8801 0.155272

0.189686 2.02653 0.930981 0.381378 0.480105 0.305945

3.45598 0.00754163 0.000582712 0.00000502679 0.0170

h h h

h h h

Torque T AT T A A

A B BC B C C

B T T p T

     

      

      2

2 2

738

1.45881 0.253347 0.0575211 0.0282376 0.441726 0.0596564

p

C p pF p F F      

 (15)

and for output power is formulated as follows: 

2

2

2 2

373.951 1.12004 0.00564667 0.000785436 1.50314

20.687 1.51768 0.00209829 0.0018406 0.660555

638.237 1.30715 0.0842743 0.000835089 12.9758 3.19127

1

h h h

h h h

Output power T A T T A

A B B C B C

B T T p T p p

C

     

         

       

   262.822 47.9507 5.65611 4.19637 16.5671p pF p F     

(16)

Here, p  denotes pressure, hT  denotes temperature of the hot working fluid, and F  stands for 

consumption fuel. Statistical indices for the results obtained with the aforementioned polynomial 

approaches are summarized in Tables 2 and 3 for torque and power, respectively. 
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Table 2. Values of absolute fraction of variance, root-mean squared error and mean absolute 

percentage, respectively, for torque model. 

Statistical Parameter Value 

R2 0.9518 
MAPE 0.0007 
RMSE 0.1718 

Table 3. Values of absolute fraction of variance, root-mean squared error and mean absolute 

percentage, respectively, for power model. 

Statistical Parameter Value 

R2 0.9737 
MAPE 0.0005 
RMSE 0.1838 

As illustrated in Figure 2, the deviations (ARD = Average Relative Deviation) for torque values 

predicted with the model are not considerable when the torque is between 0.1 and 1.5 N.m, are low when 

the torque is between 1.5 and 2.5 N.m and approach zero when the torque is between 2.5 and 3.7 N.m. 

The relative error of the developed ANN model for torque determination versus relevant actual torque 

values are also shown in Figure 2, where the maximum relative error is seen to be 32% for the low torque 

boundary and to decrease as torque rises, reaching a value of 11% for high torques. 

 

Figure 2. Variation of relative error with corresponding experimental torque values. 

It can be seen in Figure 3 that there is a good agreement between the model outputs and the 

experimental torque based on the data index simulated in this work. 
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Figure 3. Comparison of experimental torque and outcomes of the GMDH approach. 

The output results of GMDH model in Figure 4 for experimental power outputs of 50 W through  

500 W are compressed around zero deviation line, which means that the deviation of the addressed  

model in this interval is very low. Nonetheless, about five noisy points experimental power outputs lower  

than 150 W are observed in the figure. 

 

Figure 4. Variation of relative error with experimental power output values. 

The outcomes of the evolved GMDH model are seen in Figure 5 to follow the actual trend of  

the output power of the Stirling engine based on the corresponding data index simulated in this study. 
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Figure 5. Comparison of experimental power output and outcomes of the GMDH approach. 

4. Conclusions 

An intelligent approach to determine the output power and torque of a Stirling heat engine is proposed 

and developed. The approach employs the GMDH method to develop an accurate predictive tool  

for determining output power and torque of a Stirling heat engine in manner that is inexpensive, fast  

and precise. Accurate actual data banks employed for testing and optimizing of the predictive tool.  

The statistical criteria regarding the output results of the developed GMDH model suggest that the 

suggested method has a high level of robustness and integrity for determination of output power  

and torque. Consequently, based on the output results, the GMDH approach can help energy experts to  

design Stirling heat engines with high levels of performance, reliability and robustness and with a low  

degree of uncertainty. 
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