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Abstract: Tianjin is the largest coastal city in northern China with rapid economic development 

and urbanization. Energy-related CO2 emissions from Tianjin’s production and household 

sectors during 1995–2012 were calculated according to the default carbon-emission 

coefficients provided by the Intergovernmental Panel on Climate Change. We decomposed 

the changes in CO2 emissions resulting from 12 causal factors based on the method of 

Logarithmic Mean Divisia Index. The examined factors were divided into four types of 

effects: energy intensity effect, structure effect, activity intensity effect, scale effect and the 

various influencing factors imposed differential impacts on CO2 emissions. The decomposition 

outcomes indicate that per capita GDP and population scale are the dominant positive driving 

factors behind the growth in CO2 emissions for all sectors, while the energy intensity of the 

production sector is the main contributor to dampen the CO2 emissions increment, and the 

contributions from industry structure and energy structure need further enhancement. The 

analysis results reveal the reasons for CO2 emission changes in Tianjin and provide a solid 

basis upon which policy makers may propose emission reduction measures and approaches 

for the implementation of sustainable development strategies. 
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1. Introduction 

Climate change is one of the most urgent global environmental challenges of the present time. China 

has become the utmost primary energy consumer as well as the utmost CO2 emitter all over the world. 

In 2012, China consumed 2735 million tons of oil equivalent (Mtoe) of primary energy and the amount 

of China’s CO2 emissions reached 9.21 billion tons [1,2]. The combustion of fossil fuels contributes not 

only to CO2 emissions, but also to air pollutants such as SO2 and NOx [3]. At the Copenhagen Climate 

Change Conference in 2009, the Chinese government made a commitment to the world that China would 

reduce its carbon emissions per unit GDP in 2020 by 40%–45% compared with 2005 levels [4]. China’s 

FYP12 also includes the goal of a 17% carbon intensity (carbon emissions per unit of GDP) reduction 

from the 2010 level. These commitments indicate a shift in emphasis in China’s policy concerning an 

increased balance between the need for development and the requirements of the environment. 

Approximately half of the Chinese population now lives in cities, particularly in metropolises such 

as Beijing and Tianjin [5]. The 35 largest cities in China, which contain 18% of the population, contribute 

40% of China’s energy uses and CO2 emissions [6]. The impact of such cities imposing on energy use 

and associated emissions is becoming increasingly severe. Based on current knowledge of emission 

status, understanding the driving forces behind the increase in CO2 emissions in cities is the foundation 

for the presentation of a comprehensive analysis on future emissions, and it is essential to the formulation 

of policies for the mitigation of the effects of climate change and fulfilment of applicable targets. The 

relative contributions of socioeconomic factors such as population, economic growth, energy structure, 

and energy intensity to the change in CO2 emissions in China have been analyzed [7–12]. The objectives 

of this study are to quantify and examine the driving forces behind CO2 emissions in Tianjin by applying 

the extended Logarithmic Mean Divisia Index (LMDI) decomposition model and, based on this, to make 

policy recommendations to help achieve the stated emission reduction targets. 

Tianjin, one of the four municipalities directly under the Central Government of China, is not only an 

economic center in the north of China but also a well-known international harbor. In 2012, Tianjin 

covered an area of 1.19 × 104 km2 and supported a population of 14.13 million permanent residents, 

which generated an overall GDP of 12,893.9 billion RMB (approximately 2.48% of the total GDP of 

China) and a per capita GDP that exceeded 10,000 USD. The total energy consumption of Tianjin in 

2012 was 79.27 million tons of standard coal [5]. The proportion of fossil fuels in the primary energy 

consumption structure were approximately 58.1%, 36.9%, and 5% for coal, crude oil, and natural gas, 

respectively [13]. According to the “Low-Carbon City Pilot Scheme of Tianjin (2012)”, in 2010, the 

total net emission of greenhouse gases (GHGs) in Tianjin was approximately 0.13 billion tons of CDE 

(carbon dioxide equivalent), of which 95.5% was CO2. As one of China’s pilot low-carbon cities, Tianjin 

is facing major pressure to discover new ways in which to reduce CO2 emissions. 

