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Abstract: Improper disposal of household unwanted medications (UMs) is an emergency problem
around the world that adversely affects the sustainability of the environment and human’s
health. However, the current disposal practices, mainly based on advertising and collecting status,
are unsatisfactory in most countries and regions. Thus, some scholars proposed an alternative
disposal practice that is to provide incentives to customers. This study aims to compare a Single
Model (advertising only) with a Joint Model (advertising with take-back pricing) in a two-echelon
reverse supply chain (RSC) that is composed of one disposer and one collector. In each model,
four games (non-cooperative, collector as the Stackelberg leader, disposer as the Stackelberg leader,
and cooperative) were established in order to identify the optimal pricing and advertising strategies
for both members. The results of the study indicate that there is a Pareto dominant range for
Joint Model compared to Single Model, whereas Single Model has no Pareto improvement in
any games. Furthermore, in non-cooperative games of Joint Model, it is better to implement the
leader-follower structure rather than simultaneous movement structure. Additionally, it is verified
that the cooperative game is feasible, which leads to the cooperation between the disposer and the
collector, and the extra profit from the cooperation can be shared based on the Nash bargaining game.
However, in Single Model, it is better for the disposer to act as a channel leader and the collector
figures the follower.

Keywords: Game models; Unwanted medication; Reverse supply chain; Pricing; Vertical cooperative
advertising; Pareto dominant

1. Introduction

Over the past decade, pharmaceutical expenditure and consumption have increased continuously
as a result of population aging, the rising prevalence of chronic diseases, new treatment opportunities,
and so forth [1]. In addition, more spare medications are stored up for any contingency [2]. However,
these medications may not be consumed entirely, owing to expiry, condition resolved or symptoms
improved, side effects or other reasons [3], resulting in a universal issue of massively unwanted
medications (UMs) accumulating in households around the world.

UMs include expired, unused, spilled and contaminated pharmaceutical products, drugs, vaccines,
and sera that are no longer required and need to be disposed of appropriately [4]. Improper disposal
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of UMs can cause damage to human health (deterioration due to expiry or taken by anyone other
than the prescribed patient) and the environment [5–8], especially to the aquatic ecosystems [9–11].
Moreover, UMs may be repackaged and resold to the market illegally [7], which constitutes a grave
threat to public safety. Accelerative concern has been given to UMs and their proper disposal.

Although the European Union (EU) has a directive statement that member states are obligated to
ensure appropriate collection systems are in place for unused or expired medicinal products [12,13],
this code is applied inconsistently and seems to be unenforced [2]. Numerous studies suggested
that the sustainable environmentally appropriate method to dispose of UMs is to return them to the
pharmacy [2] or take-back locations [14]. Nonetheless, households’ most common method for disposal
of pharmaceuticals is still by garbage and sewage in many countries including the United Kingdom [5],
the United States [3,15], Kuwait [16], Lebanon [7], Saudi Arabia [17], and Serbia [18]. Furthermore,
in some regions where pharmacies offer the service of collecting UMs, the evaluated effectiveness has
a number of weaknesses [19].

There exists some literature on the performance of reverse supply chains (RSCs). For instance,
Yoon and Jeong [20] focused on implementing coordinative contracts between manufacturers and
retailers in the RSC so as to maximize the total performance. With respect to general RSCs, the RSC
for UMs is rather challenging and tough to implement. Xie and Breen [21] explained that the reasons
were lack of commercial motivation and legislative enforcement for actors to return or collect UMs
and requirement for more investment, which is not cost-effective. Thus, researchers paid less attention
to RSCs for UMs.

Commercially, advertising can largely promote sales. Different cooperative advertising models
have been studied more sufficiently in the forward supply chain (FSC) [22–32] including two
excellent reviews [22,23]. On the other hand, advertising occupies a crucial position in promoting the
quantity of collected used products [33]. It is because better collection efficiency required end-users’
consciousness [34] and advertising can raise public awareness about the environment by highlighting
the environmental risk associated with inappropriately disposed of Ums [35]. However, few articles
have investigated the role of advertising in the RSCs for UMs. Although Hong et al. [33] have
investigated the optimal decisions of cooperative advertising in closed-loop supply chains that
considered the retailer’s local advertising expenditure, it is not suitable for studying the collection of
UMs. Thus, different from previous research, this paper firstly supposes a model where the quantity
of collected UMs is influenced by channel parties’ advertising expenses in the RSCs (referred to as
Single Model).

To improve the situation of UMs holders’ deficiency to return, Huang et al. [36] and Weraikat et al. [37]
suggested providing incentives to customers. Huang et al. [36] established a tri-level programming
model for recycling logistics networks in which the government undertook responsibility and related
cost for recycling and getting rid of expired medications. In this research, UMs are eliminated as
garbage and have no salvage value. Weraikat et al. [37] proposed a two-echelon pharmaceutical RSC
with two coordination models, which are Producer-customer scheme and Producer-customer-3PL
scheme. They provided incentives to stimulate customers to return UMs before their shelf life was up.
Different from Huang et al. [36], this study classified UMs according to their shelf life and recycled
reusable ones for more profit. However, they both seem to leave out of consideration of a crucial
marketing tool, advertising. In view of this point, this research considers providing the customers
with a take-back price incentive that is similar to the works of Huang et al. [36] and Weraikat et al. [37].
Furthermore, advertising is taken into account from collectors who are facing customers and can
take UMs back conveniently and easily. Hence, this study refers to cooperative advertising to jointly
promote the UMS take-back quantity that is rarely considered in existing research on RSCs. Thus, this
paper secondly supposes a model where the quantity of collected UMs is influenced by both take-back
price and channel parties’ advertising expenses in the RSCs (referred to as Joint Model).

To this end, this paper proposes a two-echelon RSC composed of one disposer and one collector.
It is assumed that advertising is indispensable while the RSC can choose whether to deploy a take-back
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price incentive. There is a threefold consideration for this assumption. First, if there does not exist
publicity and advertising, the information of collection activities cannot spread out and nobody
would join in. Second, advertising is a kind of education investment to improve the awareness of the
environment and medication safety. Third, in real cases, the vast majority of collecting activities do
not provide a take-back price incentive. Therefore, two models as mentioned before are developed:
(i) take-back pricing and advertising jointly impact to the quantity of collecting UMs (Joint Model);
(ii) the quantity is influenced only by advertising (Single Model).

Within the research of cooperative advertising composed of a manufacturer and a retailer,
Yue et al. [24] and Wei and Xie [28] investigated two game models including Stackelberg-manufacturer
and cooperative game. Meanwhile, considering retailers’ increasing power in supply chains, another
two games, Stackelberg-retailer and equal power as in Nash game, were taken into account [26,27,29,31].
As for the issue of UMs collection, the deficiency or ambiguity of related laws and regulations in most
countries and regions results in the uncertainty surrounding who should take the responsibility to
collect UMs. Thus, there exist different collection parties from organizers to executors with diverse
channel power. Hence, in each model, four types of disposer-collector relationship are considered:
non-cooperative, disposer as Stackelberg leader, collector as Stackelberg leader, and cooperative game
models. The reason why we propose a RSC instead of a closed-loop supply chain is that UMs are
useless and cannot be remanufactured, resulting in no close relationship with the FSC. This study
focuses on the following decision-making problems:

(1) On which condition the RSC could and would like to use a take-back price incentive;
(2) how to choose best RSC structure under different situations;
(3) how to effectively allocate the fund between pricing and national and local advertising;
(4) and wether one party would like to share another’s advertising expense?

This paper is structured as follows. In Section 2, the basic problems and assumptions in the
two models are described, followed by analyzing the models in Section 3. Then, comparisons and
discussions of the two models and numerical examples are made in Section 4. Finally, in Section 5,
the main results are concluded with suggestions for future research.

2. Problem Description and Assumptions

This paper focuses on a two-echelon RSC composed of a single collector and a single disposer,
since UMs collection activity lacks competition for less monetary benefit from collecting expired
medications (except the illegal business which collects and repackages expired medications then
sells them to suburbs or villages) and are generally formed by the driving force of related law
and regulation, social responsibility, and resell reusable unexpired medications. From practical
perspectives, the original price and categories of medications are ignored for their uselessness to
patients. The responsibility of the collector is to collect and make a preliminary classification of
UMs and the disposer takes all the collected UMs from the collector and disposes of them, such as
incinerating medicine waste, recycling glass and packages, repacking reused medications, and so on.
The collector can be a pharmacy, community, third-party logistics provider, etc., who faces UMs holders
and can take them back conveniently and easily. The disposer can be played by the pharmaceutical
company, government, and specialized agency. The common disposer-collector combinations are
pharmaceutical company-pharmacy [37,38], government-pharmacy (most European countries) and
government-community (some states in America).