As for the contribution in this paper, two aspects can be achieved. First, in consideration of the 

methodology, this paper extends the common LMDI decomposition analysis in CO2 emission changes 

from both production and household sectors with nine types of energy, and examines the effects of  

12 causal factors simultaneously, which are divided into energy intensity effect, structure effect, activity 

intensity effect, and scale effect. Second, our findings will help in the understanding of how CO2 

emissions are affected by a number of driving forces, and allow us to design strategies and recommend 
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policies for the reduction of CO2 emissions in Tianjin, which will favor energy saving, reductions of air 

pollutants, cost reductions, and policy efficiency improvements. 

The rest of this paper is organized as follows. In Section 2, the LMDI approach and the data used in 

our analysis are described. In Section 3, we present the results of the LMDI decomposition analysis. 

Section 4 concludes the paper with our policy suggestions. 

2. Methodology and Data 

2.1. The Logarithmic Mean Divisia Index (LMDI) Decomposition Model 

Researchers have developed many methods to quantify the effects of different factors that contribute 

to changes in energy consumption and carbon emissions, i.e., the structural decomposition analysis 

(SDA) and the index decomposition analysis (IDA), are widely used as analytical tools for supporting 

policymaking on national energy and environmental issues [14–17]. The SDA approach uses information 

from input-output tables in specific years, whereas IDA, an improvement of the Kaya identity, uses 

aggregate data at the sector level [7]. However, the SDA can only be performed additively because of 

the dependence on the input–output tables, which leads to some constraints in the extensive use of SDA [18]. 

The IDA approach requires lower data than SDA, but it involves a less detailed analysis and allows for 

assessing the direct impacts only, which limits policy decisions to the sectoral or product scale [15]. 

Compared to the SDA approach, the application of IDA proves itself more widely on the city scale [16]. 

However, in this paper, we employ the IDA model because of the lack of time series input–output tables 

and sectoral energy use data in an input–output format. There are several types of IDA, which can be 

categorized broadly as Laspeyres IDA and Divisia IDA, and the latter one primarily includes the 

arithmetic mean Divisia index (AMDI) and log mean Divisia index (LMDI). However, there are several 

reasons for selecting the LMDI method, introduced by Ang and Choi [19], to explore the driving factors 

behind the energy-related CO2 emissions in Tianjin: (1) sound theoretical foundation, (2) adaptability, 

(3) path independency, (4) ease of use, (5) ease of interpretation of results, and (6) ability for solving 

zero-value problems [14,17,20,21]. Further details regarding the LMDI approach are given by Ang [22]. 

The LMDI method has both additive and multiplicative forms. In this study, the additive form of 

time-series analysis was applied to accommodate both the decomposition of the individual sectors in 

assessing the influence of each, and the subsequent aggregation for establishing the total change. 

Recently, numerous studies have used LMDI methods for analyzing the factors driving the increases in 

energy use and GHG at different levels (national, regional, megalopolis, and industrial). However, in 

most existing research, only a limited number of driving factors (usually 3–7) are generally analyzed, 

which belong to the scale, structure, and intensity effects [9,23–29], some of the driving factors analyzed 

by this paper, such as urban rate, the residents’ consumption expenditure and disposable income are rare 

in the existing literature. The principle purpose of this decomposition analysis is to analyze the 12 causal 

factors behind the changes in CO2 emissions in all of the energy end-use sectors from 1995–2012. 

However, the results of an LMDI application may also provide the basis for forecasting or scenario 

analysis of future evolution [30–32]. 