In addition, two models are designed with and without an incentive by offering customers
take-back price. In Section 4, this paper will compare and analyze the results of the two models and
the suitable conditions for potential application.

The symbols are explained in Table 1 and proposed models are based on the following
assumptions. Disposer’s unit revenue sd and collector’s unit revenue sc are set as constants that are in
connection with the parties’ own characteristics. More specifically, if the disposer is a government who
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regards improper disposal of medications as of special importance that will cause a huge reduction of
its utility for the damage to resident and environment, the disposer will make more policies (e.g., toll
tax for pharmaceutical industry and more collection subsidy) to support collection activities, then sd
increases. When a manufacturer acts as the disposer, sd can be derived from a corporate sense of
responsibility, actual monetary profit from resale or donation of reusable medications or the benefit
from avoiding being punished in an existing related law. Likewise, when the collector is a pharmacy,
sc may be generated from the benefit of growing sales by collecting activity or sense of responsibility.
Here, it needs to be explained that sd and sc are NET values, in which the related cost has been
deducted. This treatment does not affect models. t denotes the fraction of collector’s advertising
expenditure, which is the percentage of the disposer agreeing to share with the collector. Therefore,
0 ≤ t ≤ 1.

Table 1. Definition of symbols.

Parameters

β Customers’ sensitivity coefficient to the collector’s take-back price
α Potential take-back scale
sd Disposer’s unit revenue incurred by disposal activity
sc Collector’s unit revenue incurred by collection activity
Kc Effectiveness of collector’s local advertising
Kd Effectiveness of disposer’s national advertising
k Advertising ratio (i.e., Kd/Kc)

Variables

pc Collector’s take-back price
pd Disposer’s price claimed for collector
m Collector margin (i.e., m = pd + sc − pc)
n Disposer margin (i.e., n = sd − pd)
a Collector’s local advertising expenditure
A Disposer’s national advertising investment
t Advertising participation rate
π Profit

2.1. Disposer-Collector RSC with an Incentive of Take-Back Price

Model with a take-back price incentive (Joint Model) is illustrated in Figure 1. For more quantity
of collected UMs and profit, the collector offers a take-back price to customers and both disposer and
collector make advertising expenses. Throughout this study, the mass of collected UMs is stated as
quantity, however, the model can be adjusted according to the actual situation. For instance, the UMs
can be collected according to weight. Accordingly, all the corresponding parameters should be tied
to weight.
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Figure 1. Disposer-collector RSC with a price incentive to customer.

There are vertical cooperative advertising strategies that the disposer shares part of the collector’s
advertising expenditure. Decision variables for the disposer are national advertising investment,
the price given to the collector and the cooperative advertising compensation. The collector’s decision
variables are advertising expenditure and the take-back price.
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In view of the situation that the quantity of collected UMs is influenced by the take-back price and
advertising, the take-back quantity Q(pc, a, A) depends on the take-back price pc and the advertising
levels a and A as Q(pc, a, A) = h(pc)g(a, A), which means that the quantity is jointly affected by
price-related function h(pc) and advertising-related function g(a, A). A simple price model is assumed
to express the positive effect of the take-back price on the collection quantity,

h(pc) = α + βpc (1)

h(pc) increases with respect to pc. The two parameters α and β are positive and can be interpreted
as a potential take-back scale without any incentive from price and advertising and price sensitivity
of customers. Q(pc, a, A) = h(pc)g(a, A) = (α + βpc)g(a, A) = αg(a, A) + βg(a, A) pc. It can
be seen that advertising has two effects in promoting customers’ environmental awareness and
sense of responsibility, where the front part of the formula expresses that advertising could increase
the voluntary quantity and the latter partial indicates that advertising makes the customers more
sensitive to the take-back price. g(a, A) is the function proposed by Xie and Wei [28]. That is
h(a, A) = Kc

√
a + Kd

√
A. The square root advertising demand function indicates a diminishing

marginal demand for increasing advertising expenditure and is further used by SeyedEsfahani and
Biazaran [29] and Aust and Buscher [31]. a and A denote local and advertising expenses and the
two parameters Kc and Kd are positive constants and can be interpreted as the effectiveness of the
collector’s and the disposer’s advertising. According to Aust and Buscher [31], the collector’s net
profit margin m is brought into the equation as a new decision variable,

m = pd + sc − pc (2)

Hence, the following modified price-related and advertising-related functions are derived.

h(pd, m) = α + β(pd + sc −m) (3)

g(a, A) = Kc
√

a + Kd
√

A (4)

For the sake of simplicity, denote
α = α + βsc (5)

Thus,
h(pd, m) = α + β(pd + sc −m) = α + β(pd −m) (6)

The subscripts “d”, “c”, and “d + c” represent parameters related to the disposer, the collector,
and the whole system. The profits of disposer πd, the collector πc, and the entire system πd+c can be
written as follows respectively.

πd = (sd − pd)[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− A− ta (7)

πc = m[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− (1− t)a (8)

πd+c = (sd + sc − pc)(α + βpc)
(

Kc
√

a + Kd
√

A
)
− a− A (9)

Note that, in this model, sc and sd can be less than 0 when the cost caused by the activity exceeds
the revenue. However, they cannot be less than 0 simultaneously for the non-negativity of the system’s
profit, which should guarantee sd + sc − pc > 0. Profits of the disposer and the collector should be
nonnegative, which implies n = sd − pd > 0 and m = pd + sc − pc > 0.
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2.2. Disposer-Collector RSC without an Incentive of Take-Back Price

Another model without regard to customer incentive (Single Model) is presented in Figure 2.
The collector takes no account of take-back price to promote quantity of collected Ums, which is solely
affected by two members’ advertising expenses.
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a function of the collector’s local advertising expenditure a and disposer’s national advertising
investment A, which is

Q(a, A) = α
(
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√

a + Kd
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A
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Then, the functions of the disposer’s profit πd, the collector’s profit πc and the profit of whole
supply chain πd+c are as follows.

πd = (sd − pd)α
(

Kc
√

a + Kd
√

A
)
− A− ta (11)

πc = (pd + sc)α
(

Kc
√

a + Kd
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A
)
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3. Models

3.1. Four Games of Disposer-Collector Relationship with Customer Incentive

3.1.1. The Non-Cooperative Nash Game

This model is based on the situation that the disposer and the collector have a symmetrical
distribution of power. The situation can be modeled through the Nash equilibrium, where both
members make decisions concurrently and non-cooperatively to maximize their own profit. Hence,
the decision problems of the disposer can be formulated as follows.

max
pd ,A,t

πd = (sd − pd)[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− A− ta

s.t. A > 0, 0 ≤ t ≤ 1 and pd > m− sc.
(14)

The decision problem of the collector is

max
m,a

πc = m[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− (1− t)a

s.t. a > 0 and m < pd + sc.
(15)

The constraints pd > m− sc in Equation (14) and m < pd + sc in Equation (15) are to ensure a
positive take-back price. These decision problems can be solved by setting the first-order conditions
∂πd/∂pd, ∂πd/∂A, ∂πc/∂m and ∂πc/∂a to zero (see Appendix B for the details). The disposer will
choose t = 0, because the cooperative advertising fraction has a negative influence on his profit
function Equation (14). After some simplifications, the results of the Nash equilibrium are obtained.
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For simplicity of expression, define
s = sd + sc (16)

where s stands for the total unit revenue of the whole RSC. In Section 3.1, denote superscripts
N, Sd, Sc and C as the optimal solutions in non-cooperative, disposer as the Stackelberg leader,
collector as the Stackelberg leader, and cooperative games.

Theorem 1. If the RSC channel is characterized by a symmetrical distribution of power and there is no
cooperation between the disposer and the collector, the model can be represented by a Nash equilibrium with:

1. mN = nN = βs+α
3β , pN

d
= 2βsd−βsc−α

3β and pN
c = βs−2α

3β ;

2. AN =

(
Kd(βs+α)2

18β

)2
and aN =

(
Kc(βs+α)2

18β

)2
;

3. tN = 0.

Part 1 of Theorem 1 suggests that in a game with symmetric distribution of power, the net
profit margins for both players are the same in the RSC. This result is the same as that in FSC [29,31].
Furthermore, m and n increase as the parameter α increases and decrease as β increases, while pd and
pc are just on the contrary. The four optimal solutions are all irrelevant to advertising effectiveness
parameters. Comparing the optimal expressions for national and local advertising expenses in part 2 of
Theorem 1, it is clear that both players only consider their own advertising effectiveness. From part 3
of Theorem 1, the disposer does not intend to share the collector’s local advertising expenditure in the
Nash equilibrium.

3.1.2. Asymmetric Relationship with Disposer-Leadership

If the disposer possesses more power to dominate the collector, we consider an asymmetrical
relationship. Based upon Xie and Neyret [26], this model situation can be solved by the Stackelberg
equilibrium. Specifically, as a leader, the disposer can learn about the collector’s reaction to his decision
and embrace it into his decision making on pricing and advertising. The collector’s decision problem
in the Stackelberg equilibrium is the same as Equation (15) in the above section.

m =
βpd + α

2β
(17)

a =
K2

c m2[α + β(pd −m)]2

4(1− t)2 (18)

Substituting Equation (17) into Equation (18) to eliminate the variable m, the disposer’s decision
problem is formulated below.

max
pd ,A,t

πd = (sd − pd)[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− A− ta

s.t. m = βpd+α
2β , a = K2

c (βpd+α)4

64β2(1−t)2 , pd > m− sc, A > 0 and 0 < t < 1.
(19)

The results stated in Theorem 2 can be derived after substituting the constraints into the objective
function to eliminate the collector’s decision variables and then setting the first order derivatives of
the disposer’s variables to zero. For simplicity, introduce a parameter r in the optimal expressions:

r =
12k2 + 9−

√
16k4 + 16k2 + 9

16k2 + 9
(20)

where k = Kd/Kc.
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Theorem 2. The RSC with an asymmetrical distribution of power, where the disposer acts as a leader, has the
following Stackelberg disposer equilibrium.

1. mSd = (βs+α)r
2β , nSd = (βs+α)(1−r)

β , pSd
d = rβsd−(1−r)βsc−(1−r)α

β and pSd
c = rβs−(2−r)α

2β ;

2. ASd =

(
Kd(βs+α)2r(1−r)

4β

)2
and aSd =

(
Kc(βs+α)2r(4−3r)

16β

)2
;

3. tSd = 4−5r
4−3r .

Considering that r is decreasing with respect to k in Equation (20), the range of r is 1/2 < r < 2/3.
Part 1 of Theorem 2 shows that in the range of r, the collector’s margin m is always less than disposer’s
margin profit n, which illustrates the dominant of Stackelberg leader. In addition, pSd

d and pSd
c increase

as r increases (k decreases). In Part 2 of Theorem 2, when making decisions on advertising expenses,
the two players will take their relative advertising effectiveness into account. Part 3 of Theorem 2
illustrates that as a Stackelberg leader, the disposer will share collector’s investment in local advertising
from 1/3 to 3/5. Furthermore, the degree of participation increases with respect to k because t
decreases as r increases and r decreases as k increases, implying that the more effective of the disposer’s
own advertising investment compared to that of the collector’s, the more the disposer will share the
collector’s advertising expenditure.

It concludes that in a Stackelberg game that the disposer acts as a leader, if the disposer’s national
advertising is more effective than the collector’s, it is better for the disposer to decrease the price to the
collector and share more collector’s advertising expenditure. Accordingly, the collector would reduce
the take-back price.

3.1.3. Asymmetric Relationship with Collector-Leadership

In this section, the situation is considered where the collector occupies more power than the
disposer, which can be modeled as collector acting as the Stackelberg leader. The disposer’s decision
problem in the Stackelberg equilibrium is the same as Equation (14) in Section 3.1.1.

pd =
β(sd + m)− α

2β
(21)

A =
(sd − pd)

2[α + β(pd −m)]2K2
d

4
(22)

t = 0 (23)

Variable pd in Equation (22) can be eliminated by substituting Equation (21) into it, then the
collector’s decision problem can be described below:

max
m,a

πc = m[α + β(pd −m)]
(

Kc
√

a + Kd
√

A
)
− (1− t)a

s.t. pd = β(sd+m)−α
2β , A =

K2
d [β(sd−m)+α]4

64β2 , t = 0, m < pd + sc and a > 0.
(24)

Similar to the method in Section 3.1.2, plug the constraints for pd, A and t into the objective
function and then set the first order derivatives of collector’s variables to zero. The following parameter
h in the optimal expressions of the collector-led game is obtained. When k = 1, h = 1/3; When k 6= 1,

h =
5k2 − 2−

√
9k4 − 4k2 + 4

8(k2 − 1)
(25)
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Theorem 3. The RSC with an asymmetrical distribution of power, where the collector acts as a leader, has the
following Stackelberg disposer equilibrium:

1. mSc = (βs+α)h
β , nSc = (βs+α)(1−h)

2β , pSc
d = βsd(1+h)−(1−h)(βsc+α)

2β , pSc
c = (1−h)βs−(1+h)α

2β ;

2. ASc =

(
Kd(βs +α)2(1−h)2

8β

)2
and aSc =

(
Kc(βs+α)2h(1−h)

4β

)2
;

3. tSc = 0.

h decreases with respect to k. Thus, the range of h is 1/4 < h < 1/2. From 1 of Theorem 3, m and
n are equal when h = 1/3. Here, Kc = Kd. Also, if h changes from 1/3 to 1/2 with k varying from 0 to
1 (i.e., Kc > Kd), m is larger than n. On the contrary, if Kc < Kd, m is less than n. It is obvious that the
collector cannot guarantee her larger net profit margin than the disposer. In addition, pSc

d increases and
pSc

c decrease as h increases (k decreases). Moreover, as a consequence of follower status, the disposer
has no motivation to share the collector’s advertising expenditure for the negative effect on his own
profit which stated in part 3 that t always equals zero.

In summary, in a Stackelberg game where the collector acts as a leader, if the collector’s local
advertising is relatively effective, it is better for the collector to implement a lower take-back price to
UMs holders and not share any disposer’s advertising investment. Accordingly, the disposer would
increase the price offered to the collector.

3.1.4. Cooperative Game

In this section, a cooperative game approach is applied between the disposer and the collector in
the RSC, in which the disposer and the collector jointly determine pc, a and A. The decision problem
is to maximize the total profit,

max
pc,a,A

πd+c = (s− pc)(α + βpc)
(

Kc
√

a + Kd
√

A
)
− A− a

s.t. a, A > 0.
(26)

When the disposer and the collector cooperate, there exists only three decision variables pc, A,
and a, while m, pd and t do not affect the total profit anymore. The problem in Equation (26) is solved
by derivation and set the first order equations to zero. The results obtained can be described as follows.

Theorem 4. A cooperation RSC between the disposer and the collector with an objective of maximum total profit
has the following equilibrium:

1. pC
c = βs−α

2β ;

2. AC =

(
Kd(βs+α)2

8β

)2
and aC =

(
Kc(βs+α)2

8β

)2
.

We suppose that both players will approve cooperation only if they gain a higher profit than in
any other non-cooperative games described above [26,29,31]. That is

∆πd = πC
d − πmax

d ≥ 0 (27)

∆πc = πC
c − πmax

c ≥ 0 (28)

where πC
d and πC

c respectively denote the disposer’s and the collector’s profits in a cooperative game;
πmax

d and πmax
c stand for the players’ maximum profit in any non-cooperative games. A cooperation

satisfying these inequalities simultaneously is called feasible. Note that this assumption is restrictive,
because the members may be willing to obtain less profit in reality if there is no opportunity to gain
the desired market structure.
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Hence, the total extra profit can be derived,

∆πd+c = ∆πd + ∆πc = πC
d+c − πmax

d − πmax
c ≥ 0 (29)

From Theorem 4, the total profit in the cooperative game (πC
d+c) can be easily obtained. Then, it is

necessary to compare the results of the other equilibriums from three non-cooperative games in order
to ascertain πmax

d and πmax
c . Once the shareable extra profit ∆πd+c is determined, the cooperating

players have to agree on its division.
If pc, a and A are, respectively, equal to pC

c , aC and AC, then the channel’s profit is maximized.
However, the determination of the remaining variables t and pd cannot be affected unambiguously,
as there is an infinite amount of sets of t and pd which can yield the particular division of profits which
will be discussed in Section 4.

3.2. Four Games of Disposer-Collector Relationship without Customer Incentive

For the similar solving method and procedures, the game solutions in Single Model are listed in
Table 2. In the first three non-cooperative models, the optimal pd are all zero and disposers’ advertising
investment are identical, which is positively correlated to changes in his own advertising effectiveness
and bear no relation to the collector’s. Moreover, the disposer has no intention to share collector’s
advertising expenditure in games of the Nash and the Stackelberg collector. Nevertheless, in the
disposer-led game, the disposer will afford advertising allowance for the collector, which is positively
and negatively correlated to changes in the disposer’s marginal profit and the collector’s marginal
profit, respectively. Note that the disposer’s advertising participation comes into existence on condition
that his unit revenue is more than half of the collector’s (sd > sc/2).