Referring to the previous LMDI approach [22], the decomposition schemes applied to the CO2 

emissions from each sector can be expressed by the following Equation (1): 
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(1)

where C denotes the total energy-related CO2 emissions; index i = 1, 2, …, 7 denotes diverse sectors, 

which are primary industry, industry, construction, tertiary industry, transport, urban household and rural 

household, respectively; index j = 1, 2, …, 9 represents different types of energy, which are coal, coke, 

crude oil, gasoline, kerosene, diesel, fuel oil, natural gas, and liquefied petroleum gas, respectively; Cij 

refers to the CO2 emissions of energy type j of sector i; Fij is the consumption of energy j of sector i, and 

Fi represents the total energy consumption of sector i; Yi is the economic output of sector i, and Y denotes 

the total economic output; P denotes the permanent residents population; VN represents the number of 

vehicles; TUI is the total disposable income of urban residents; UP refers to the urban population; TRI 

denotes the total consumption expenditure of rural residents. 

Equation (1) can then be transformed as: 
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 (2)

For clarity in presentation, we introduce eleven intermediate terms: CIij, ESij, EIi, ISi, GPC, VEI, VNC, 

UEI, UIPC, UR and REI to represent the eleven terms in Equation (1), respectively. CIij ≡ Cij/Fij, 

represents the carbon emission coefficient for energy type j of sector i, ESij ≡ Fij/Fi defines the energy 

mix of sector i, EIi ≡ Fi/Y represents the energy intensity of sector i, ISi ≡ Yi/Y defines the activity mix of 

sector i, GPC ≡ Y/P refers to the per capita of GDP, VEI ≡ Fi/VN reflects the vehicle energy intensity, 

VNC ≡ VN/P denotes the per capita number of vehicles, UEI ≡ Fi/TUI refers to the energy consumption 

intensity of urban residents, UIPC ≡ TUI/UP defines the per capita disposable income of urban residents, 

UR ≡ UP/P reflects the urbanization rate, REI ≡ Fi/TRI refers to the energy consumption intensity of 

rural residents. 

The time derivative was taken on both sides of Equation (2) and, therefore, the instantaneous increase 

in the rate of CO2 emissions is given as follows: 
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where Wij (t*) is a weight function given by Wij = Cij at point t* ∈ [0,T], and subscripts T and 0 refer to 

the target and base years, respectively. One way in which to obtain the approximate value of Wij (t*) is 

to use the LMDI method, which is able to address zero values in the dataset and also leaves no residual 

terms. The logarithmic mean of two positive numbers is defined as: 
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Therefore, Equation (5) can be rewritten as below: 
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 (8)

where totCΔ   is the change of CO2 emissions in Tianjin between base year 0 and target year t; CIΔ  

represents the emissions coefficient effect, the value of which is zero because the 1995–2012 period is a 

relatively short term, and we define the carbon emission coefficient as a constant; ESΔ   denotes the 
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energy structure of all sectors; EIΔ   refers to the energy intensity effect of the production sectors, 

including primary industry, industry, construction, and tertiary industry; ISΔ   reflects the economic 

structure effect of the production sectors; GPCΔ  and UIPCΔ  represent the effects of per capita GDP and 

disposable income per urban resident, respectively; VEIΔ , UEIΔ , and REIΔ  reflect the effects of vehicle 

energy intensity and of energy consumption intensity of urban and rural residents, respectively; VNCΔ  

refers to the effect of vehicle numbers per capita; PΔ  is the total population effect; URΔ  reflects the 

urbanization effect; and TRIΔ  denotes the effects of the total consumption expenditure of rural residents. 

2.2. Data Sources 

With regard to the availability of data, local sources were used to obtain the data required for this 

analysis. The data spanning 1995–2012 used in the analysis were collected from various issues of the 

Tianjin Statistical Yearbook and China Energy Statistical Yearbook published annually by the National 

Bureau of Statistics (NBS); and authors’ calculation. The volume of energy sources consumed by 

primary industry, industry, construction, tertiary industry, transport, and urban and rural residents in 

Tianjin was obtained directly from Tianjin’s Energy Balance Table in the China Energy Statistical 

Yearbooks (NBSC, 1996–2013) and was converted into coal equivalents (tce) on the basis of the 

standard coal-equivalent coefficients for different types of energy, which were also obtained from the 

China Energy Statistical Yearbook. The energy-related CO2 emissions were estimated by applying the 

emission factor approach of the Intergovernmental Panel on Climate Change (2006) [33], which is 

currently the most widely used method. The GDP data in this paper were taken from the Tianjin 

Statistical Yearbook and given as 108 yuan in constant 1995 price (RMB). Other data were all extracted 

from the Tianjin Statistical Yearbook. 