Table 2. Optimal solutions of four games in Single Model.

Variables Nash Stackelberg Disposer Stackelberg Collector Cooperation

pd 0 0 0 N/A√
a αKcsc

2
αKc(2sd+sc)

4
αKcsc

2
αKcs

2√
A αKdsd

2
αKdsd

2
αKdsd

2
αKds

2
t 0 2sd−sc

2sd+sc
0 N/A

Note: the optimal solutions of Stackelberg disposer game are in the situation that sd > sc/2. When sd ≤ sc/2,
the results are the same as Nash equilibrium.

4. Discussion of the Results and Numerical Examples

In the previous sections, the optimal solutions of the four games in two models are identified,
respectively. In this section, the solutions are compared and analyzed. The existence and discussion
of Single Model are reasonable and necessary. One reason is that in Joint Model, the take-back price
should be no less than zero, thereby allowing, in a certain condition, for the formation of optimal
decision-making of Joint Model, which will be discussed in Section 4.1. Another reason is that even if
the RSC does not offer any price incentive, there is still a portion of UMs holders willingly returning
UMs to the collector due to environmental protection considerations. In some situations, it is better
for the RSC members to only use an advertising approach that is diverse from FSC and the RSC
remanufacturing productions with residual value. These situations will be discussed in Section 4.2.
Then, we compare the optimal solutions of different game scenarios in Joint Model and Single Model
in Sections 4.3 and 4.4, separately. Also, the feasibility of the cooperation and a bargaining game of
Joint Model are explored in Section 4.3.

Throughout this section, superscripts P and N in the first position denote the results in Joint
Model and Single Model, respectively. The superscripts N, Sd, Sc and C in the second position
respectively represent the games of Nash, Stackelberg disposer, Stackelberg collector, and Cooperation.
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For example, pPSd
c is the optimal solution of the collector’s take-back price in Stackelberg disposer

game of Joint Model.

4.1. Conditions for Formation of Optimal Decision-Making of RSC in Two Models

In Joint Model, considering that the take-back price cannot be less than zero (the collector cannot
charge fees on returning behavior), the thresholds of s in different games are obtained (Table 3).
Note that the implementations of price incentives only simply require the sum of two member’s unit
revenue (s) to meet certain conditions, because these models assume that the games are played in
complete information scenarios, where both participants’ unit revenue are common knowledge. As a
consequence, the unit revenue of one player (sd or sc) can be less than 0 and pd plays the role in
adjusting the profit margin (m and n) between the members.

Table 3. The condition for the formation of optimal decision-making of the RSC in two models.

Models Nash Stackelberg Disposer Stackelberg Collector Cooperation

Joint Model s > 2α
β s > α

β
2−r

r s > α
β

1+h
1−h s > α

β

Single Model sd > 0
sc > 0

sd > 0
sc > 0

sd > 0
sc > 0 s > 0

While in Single Model, since the RSC does not consider a take-back price incentive, the optimal
solutions of pd in Nash, Stackelberg disposer, and Stackelberg collector are all equal to zero.
Consequently, in these three games, the unit revenue of each player should be positive, or their
total profits will be less than 0. In addition, the condition for cooperation game in Single Model is the
lowest, where s needs to be greater than zero.

Next, we further analyze the thresholds of s to implement take-back price incentive in Joint Model.
In the Nash game and the cooperation game, the threshold of s is only related to α/β, while in games
of Stackelberg disposer and Stackelberg collector, besides the ratio, the thresholds are also affected by
k, which is the relative strength of their advertising effectiveness. In the Stackelberg disposer game,
the threshold of s is increasing with k, which means it is more difficult to offer a price incentive to
customers. In addition, this value is twice to three times that of the cooperation game. Meanwhile, it
is opposite in the Stackelberg collector game, in which the threshold of s is negatively correlated to
changes in k. The better the disposer’s advertising effectiveness, the easier the collector provides the
price incentives. Moreover, cooperation of the RSC leads to the lowest level of threshold s. Figure 3
depicts thresholds of s respect to k in different games of Joint Model (α/β = 1).
Sustainability 2017, 9, 1902 12 of 34 
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4.2. Comparison of the Two Models

In Section 4.1, we solved the questions if the games in the two models could be played. However,
to a certain game, for instance, the Nash game, when both models can be played (i.e. conditions in
Table 3 are satisfied under each game), does it always gain large quantity of collected UMs and more
players’ profits to offer UMs holders price incentive (Joint Model)? This issue is settled by comparison
of the two models in this section. (Optimal expressions in each game scenario of two models are shown
in Appendix A).

Supposing sd, sc > 0 and denoting t1 = sβ/α, ss = sd/sc and k = Kd/Kc, the following
propositions are provided. The details of proofs of Proposition 1–4 can be derived in Appendix B.

Proposition 1. In the Nash game, in the range of t1 > 2 , both players’ profits in Joint Model are always higher
than those in Single Model when the following constraints are satisfied.

(1+t1)
4

81t2
1

(1 + ss)2(2 + k2)− (2ss + k2ss2) > 0

(1+t1)
4

81t2
1

(1 + ss)2(1 + 2k2)− (1 + 2k2ss
)
> 0

(30)

The first constraint is derived from πPN
d > πNN

d and the second results from πPN
c > πNN

c .

Proposition 2. In the Stackelberg disposer game, suppose t1 > (2− r)/r, then both players’ profits in Joint
Model are always higher than those in Single Model when following constraints are satisfied.

When sd > sc/2,
(1+t1)

4(1+ss)2r2

16t2
1

[
(4−3r)2

4 + 4k2(1− r)2
]
−
(

1
2 + ss

)2
− k2ss2 > 0

(1+t1)
4(1+ss)2r3

16t2
1

[
(4−3r)

4 + 4k2(1− r)
]
− s− 2kss− 1

2 > 0
(31)

When sd ≤ sc/2,
(1+t1)

4(1+ss)2r2

16t2
1

[
(4−3r)2

4 + 4k2(1− r)2
]
−
(
2ss + k2ss2) > 0

(1+t1)
4(1+ss)2r3

16t2
1

[
(4−3r)

4 + 4k2(1− r)
]
−
(
1 + 2k2ss

)
> 0

(32)

Similarly, the first inequalities in both cases are derived from π
PSd
d > π

NSd
d and the second come

from π
PSd
c > π

NSd
c . The two cases is caused by Single Model in which the disposer would like to share

part of the collector’s advertising expenditure only when sd > sc/2. t1 > (2− r)/r ensures that Joint
Model can be played. In the range of 2 < t1 < 3, assume that k0 makes t1 = (2− r)/r. Since (2− r)/r
is increasing with respect to k, t1 > (2− r)/r holds when k < k0. When t1 ≥ 3, k can be arbitrary.

Proposition 3. In the Stackelberg collector game, suppose t1 > (1 + h)/(1− h), then both players’ profits in
Joint Model are always higher than those in Single Model when following constraints are satisfied:

(1+t1)
4(1+ss)2(1−h)3

16t2
1

[
4h + k2(1− h)

]
− 2ss− k2ss2 > 0

(1+t1)
4(1+ss)2h(1−h)2

4t2
1

[
h + k2(1− h)

]
− 1− 2k2ss > 0

(33)

The first inequality is introduced from πPSc
d > πNSc

d and the second is derived from πPSc
c > πNSc

c .
Similar to the Stackelberg disposer game, t1 > (1 + h)/(1− h) is to ensure that Joint Model can
be played. In the range of 5/3 < t1 < 3, it is assumed that k0 makes t1 = (1 + h)/(1− h),
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since (1 + h)/(1− h) is decreasing with respect to k, t1 > (1 + h)/(1− h) holds when k > k0.
When t1 ≥ 3, k can be arbitrary.

Since the implicit function forms of the conditional expression are inconvenient for analysis,
some numerical examples are given. The expressions in Proposition 1–3 are with respect to three
parameters, t1, ss, and k. t1 reflects the whole unit revenue of RSC, while ss describes the allocation of
this whole unit revenue in two players. k represents the relative effectiveness of disposer’s national
advertising to collector’s local advertising. Set t1 as a constant value and make the sensitivity analysis
on ss and k. Figure 4 depicts the comparisons of two players’ profits of two models in different games.

The lines denote relations of equality and divide the considered region into several areas.
For example, the first figure describes the situations in the Nash game and there exist two lines.
The top right one is πPN

d = πNN
d and it splits the whole region into two areas with πPN

d > πNN
d on

the left and πPN
d < πNN

d on the right. As a consequence, the central area, where both two members’
profits in Joint Model are larger than those in Single Model, is the Pareto improvement area of Joint
Model compared to Single Model. Interestingly, there is no area where both members’ profits in Single
Model are larger than those in Joint Model simultaneously which means Single Model has no Pareto
improving range to Joint Model in any game.

In each game, we choose three different values of t1(2.9, 3 and 3.1). Regardless of the game,
raising the overall unit revenue (the growth of t1 indicates an increasing in s) can increase application
range of Joint Model (more extensive s and k), which suggests that the larger the s, the more the RSC of
UMS should consider choosing Joint Model to offer UMs holders a take-back price incentive, which can
increase both players’ profit.Sustainability 2017, 9, 1902 14 of 34 

 
Figure 4. Comparisons of two players’ profit of two models in different games. 

Note that in the Stackelberg disposer game ( / 2d cs s> ), when 1 3t < , k  is not arbitrary for the 
constraint 1 (2 )t r r≥ − . In this computation of 1 2.9t = , k should be less than 3.37. Similarly, in the 
Stackelberg collector game of 1 2.9t = , k should be more than 0.227. 

Furthermore, in Pareto improvement area of Joint Model, not only both members’ profits are 
predominant, but also the quantity of collected UMs is more than that in Single Model (See Figure 5). 

The green lines in the Stackelberg disposer game ( / 2d cs s> ) and the Stackelberg collector game 
in Figure 5 are shaped by the equalities of total RSC profit in two models. There exists a region in 
each of the two games that the total RSC profit of Single Model is larger than that in Joint Model 
(Region I and II). However, in these regions, the total RSC profit increases, the leader’s profit 
increases, but the follower’s profit decreases. Then, the follower may refuse to join in the RSC of UMs 
in Single Model. 

The Pareto dominant region combination of ss  and k  can be a reference for the government 
to make a subsidy policy for the collection of UMs. For instance, a RSC composed of a pharmaceutical 
manufacturer and a pharmacy and the manufacturer leads the game. The total unit revenue (s) only 
comes from the subsidies of the government. If the government considers the two parties’ advertising 
effectiveness is similar ( d cK K= ), then it is better for him to provide subsidies to not only the 
manufacturer but also the pharmacy (when 1k = , the Pareto dominant region requires ss be less 
than about 2.25). In turn, the government can choose the best RSC structure by the Pareto dominant 
region based on given ss  and k  practical situation. 

Figure 4. Comparisons of two players’ profit of two models in different games.



Sustainability 2017, 9, 1902 14 of 31

Note that in the Stackelberg disposer game (sd > sc/2), when t1 < 3, k is not arbitrary for the
constraint t1 ≥ (2− r)/r. In this computation of t1 = 2.9, k should be less than 3.37. Similarly, in the
Stackelberg collector game of t1 = 2.9, k should be more than 0.227.

Furthermore, in Pareto improvement area of Joint Model, not only both members’ profits are
predominant, but also the quantity of collected UMs is more than that in Single Model (See Figure 5).

The green lines in the Stackelberg disposer game (sd > sc/2) and the Stackelberg collector game
in Figure 5 are shaped by the equalities of total RSC profit in two models. There exists a region in each
of the two games that the total RSC profit of Single Model is larger than that in Joint Model (Region I
and II). However, in these regions, the total RSC profit increases, the leader’s profit increases, but the
follower’s profit decreases. Then, the follower may refuse to join in the RSC of UMs in Single Model.

The Pareto dominant region combination of ss and k can be a reference for the government to
make a subsidy policy for the collection of UMs. For instance, a RSC composed of a pharmaceutical
manufacturer and a pharmacy and the manufacturer leads the game. The total unit revenue (s)
only comes from the subsidies of the government. If the government considers the two parties’
advertising effectiveness is similar (Kd = Kc), then it is better for him to provide subsidies to not only
the manufacturer but also the pharmacy (when k = 1, the Pareto dominant region requires ss be less
than about 2.25). In turn, the government can choose the best RSC structure by the Pareto dominant
region based on given ss and k practical situation.Sustainability 2017, 9, 1902 15 of 34 
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Figure 5. Comparisons of two players’ profits and quantity of collected UMs of two models in different
games (t1 = 3).

Through the analysis of numerical examples above, it turns out that in decentralized games,
it does not always gain more profit for each player and quantity of collected UMs to implement price
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incentive. However, comparing the results of the two models in the centralized game, we have the
following observation.

Proposition 4. When s > α/β, QPC > QNC and πPC
d+c > πNC

d+c.

Through the analysis of the numerical examples above, it turns out that in decentralized games, it
does not always gain more profit for each player and quantity of collected UMs to implement a price
incentive. However, comparing the results of the two models in the centralized game, we have the
following observation.

Proposition 4 shows that in the cooperation game, when the condition to implement price incentive
(s > α/β) is achieved, the RSC should choose Joint Model and consider offering UMs take-back price
incentive which may reach a higher quantity of collected UMs and total supply chain profit.

4.3. Comparisos within Joint Model

From the analysis of Section 4.1, it has determined that the whole unit revenue of the RSC should
achieve a specific threshold to perform a take-back price incentive model (Joint Model). This section
compares the optimal solutions including prices, advertising expenditures, quantity of collected
UMs, and members’ profits in different game scenarios of Joint Model. Then, the feasibility of the
cooperative games is explored in Section 4.3.4. The comparisons are on the base of an assumption
that the thresholds in Section 4.1 of Joint Model have been achieved with all k, namely, s > 3α/β.
The optimal solutions are summarized and presented in Table A1 in Appendix A. and the proofs of
proposition 5–11 are shown in Appendix B.

4.3.1. Comparisons on Prices

Proposition 5. The take-back prices in four game scenarios have the following ordinal relationship.
(1) pPC

c > pPN
c > pPSd

c ≥ pPSc
c , if 0 < k ≤ k1 ; (2) pPC

c > pPN
c ≥ pPSc

c > pPSd
c , if k1 < k ≤ 1 ;

(3) pPC
c > pPSc

c > pPN
c > pPSd

c , if k > 1. ( k1 satisfies that r + h = 1 (k1 ≈ 0.7164)).

Proposition 5 reveals that the ordinal relationships of the take-back prices simply depend on
k and are irrelevant to s, sd, sc, α and β. From the following Propositions 6 to 11, which are about
pd, a, A, Q, πc and πd, their ordinal relationships merely rely on k and are independent of other
parameters. It shows that the highest take-back price is always in the cooperative game whereas
the lowest prices occur in the Stackelberg disposer game when k is lower (k1 < 0.7164), and in the
Stackelberg collector game when k is higher (k1 > 0.7164). The take-back price offered to the UMs
holders can be regarded as a kind of welfare and the increasing of the price would add the surplus of
UMs holders.

Proposition 6. The prices given to the collector by the disposer in four game scenarios have the following ordinal
relationship. (1) pPSc

d ≥ pPN
d > pPSd

d , if 0 < k ≤ 1; (2) pPN
d ≥ pPSc

d > pPSd
d , if 1 < k.

From Proposition 6, regardless of k, the price in Stackelberg disposer game is the lowest indicating
the leader position. When the effectiveness of the disposer’s national advertising is lower than that of
the collector’s local advertising, the price is the highest in Stackelberg collector game, and followed by
the Nash game.

4.3.2. Comparisons on Advertising Expenditures

Proposition 7. The collector’s advertising expenditures in four game scenarios have the following ordinal
relationship. (1) aPC > aPSd > aPSc ≥ aPN , if 0 < k ≤ 1; (2) aPC > aPSd > aPN > aPSc , if 1 < k.
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Proposition 7 concludes that in cooperative game, the collector’s local advertising expenditure
is the highest and followed by Stackelberg disposer game. From Section 4.2, the disposer does not
provide any collector’s advertising expenditure share in the Nash and the Stackelberg collector games.
However, in the Stackelberg disposer game, he prefers sharing local advertising expenditure with the
collector according to their relative advertising effectiveness. This expenditure sharing may result in
the collector’s willingness to increase investment in advertising compared with the other two games.

Proposition 8. The disposer’s advertising expenditures in four game scenarios have the following ordinal
relationship. (1) APC > APSd > APN ≥ APSc , if 0 < k ≤ 1; (2) APC > APSd > APSc > APN , if 1 < k ≤ k2;
(3) APC > APSc > APSd > APN , if k2 < k. (k2 satisfies 2r(1− r) = (1− h)2 (k2 ≈ 1.338 )).

Similarly, based on Proposition 8, the disposer’s national advertising investment is the highest
in the cooperative game and followed by the Stackelberg disposer game or the Stackelberg collector
game. The disposer always invests more in the Stackelberg game as a leader than in the Nash game.