3. Results and Discussion 

From 1995 to 2012, with an annual growth rate of 13.97%, which is much higher than the national 

average, Tianjin’s GDP has increased from 93.20 billion RMB to 857.59 billion RMB (in 1995 constant 

price). Meanwhile, energy-related CO2 emission almost kept increasing during the study period except 

year 1996, 1999, 2001 and 2003; the total energy-related CO2 emissions have grown 36.93 million tons, 

with a total increase rate of 103.01% and a 4.62% annual increase rate on average. The CO2 emissions 

were decomposed yearly during 1995–2012 depending on the LMDI method outlined in Section 2. The 

effective values of the impact factors for CO2 emission changes obtained from the decomposition 

analysis are listed in Table 1. The decomposition outcomes indicate that various influencing factors 

impose differential effects on CO2 emissions, and the accumulation of effects from factors reducing 

emissions is more than offset by the effects of the driving factors increasing emissions, therefore bringing 

about a substantial increment in total energy-related CO2 emissions. 

According to the characteristics of each type of driving factor, the 12 factors were divided into  

four types: energy intensity effect (ΔEI, ΔVEI, ΔUEI and ΔREI), structure effect (ΔES, ΔIS, and ΔURI), 

activity intensity effect (ΔGPC, ΔUIPC, and ΔVNC), and scale effect (ΔP and ΔTRI), the growth rate of 

Tianjin’s energy-related CO2 emissions and each type of effect’s contribution are shown in Figure 1. 
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Table 1. Decomposition of Tianjin’s energy-related CO2 emission changes (1995–2012). 