4.3.3. Comparisons on Quantity of Collected UMs and Profits

Proposition 9. The quantity of collected UMs in four game scenarios have the following ordinal relationship.
(1) QPC > QPSd > QPN ≥ QPSc , if 0 < k ≤ 1; (2) QPC > QPSd ≥ QPSc > QPN , if 1 < k ≤ k3;
(3) QPC > QPSc > QPSd ≥ QPN , if k3 < k ≤ k4; (4) QPC > QPSc > QPN > QPSd ,
if k4<k. (k3 satisfies r2[(4− 3r)/2 + k22(1− r)

]
= (1− h)2[2h + k2(1− h)

]
(k3 ≈ 1.2060); k4 satisfies

8
(
1 + k2) = 27r2[(4− 3r)/2 + k22(1− r)

]
(k4 ≈ 1.5385)).

The largest amount of collected UMs is also from the cooperative game, followed by the
Stackelberg disposer or the Stackelberg collector, instead of Nash game. It is evident from Proposition 9
that when k < 1.21, the quantity of collected UMs in the Stackelberg disposer game is more than other
two games and when k > 1.21, it is in the Stackelberg collector game that the quantity is the most.

Proposition 10. The disposers’ profits in four game scenarios have the following ordinal relationship.
(1) π

PSd
d >πPN

d ≥ πPSc
d , if 0 < k ≤ 1; (2) π

PSd
d ≥ πPSc

d > πPN
d , if 1 < k ≤ k5; (3) πPSc

d > π
PSd
d >πPN

d ,
if k5<k. (k5 satisfies r3[(4− 3r)/2 + k24(1− r)

]
= 4h(1− h)2[h + k2(1− h)

]
(k5 ≈ 1.3835)).

It is obvious from Proposition 10 that the disposer prefers the leader-follower structure (the
Stackelberg disposer game or the Stackelberg collector game) rather than the simultaneous move
structure (the Nash game). If the disposer’s advertising effectiveness is relatively weak (k < 1.3835),
he tends to lead the game to obtain more channel profit, while if his advertising effectiveness is
comparatively high, he would like to be a follower, which makes him gain more profit.

Proposition 11. The collectors’ profits in four game scenarios have the following ordinal relationship.
(1) π

PSd
c ≥ πPSc

d >πPN
d , if 0 < k ≤ k6; (2) πPSc

d ≥ π
PSd
d > πPN

d , if k6 < k ≤ k7;

(3) πPSc
d > πPN

d >π
PSd
d , if k7<k. (k6 satisfies r3[(4− 3r)/2 + k24(1− r)

]
= 4h(1− h)2[h + k2(1− h)

]
(k6 ≈ 0.8457); k7 satisfies 16

(
1 + 2k2) = 81r3[(4− 3r)/2 + 4k2(1− r)

]
(k7 ≈ 0.8552)).

Proposition 11 reveals that the collector has an aptitude for being a leader when k > 0.85 and
being a follower when k < 0.85, which can bring her more profit. Thus, combining Proposition 10
and Proposition 11, it demonstrates that there exist accordance and conflict in the leader-follower
structure (Figure 6). More specifically, when k < 0.85, the disposer prefers being a leader in the RSC
and precisely the collector is willing to be a follower. In this structure, both players can gain their
maximum profit in non-cooperative games. Similarly, if k > 1.38, a game structure with the collector
as the leader and the disposer as the follower is both members’ preference. Therefore, these two ranges
are their accordance regions. However, if 0.85 < k < 1.38, the two players’ optimal profits are all in
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their own leading game, which resulted in a conflict with each other rather than being a Stackelberg
follower. It is worth mentioning that in this conflict region, if k < 1.12, the quantity of collected UMs is
largest in the Stackelberg disposer game, which is better for the collecting activity.
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Besides, the collection efficiency and channel efficiency are analyzed, and calculated as the ratio
of non-cooperative games to the cooperative game and the sum of two players’ profits in any of
the non-cooperative games to the total profit of RSC in the cooperative game solution (see Figure 7).
From Figure 7, the following proposition is presented.

Proposition 12. The coordination of the Stackelberg disposer game and the Stackelberg collector game decreases
and increases with k, respectively, while it is independent with k in the Nash game.
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The cooperative game is a more coordinated model than the non-cooperative games. When the
collector’s advertising is more efficient, a more coordinated model will return a higher profit to the
RSC in the Stackelberg disposer game. By contrast, when the disposer’s advertising is more efficient,
the Stackelberg collector game is more coordinated.

In summary, the analytical results favor that cooperative game which is the best at offering the
highest take-back price and invest the most in both national and local advertising, leading to the
most preferable collected quantity and total profit. Furthermore, in non-cooperative games, it is
better to implement the leader-follower structure rather than simultaneous movement structure.
In details, when the disposer’s national advertising effect is relatively lower than the collector’s,
the Stackelberg disposer game would be more satisfactory. However, if the disposer’s advertising is
efficient, a Stackelberg collector game is favorable.

4.3.4. Feasibility of the Cooperation

With the analytical solutions of the cooperative game in Section 3.1.4, it is observed that the
disposer and the collector would only agree to make joint decisions if their individual profits are higher
in the cooperative game than those in the non-cooperative structures. In this section, the comparative
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results in Section 4.3 are applied to verify the feasibility of the problem. To achieve this, it is necessary
to prove the existence of

(
pPC

c , pPC
d , aPC, APC, tPC). Based on Equation (29), it derives

πPC
d+c ≥ πmax

d + πmax
c (34)

Based on Proposition 10 and Proposition 11, the maximum profits of the disposer and collector
are obtained in three regions. Table 4 determines the maximum profits of each player in each region.

Table 4. The maximum profits of the disposer and the collector.

k πmax
d πmax

c

k ≤ 0.85 πPSd
d πPSd

c
0.85 < k < 1.38 πPSd

d πPSc
c

1.38 ≤ k πPSc
d πPSc

c

It is evident that when k ≤ 0.85 and k ≥ 1.38, the inequality Equation (34) is obtained,
because πmax

d + πmax
c equals to π

PSd
d+c and πPSc

d+c respectively and they are all less than πPC
d+c. Similarly,

the ratio (π
PSd
d + πPSc

c )/πPC
d+c can be calculated as being less than 1 in the range of 0.85 < k < 1.38.

Consequently, it shows that the cooperative game is feasible, which leads to the disposer and the
collector’s willingness to cooperate. Therefore, next section will make a trial to settle the problem that
how to share the extra profit from cooperation. The profit-sharing issue is discussed in Section 4.3.5.

4.3.5. Bargaining Model

In this section, a feasible region is proposed for the two internal variables pd and t. Then, the Nash
bargaining model will be conducted to resolve the profit-sharing problem in this region. The feasible
region for this problem can be clarified based on the method used by Xie and Wei [28]. The extra profit
of the disposer and the collector are as follows:

∆πd = πPC
d − πmax

d

= (sd − pd)
(
α + βpPC

c
)(

Kc
√

aPC + Kd
√

APC
)
− APC − taPC − πmax

d

= −pdB− taPC + C > 0

(35)

∆πc = πPC
c − πmax

c

=
(

pd + sc − pPC
c
)(

α + βpPC
c
)(

Kc
√

aPC + Kd
√

APC
)
− (1− t)aPC − πmax

c

= pdB + taPC − D > 0

(36)

where B, C, and D are B =
(
α + βpPC

c
)(

Kc
√

aPC + Kd
√

APC
)
> 0, C = sdB− APC − πmax

d > 0 and

D = −(sc − pc)B + aPC + πmax
c > 0.

Thus, it shows that inequalities (35) and (36) specify an area between two parallel lines.
Every combination (pd, t) in this region presents a feasible solution to the bargaining problem.
According to Nash [39], the bargaining outcome (p∗d , t∗) can be obtained by maximizing the product of
player’s utilities over the feasible solution. λd and λc can be regarded as the bargaining power of the
disposer and collector, respectively. Thus, the utility functions for the disposer and the collector are
ud(pd, t) = ∆πd(pd, t)λd , uc(pd, t) = ∆πc(pd, t)λc , respectively.

Then Nash’s solution can be derived from the following optimization,

max ud(pd, t) · uc(pd, t) = ∆πd(pd, t)λd · ∆πc(pd, t)λc (37)
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The solution of Equation (37) is achieved:

∆πd

(
p∗

d
, t∗
)
= λd

λd+λc
∆πd+c =

λd
λd+λc

(C− D),

∆πc

(
p∗

d
, t∗
)
= λc

λd+λc
∆πd+c =

λc
λd+λc

(C− D).
(38)

Therefore, if λd > λc, the disposer shares more extra profit than the collector’s and the same λ

makes the two players equally divide profits. From Equation (38), it is easy to obtain

p∗
d
B + t∗aPC =

Dλd + Cλc

λd + λc
(39)

Equation (39) describes the relationship between the optimal solutions of pd and t in the
cooperative game, which is a line parallel to πPC

d = πmax
d .

4.4. Comparisons within Single Model

From Table A2 in Appendix A, it turns out that the optimal solutions are identical in the
Nash game, the Stackelberg collector game, and the Stackelberg disposer game without cooperative
advertising (sd/sc ≤ 1/2). Consequently, these optimal solutions are labeled as a superscript S+ and
make comparisons on these same solutions with the Stackelberg disposer game with sd/sc > 1/2.

Proposition 13. In the model without take-back price incentive, the following ordinal relationships are always
satisfied. (1) aNC > aNSd > aNS+ ; (2) ANC > ANSd = ANS+ ; (3) QNC > QNSd > QNS+ ; (4) π

NSd
c > π

NS+
c ;

(5) π
NSd
d > π

NS+
d ; (6) πNC

d+c > π
NSd
d+c > π

NS+
d+c .

From Proposition 13, it reveals that only when the unit revenue of the disposer is larger than
half of the collector’s, the disposer prefers sharing the responsibility of the collector’s advertising
expenditure, which leads to a better collective effect including more quantity of collected UMs and
more profit for both members. Figure 8 presents the collection efficiency and channel efficiency of
the Stackelberg disposer with cooperative advertising (sd/sc > 1/2). It shows that both efficiencies
are high under the circumstance where ss is large and k is small. Especially, the channel efficiency is
extremely close to 1, which means the coordination of RSC.

In summary, when the RSC does not consider offering a take-back price incentive, it is better for
the disposer to undertake a channel leader position and the collector acts as the follower. The disposer
should choose a collector with better advertising effectiveness and share a proportion of the collector’s
advertising expenditure. Besides, if the government would like to make a subsidy or penalty policy
(the penalty can be treated as an opportunity cost to increase the unit revenue in turn) to the UMs RSC,
it is favorable for him to aim at the disposer, for instance, the pharmaceutical manufacture, since it can
increase the disposer’s unit revenue compared with the collector’s (an increase in ss).
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5. Conclusions

For collecting more UMs from households, this study develops and tests two models in a RSC
composed of a single disposer and a collector. In Joint Model, the quantity of collected UMs is
affected by take-back price and advertising, while in Single Model, the quantity of collected UMs is
influenced only by advertising. In each model, four games are played: non-cooperative, disposer as
the Stackelberg leader, disposer as the Stackelberg leader, and cooperative. The conditions for the
formation of optimal decision-making of the RSC in two models are explored.

In Single Model, both players’ unit revenue should be more than 0. Whereas the total unit revenue
of the two players should be more than a specific threshold in Joint Model, and the price paid by the
disposer to the collector adjusts their corresponding margin profit. In real life, most countries are
currently adopting Single Model and do not offer take-back price. Therefore, it is hard for the disposers
to get any revenue. If so, the disposers are not willing to pay any to the collectors to adjust collectors’
profit margin. How both players can receive benefits becomes a practical issue. Among all UMs,
some UMs are unused but near expired. The RSC can offer a channel for disposers to pay extra money
for replacing these kinds of UMs. After verifying the packages of these UMs, the collectors can sell
these UMs in a good discount rate to the consumers who will use them immediately. This arrangement
can satisfy the win-win requirement in Single Model. Of course, this suggestion is based on an
assumption that regulation allows reselling reusable unexpired medications.

Comparing the equilibrium results in the four games of the two models, we conclude that, for a
certain game, for instance the Nash game, when both models can be played, there always exists a Pareto
dominance range with respect to the total unit revenue (t1) and its allocation (ss) between two members
and their relative effectiveness of advertising expenses (k) for Joint Model compared with Single Model,
where more players’ profits and larger quantity of collected UMs can be obtained. Under these
conditions, RSC prefers choosing Joint Model in which a take-back price should be considered offered
to UMs holders. Therefore, offering take-back price can reduce the cost of advertising because less
advertising is needed due to its effectiveness. If so, the RSC or the government can relocate its budget
from doing advertising to giving a take-back price. So the RSC or the government does not really pay
a big money for executing “take-back price” policy. On the other hand, the take-back price may not be
instant “cash”. It can be in a form of a cash coupon for environmentally friendly grocery products.
Therefore, it can promote a sustainable concept to the UMs holders. This arrangement can also be
interpreted by the public as a way for the RSC or the government to support sustainable development
by supporting the producers of environmentally friendly grocery products. Furthermore, the RSC
or the government can set a one-to-one sustainability fund to subsidize poor people to purchase
medications. When a UMs holder returns the UMs, the government will donate the same amount of
money to the fund as the amount of “take-back price” to the UMs holder. This arrangement provides a
good excuse for the UMs holders to return the UMs (not for money) and creates a good citizen image
for these UMs holders.

However, there exists no area where both members’ profits in Single Model are larger than those
in Joint Model simultaneously, which means Single Model has no Pareto improving range to Joint
Model in any games. The cooperative game has the lowest implement threshold compared with
other three games in Joint Model. Furthermore, when the condition to implement price incentive is
achieved, regardless of t1, ss, and k, the RSC should choose Joint Model to reach the higher quantity of
collected UMs and total supply chain profit. As discussed above, in the real life, it is hard to design
a practical strategy that can facilitate both parties to obtain a desirable amount of benefits in Single
Model. However, for Joint Model, not limited to above recommendations, there are a lot of areas
for the RSC and the government to implement price incentive strategy. However, in considering the
effectiveness of Joint Model (in term of the quantity of collected UMs and total supply chain profit),
the real cooperation of the RSC for UMs becomes a matter of cardinal significance.

Furthermore, the total unit revenue is vital to the RSC. The larger the total unit revenue, the more
likely the two members are to implement a take-back price incentive where more quantity of collected
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UMs is achieved. In this research, it is assumed that it is positive which may form the driving force of
the growth of sales in FSC and social responsibility [36]. Through the health promotion and education
for disease prevention, more people will care about their health and know how to consume medications
for improving their quality of life. Then, the sales of medications will grow. Social responsibility
is a fundamental aspect of citizenship, so citizens are educated to participate in creating a safer,
more humane, sustainable world. The education for social responsibility can take place in different
structures and processes in communities. Another positive driving force is related law and regulation,
such as the permission to resell reusable unexpired medications [37], so the government is taking a
major role in implementing the “take-back price” in real life through revising the law and regulation.

In most cases, it is undeniable that this revenue is difficult to measure in reality and the immediate
and obvious financial benefit is lacking compared with WEEE RSC. This situation calls for regulations
and subsidies from the government who could levy a disposing tax on the pharmaceutical industry
or medication users, and then assist the RSC for UMs. Kotchen et al. [40] made a survey to study
the residents’ willingness to pay for a disposal program, and the results show that the conservative
estimate of mean willingness to pay is $1.53 per prescription and this assumption implies $320 million
for the United States as a whole, which easily outweighs the costs of establishing disposal programs.

This research has multiple limitations. When considering the pricing model, it chooses a simplest
linear model. It may not be highly appropriate for the practice and needs further discussion. Besides,
the total available quantity of collected UMs is not unlimited in reality, whereas the quantitative
restriction is not taken into consideration and simply treated as unrestricted. However, it is usually
insufficient to consider the fund for the collection of UMs and this assumption is of rationality.
Furthermore, for the convenience of analysis, it is supposed that the collected UMs is homogeneous
or can be explained as a mean value. Nevertheless, it does not conform to the reality and needs
further research.
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Appendix A

Table A1. Optimal expressions in each game scenario in models with customers’ take-back price incentive (Joint Model).