Time Period ΔEI ΔVEI ΔUEI ΔREI ΔES ΔIS ΔUR ΔGPC ΔUIPC ΔVNC ΔP ΔTRI ΔCtot 

1995–1996 −7.27 −0.16 −0.66 0.37 −0.04 −1.11 0.01 3.61 0.51 0.49 0.29 0.04 −3.95 

1996–1997 −1.93 0.27 −0.55 0.24 0.18 −0.45 0.02 2.48 0.27 0.40 0.26 0.01 1.21 

1997–1998 −1.50 0.65 −1.08 −0.20 0.24 −0.81 0.02 3.36 0.19 0.17 0.08 0.02 1.16 

1998–1999 −3.60 0.24 −0.04 −0.01 −0.17 −0.03 0.01 1.98 0.17 0.10 0.25 0.05 −1.04 

1999–2000 −4.99 0.50 −0.11 −0.07 −0.20 0.34 0.05 6.81 0.31 0.42 1.95 0.06 5.06 

2000–2001 −2.89 0.10 −0.11 −0.03 −0.17 −0.08 0.01 2.06 0.13 0.02 0.20 0.12 −0.64 

2001–2002 −1.15 −0.62 −0.06 −0.08 −0.74 −0.26 0.00 2.17 0.09 1.18 0.04 0.02 0.61 

2002–2003 −10.34 −0.86 −0.22 −0.04 0.93 0.49 0.04 3.98 0.13 1.47 0.29 0.03 −4.10 

2003–2004 −0.96 −0.33 −0.23 −0.07 0.19 1.39 0.01 5.98 0.25 0.64 1.20 0.12 8.19 

2004–2005 −0.87 −0.06 −0.03 −0.04 −0.17 0.39 0.01 2.88 0.16 0.18 0.82 0.06 3.32 

2005–2006 −2.26 −0.02 −0.20 −0.04 0.09 0.14 0.03 5.62 0.27 0.44 2.39 0.09 6.55 

2006–2007 −1.34 −0.27 −0.02 −0.01 0.31 0.07 0.05 7.20 0.41 0.25 1.06 0.15 7.86 

2007–2008 −8.04 −0.11 −0.14 −0.05 0.23 0.44 0.04 6.38 0.60 0.40 2.49 0.10 2.34 

2008–2009 −1.05 −0.27 −0.06 0.02 −0.73 −1.58 0.06 4.35 0.35 0.64 0.95 0.13 2.81 

2009–2010 −1.27 −0.32 −0.11 −0.09 −0.38 −0.93 0.05 2.04 0.27 0.37 1.40 0.07 1.10 

2010–2011 −3.58 −0.77 −0.19 −0.02 −0.18 −0.09 0.12 4.25 1.00 0.87 1.87 0.27 3.55 

2011–2012 −2.49 −0.45 −0.04 −0.01 −0.60 −0.38 0.15 3.19 0.80 0.22 2.36 0.17 2.92 

1995–2012 −55.50 −2.49 −3.86 −0.14 −1.20 −2.46 0.66 68.35 5.93 8.26 17.89 1.50 36.93 

a Unit: Million tons; b Negative values indicate decreasing CO2 emissions. 

 

Figure 1. Growth rate of Tianjin’s energy-related CO2 emissions and each type of effect’s 

contribution degree. 

3.1. Energy Intensity Effect 

As shown in Figure 1, the energy intensity effect appears to be the main contributor to dampen the 

increase of CO2 emissions during 1995–2012. According to the decomposition results, the energy 

intensity effect caused 61.99 million tons of CO2 emissions reduction accumulatively (i.e., the sum of 
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ΔEI, ΔVEI, ΔUEI and ΔREI), approximately 1.68 times of the cumulative CO2 emission changes  

(i.e., 36.93 million tons) in the same period. The contribution degree of the four factors above and the 

energy-related CO2 emission changes in percentage are shown in Figure 2. 

 

Figure 2. Contribution degree of each factor included in the energy intensity effect to the 

growth rate of Tianjin’s energy-related CO2 emissions (1995–2012). 

The energy intensity’s decline, expressed as the reduction of energy consumption per unit of GDP, 

usually due to the energy efficiency improvement and energy saving, leads to the negative contribution 

and propitious to the reduction of CO2 emissions; therefore, the ΔEI is generally recorded as the most 

important inhibiting factor in decomposition analysis studies of carbon emissions [16,26,34,35]. Energy 

efficiency in Tianjin has progressed substantially in recent years, especially during the period of the 

FYP11 (2006–2010), due to the implementation of a series of energy saving and emission reduction 

measures, supported by an average annual energy consumption growth rate of 10.8%, Tianjin achieved 

an average annual economic growth rate of 16.1%; and the energy consumption per GDP of Tianjin fell 

continuously from 2.58 tce/104 yuan in 1995 to 0.67 tce/104 yuan in 2012. Negative contribution of ΔEI 

is observed throughout the study period, i.e., the decreased energy intensity prompts 50.50 million tons 

of CO2 emissions reduction accumulatively, which contributes to −150.29% of the total CO2 emission 

changes in absolute value, making ΔEI the most significant limiting factor in CO2 emissions, which is in 

consistent with the outcomes obtained by the decomposition study of the “Beijing-Tianjin-Hebei case” [36] 

and “Tianjin case” [37], but a little different with the nationwide perspective [16], i.e., ΔEI has promoted 

China’s CO2 emissions in some years. 

The ΔUEI and ΔREI mainly reflect a positive role in reducing CO2 emissions from 1995 to 2012, 

bringing about 3.83 and 0.14 million tons decrease respectively, but the accumulated contributions are 

minor compared with the ΔEI. The income elasticity coefficient of urban and rural resident’s household 

energy consumption is relatively small; however, the level of energy consumption is closely related to 

lifestyle and consumption patterns, indicating that the improvement of household energy efficiency is 
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very complicated, covering many aspects related to the daily behavior of urban and rural residents, and 

more efforts need to be taken. 

The number of motor vehicles in Tianjin increased with an average annual growth rate of 15.4%, 

from 0.28 million in 1995 to 2.21 million in 2012. The ΔVEI fluctuates throughout the study period, but 

the overall contribution is negative, i.e., it is conducive to CO2 emission reduction. 

Considering the rapid development process of urbanization and industrialization in Tianjin, the 

increment of total energy consumption is expected to continue in both the production and household 

sectors; therefore, the reduction of the energy intensity will be of great importance in achieving CO2 

emission goals. 

3.2. Structure Effect 

As shown in Figure 1, the contribution of the structure effect fluctuates, and it is much smaller than 

the energy intensity effect. The decomposition results shown in Table 1 indicate that the structure effect 

caused 3.0 million tons of CO2 emissions reduction accumulatively (i.e., the sum of ΔES, ΔIS, and ΔUR), 

which only accounted for −8.13% of the total CO2 emission changes. 

The energy structure effect (ΔES) plays a nominal role in promoting the diminishment of energy-related 

CO2 emissions during 1995–2012, with an accumulated decrease contribution of 1.2 million tons, which 

accounts for about −3.26% of the total CO2 emission changes. This indicates that the energy structural 

adjustment of Tianjin did not seem to have much impact on CO2 emissions reduction, which is not fully 

consistent with the results obtained by some existing literature [16,36], in those studies, the ΔES is much 

larger. Meanwhile, a clear fluctuation of ΔES contributions is observed during the examined period, and 

the ΔES has promoted CO2 emissions to some extent for several years. Over the same period, the 

percentage of coal in the energy consumption in Tianjin has the same volatility, as shown in Figure 3. 

From 1995 to 2001, the proportion of coal consumption appears a general downward trend, falling from 

53.27% in 1995 to 49.03% in 2001, i.e., the cumulative contribution of the ΔES is negative. In association 

with the increase in the proportion of coal after 2002, the cumulative contribution of the ΔES becomes 

positive, and becomes negative again after 2008, indicating that although the energy structure adjustment 

in Tianjin recently has achieved initial success, the adjustment and optimization of energy structure has 

not changed the pattern of dominance by coal and thus, there is considerable room for improvement, 

considering the rapid increase of natural gas consumption in recent years. 

During the examined period, the share of primary industry in Tianjin declined continuously 

(decreased from 6.5% to 1.3%), and although there was an adjustment in the economic structure toward 

tertiary industry (increased from 37.8% to 47.0%), the industrial structure did not change a lot from 

1995–2012 in general, i.e., secondary industry (including Industry and Construction) remained 

dominant, as shown in Figure 4. The decomposition results signal that during the period of 1995–2012, 

the cumulative economic structure adjustment effect (ΔIS) is negative with a nominal contribution value 

of 2.46 million tons of CO2 decrease, which only accounted for −6.6% of the total CO2 emission changes, 

consistent with the results of other studies [35,37,38]. The ΔIS played a positive driving role in the growth 

of Tianjin’s energy-related CO2 emissions during 2002–2008, and over the same period, the proportion 

of secondary industry rose from 49.7% to 55.2% and the value of heavy industrial output increased 

rapidly. Figure 5 shows the proportion of energy-related CO2 emissions in Tianjin from different sectors 



Sustainability 2015, 7 9982 

 

 

in 1995 and 2012. It indicates that the relative proportion of each sector has changed considerably, in 

particular the decline of industry from 77% to 62% and the increases in transport, construction, and tertiary 

industry. It is obvious that to arrest the growth of CO2 emissions, the inevitable path requires the simultaneous 

adjustment of the intra-industry structure, promotion of the development of non-energy-intensive 

industries, and the upgrade of the technology used by energy-intensive industries. 

China is a typical example of a dual-economy country, whose population can be divided into two 

types: rural and urban. The urbanization rate (UR) is actually a demographic structure, expressed as a 

proportion of the urban population to the total population. The percentage of the urban population of 

Tianjin increased continually throughout the examined period, i.e., it rose from 52.93% in 1995 to 

81.55% in 2012, with an annual growth rate of 2.58%. The ΔUR plays a role in facilitating the increase 

of CO2 emissions but with a relatively smaller contribution compared with other positive driving factors, 

and the cumulative and relative contribution of which during 1995–2012 is 0.66 million tons and 1.8% 

respectively, which is in agreement with the study of Tianjin’s energy-related per capita CO2 emission [35]. 

 

Figure 3. Changes of energy consumption structure in Tianjin (1995−2012). 

 

Figure 4. Industrial structure changes and GDP growth in Tianjin (1995–2012). 
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Figure 5. CO2 emissions from different sectors: Inner; 1995, Outer; 2012. 

3.3. Activity Intensity Effect 

The decomposition analysis revealed that the activity intensity effect, including the per capita GDP 

(ΔGPC), per capita number of vehicles (ΔVNC), and per capita disposable income of urban residents 

(ΔUIPC) promoted a remarkable increase in CO2 emissions in Tianjin during the study period, as shown 

in Figure 1. 

GPC, a comprehensive measure of a country’s per capita production capacity of products and services 

that reflects not only the economic development of the country but also the affluence of the residents, 

appears the main contributor to the increase of CO2 emissions in Tianjin during 1995–2012, which is 

consistent with the conclusions obtained by other studies [12,26]. Over the previous 20 years, Tianjin 

has had the most rapidly expanding economy in China [5], and there is an upward trend in both GPC 

and CO2 emissions throughout the study period, i.e., the GPC increased by 6.13 times, from 9895 yuan 

in 1995 to 60,686 yuan in 2012. In the meantime, the CO2 emissions increased by 2.03 times. Therefore, 

it is unsurprising that the ΔGPC effect is overwhelming, i.e., the dominant positive effect of the ΔGPC 

is observed throughout the study time series, leading to a 68.35 million tons increase, which contributes 

to 185.08% of the CO2 emission changes. 

During the study period, the per capita disposable income of urban residents (UIPC) increased at an 

average annual rate of 14.3%, i.e., it has increased by a factor of 4.8 and its contribution to the increase 

in CO2 emissions is positive, with an accumulated contribution rate of 16.01%. The increase in the level 

of purchasing power of urban residents has led both directly and indirectly to the increase in CO2 

emissions, which highlights another explicit opportunity for reducing CO2 emissions, i.e., the conversion 

of residents to low-carbon patterns of consumption. 

Because of the lack of effectual control over vehicle ownership in Tianjin, the per capita number of 

vehicles (VNC) has increased by more than five times during 1995–2012. Meanwhile, the CO2 emissions 

from the transportation sector amplified by more than 1.5 times in the period 1995–2012, as shown in 



Sustainability 2015, 7 9984 

 

 

Figure 5. The ΔVNC has also played a positive driving role in CO2 emissions during the examined period, 

resulting in 8.26 million tons increment. 

3.4. Scale Effect 

A steadily growing population and increasing levels of income lead to greater demands for goods and 

services that result in more energy consumption and CO2 generation. The population effect (ΔP) and 

expenditure effect of rural residents (ΔTRI) are both scale effects that indicate the positive impacts of a 

growing population and rising levels of income on the increase of CO2 emissions. 

Population size and growth was widely recognized as one of the primary drivers of anthropogenic 

CO2 emissions [6,26]. The results of our LMDI decomposition analysis indicate that the ΔP is the second 

most significant driving factor after ΔGPC, which is in agreement with the results of some of the 

previous literature [28,36]. With an average rate of growth of 2.43% per year, the increasing population 

has contributed significantly to the CO2 emission increment in Tianjin during the study period, leading 

to an increase of CO2 emissions of 17.89 million tons, which accounts for about 48.45% of the total CO2 

emission changes in absolute value. Besides, the permanent population data of Tianjin was used in our 

analysis, since the scale and growth rate of the registered population is smaller than that of the permanent 

population. When the registered population data was used in our decomposition analysis, the 

contribution of ΔP to the cumulative CO2 emission changes became much smaller. A deceleration in the 

rate of urban population growth would appear beneficial for a coordinated and sustained development of 

the population, economy, society, resources, and environment. However, the migration of the rural 

population into the larger cities means that further growth of the urban population is inevitable. Thus, 

we conclude that the ΔP effect will promote further CO2 emissions in Tianjin in the future and make the 

overall reduction of emissions more difficult. 

The expenditure effect of rural residents (ΔTRI) also has a positive effect because increased income 

enables rural residents to pay for more energy consumption. In addition, energy usage related to the use 

of household appliances such as washing machines, air conditioners, refrigerators, personal computers 

and private vehicles and motorcycles has increased rapidly, although this scale effect is insignificant in 

comparison with the ΔP effect. 

4. Conclusions and Policy Recommendations 

In association with the speedy economic development, Tianjin has experienced a sharp increase in 

CO2 emissions. In this study, the driving factors responsible for the ups and downs of CO2 emissions in 

Tianjin during the period of 1995–2012 are analyzed quantitatively using the LMDI decomposition 

method. In general, the above analysis forms a solid foundation for the implementation of appropriate 

mitigation policies in Tianjin. Several conclusions are obtained as below. 

Although ΔGPC and ΔP contribute most to the increment of the metropolis’s CO2 emissions during 

1995–2012, it is impracticable to reduce CO2 emissions through the control of population growth or the 

restraint on the ever-increasing demand for goods and services for each person, particularly the needs of 

energy and resources. Along with further increases in income levels and urban population, the ΔUIPC, 

ΔTRI, ΔVNC, and ΔUR are expected to continue promoting CO2 emissions. Energy intensity effect, 

especially the ΔEI, reduces energy-related CO2 emissions significantly; however, the relatively minor 
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cumulative contributions of ΔIS and ΔES to CO2 emissions reduction should not be ignored, neither of 

them play their due roles, indicating that greater efforts need to be taken in the future to promote their 

inhibitory contribution to CO2 emission. By and large, the three most promising areas for reducing CO2 

emissions are energy efficiency improvements, economic structure adjustments, and fuel switching. 

Based on the results of our research, we make the following policy recommendations. 

(1) Economic policy. It is necessary for Tianjin to continually transform economic growth patterns 

and upgrade industrial structure by innovative technologies. The government is advised to decrease the 

proportion of energy-intensive and carbon-intensive industries by accelerating the elimination of 

backward production capacity and using advanced and applicable technologies to promote low-carbon 

technology in traditional industries such as metallurgy, electricity generation, and the petrochemical 

sector. The government is expected to nurture emerging low-carbon technologies with particular focus 

on the renewable energy, new material, energy saving, and environmental protection industries. 

Furthermore, the information industry and producer services with high added-value output, low-energy 

consumption, and low pollution should be encouraged to underline the inhibitory effect of industrial 

structure optimization on the growth of carbon emissions. 

(2) Energy policy. Although Tianjin’s energy intensity is among the best in China, further efforts are 

needed to increase energy efficiency since there is still a large room for improvement when compared 

with other developed countries. There are many recommended measures that can be taken by Tianjin to 

achieve the energy efficiency upgrade: (a) administrative measures, i.e., the enactment of related 

regulations and more stringent energy efficiency standards, further strengthening the energy use 

evaluation and management of industry, especially the energy-intensive ones like chemical industry, the 

iron and steel industry and thermal power industry; (b) application of new energy-related technologies, 

for instance, green buildings, green transportation as well as the development of ultra-supercritical, 

integrated coal gasification for the gas-steam combined cycle and other advanced coal-fired power 

generation technologies in thermal power projects; (c) economic instruments, i.e., tax, energy efficiency 

loans, and subsidies. However, the energy efficiency cannot be increased indefinitely; more attention 

should be paid to the adjustment of energy structure. The government should accelerate the development 

and use of non-fossil-fuel energy sources especially solar, geothermal, and biomass, further increase the 

proportion of natural gas in energy consumption, while consolidating and stabilizing existing natural gas 

supply, and exploit new gas sources to guarantee future increases. 

(3) Population policy. Propaganda of the importance of CO2 mitigation and low-carbon should be 

enhanced to ensure residents’ better understanding of the connection between daily behavior and CO2 

emissions. More attention should be given to increasing the awareness of the population to low-carbon 

technology. Improving the consciousness of residents to green transportation and low-carbon lifestyles 

would promote patterns of low-carbon consumption. 
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