Variables Nash Stackelberg Disposer Stackelberg Collector Cooperation

pd
2βsd−βsc−α

3β
rβsd−(1−r)βsc−(1−r)α

β
βsd(1+h)−(1−h)βsc−(1−h)α

2β N/A

pc
βs −2α

3β
rβs−(2−r)α

2β
(1−h)βs−(1+h)α

2β
βs −α

2β√
a Kc(βs+α)2

18β
Kc(βs+α)2r(4−3r)

16β
Kc(βs+α)2h(1−h)

4β
Kc(βs+α)2

8β√
A Kd(βs+α)2

18β
Kd(βs+α)2r(1−r)

4β
Kd(βs+α)2(1−h)2

8β
Kd(βs+α)2

8β

t 0 4−5r
4−3r 0 N/A

Q (βs+α)3(K2
c+K2

d)
54β

(βs+α)3r2

16β

[
K2

c
(4−3r)

2 + K2
d2(1− r)

]
(βs+α)3(1−h)2

16β

[
K2

c 2h + K2
d(1− h)

] (βs+α)3(K2
c+K2

d)
16β

πd
(βs+α)4(2K2

c+K2
d)

324β2
(βs+α)4r2

64β2

[
K2

c (4− 3r)2/4 + K2
d4(1− r)2

]
(βs+α)4(1−h)3

64β2

[
K2

c 4h + K2
d(1− h)

]
N/A

πc
(βs+α)4(K2

c+2K2
d)

324β2
(βs+α)4r3

64β2

[
K2

c
(4−3r)

2 + K2
d4(1− r)

]
(βs+α)4h(1−h)2

16β2

[
K2

c h + K2
d(1− h)

]
N/A

πd+c
(βs+α)4(K2

c+K2
d)

108β2
(βs+α)4r2

64β2

[
K2

c
(4−3r)(4−r)

4 + K2
d4(1− r)

]
(βs+α)4(1−h)2

64β2

[
K2

c 4h + K2
d(1− h)(1 + 3h)

] (βs+α)4(K2
c+K2

d)
64β2

Collection efficiency 8
27

r2[(4−3r)/2+2k2(1−r)]
1+k2

(1−h)2[2h+k2(1−h)]
1+k2

N/A

Channel efficiency 16
27

r2[(4−3r)(4−r)/4+k24(1−r)]
1+k2

(1−h)2[4h+k2(1−h)(1+3h)]
1+k2

N/A

πd/πc 1 (4−3r)2/4+k24(1−r)2

r[(4−3r)/2+k24(1−r)]
(1−h)[4h+k2(1−h)]

4h[h+k2(1−h)]
N/A

Note: 1. Collection efficiency = Q+/Qc. 2. Channel efficiency = π+
d+c/πC

d+c. + stands for a game of Nash, Stackelberg disposer or Stackelberg collector.
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Table A2. Optimal expressions in each game scenario in models without customers’ take-back price incentive (Single Model).

Variables Nash Stackelberg Disposer Stackelberg Collector Cooperation

pd 0 0 0 N/A
pc 0 0 0 0√

a αKcsc
2

αKc(2sd+sc)
4

αKcsc
2

αKcs
2√

A αKdsd
2

αKdsd
2

αKdsd
2

αKds
2

t 0 2sd−sc
2sd+sc

0 N/A
Q α2

2
(
K2

c sc + K2
dsd
)

α2

2
[
K2

c
(
sd +

sc
2
)
+ K2

dsd
]

α2

2
(
K2

c sc + K2
dsd
)

α2s
2
(
K2

c + K2
d
)

πd
α2

4
(
K2

c 2scsd + K2
ds2

d
) α2

4

[
K2

c
(
sd +

sc
2
)2

+ K2
ds2

d

]
α2

4
(
K2

c 2scsd + K2
ds2

d
)

N/A

πc α2

4
(
K2

c s2
c + K2

d2scsd
)

α2sc
4
[
K2

c
(
sd +

sc
2
)
+ 2K2

dsd
]

α2

4
(
K2

c s2
c + K2

d2scsd
)

N/A

πd+c
α2

4
[
K2

ds2
d + K2

c s2
c + 2scsd

(
K2

c + K2
d
)] α2

4

[
K2

c (2sd+sc)(2sd+3sc)
4 + K2

dsd(2sc + sd)
]

α2

4
[
K2

ds2
d + K2

c s2
c + 2scsd

(
K2

c + K2
d
)]

α2s2

4
(
K2

c + K2
d
)

Collection efficiency (1+k2ss)
(1+ss)(1+k2)

ss+1/2+k2ss
(1+ss)(1+k2)

(1+k2ss)
(1+ss)(1+k2)

N/A

Channel efficiency k2ss2+1+2ss(1+k2)
(1+ss)2(1+k2)

[(2ss+1)(2ss+3)+k2(8ss+ss2)]
4(1+ss)2(1+k2)

k2ss2+1+2ss(1+k2)
(1+ss)2(1+k2)

N/A

πd/πc
2ss+k2ss2

1+2k2ss
(ss+1/2)2+k2ss2

2k2ss+ss+1/2
2ss+k2ss2

1+2k2ss N/A

Note: The optimal solutions of Stackelberg disposer game are in the situation sd > sc/2. When sd ≤ sc/2, the results are the same as those in Nash equilibrium.
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Appendix B

Proof of Theorem 1. The disposer’s problem Equation (14) can be solved by taking the first order
equations ∂πd/∂pd and ∂πd/∂A to zero, ∂πd/∂pd =

(
Kc
√

a + Kd
√

A
)
(−α− 2βpd + βm + βsd) = 0

and ∂πd/∂A = Kd
2
√

A
(sd − pd)[α + β(pd −m)]− 1 = 0. t has a negative influence on the disposer’s

profit function, so t = 0. After algebraic simplification, the two decision variables are

pd =
β(sd + m)− α

2β
(A1)

A =
K2

d(sd − pd)
2[α + β(pd −m)]2

4
(A2)

To prove its optimality, the Hessian matrix HNd =

 ∂2πd
∂p2

d

∂2πd
∂pd∂A

∂2πd
∂A∂pd

∂2πd
∂A2


should be calculated. The second order partial derivatives are
∂2πd/∂p2

d = −2β
(

Kc
√

a + Kd
√

A
)

, ∂2πd/∂pd∂A = ∂2πd/∂A∂pd = Kd/2
√

A(−α− 2βpd + βm + βsd)

and ∂2πd/∂A2 = −Kd(sd − pd)[α + β(pd −m)]/4A2
√

A.
Thus, the first principle minor HNd

1 and second principle minor HNd
2 of HNd at the solution (A3)

and (A4) are as follows.

HNd
1 = ∂2πd

∂p2
d
= −2β

{
Kc
√

a + K2
d [α+β(sd−m)]2

8β

}
,

HNd
2 = ∂2πd

∂p2
d

∂2πd
∂A2 − ∂2πd

∂pd∂A
∂2πd

∂A∂pd
=

8β2{8βKc
√

a+K2
d [α+β(pd−m)]2}

K2
d [α+β(sd−m)]4

.

Considering that HNd
1 is always negative and HNd

2 is always positive, HNd is negative definite,
which can guarantee πd is concave at this point and πd is a local maximum. Because the solution is the
only stationary point in the domain of definition, πd is a global maximum at (A1) and (A2).

Similarly, the collector’s problem Equation (15) can be solved by setting the first order
equations ∂πc/∂m and ∂πc/∂a to zero. From ∂πc/∂m =

(
Kc
√

a + Kd
√

A
)
(α + βpd − 2βm) = 0

and ∂πc/∂a = Kcm
2
√

a [α + β(pd −m)]− (1− t) = 0, the decision variables can be obtained as below.

m =
α + βpd

2β
(A3)

a =
m2K2

c [α + β(pd −m)]2

4(1− t)2 (A4)

The Hessian matrix of the collector is HNc =

(
∂2πc
∂m2

∂2πc
∂m∂a

∂2πc
∂a∂m

∂2πc
∂a2

)
. The second order partial derivatives

are ∂2πc/∂m2 = −2β
(

Kc
√

a + Kd
√

A
)

, ∂2πc/∂m∂a = ∂2πc/∂a∂m = Kc(α + βpd − 2βm)/2
√

a and

∂2πc/∂a2 = −mKc[α + β(pd −m)]/4a
√

a.
Hence, the first principle minor HNc

1 and second principle minor HNc
1 of HNc are

HNc
1 = ∂2πc

∂m2 = −2β

[
K2

c (α+βpd)
2

8β(1−t) + Kd
√

A
]

,

HNc
2 = ∂2πc

∂m2
∂2πc
∂a2 − ∂2πc

∂m∂a
∂2πc
∂a∂m =

8β2(1−t)2[K2
c (α+βpd)

2+8βKd
√

A(1−t)]
K2

c (α+βpd)
4 .
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By the same token, HNC
1 is always negative and HNC

2 is always positive, therefore, HNC is negative
definite, which can guarantee πc is concave at this specific point and the point is a local maximum.
Because the solution is the only stationary point in the domain of definition, πc is a global maximum.
Thus, the Equations (A1)–(A4) and t = 0 can be solved together, then replace α by α + βsc to get the
expressions stated in Theorem 1.

Proof of Theorem 2. In Stackelberg disposer game, as the follower, the collector’s decision
problem is the same as that in the Nash equilibrium. Thus, Equations (A3) and (A4) can also be applied
in Stackelberg disposer equilibrium. Therefore, by substituting these equations into the disposer’s
objective function Equation (14) and through some simplification, the disposer’s profit is

πd =
1
2
(sd − pd)(α + βpd)

[
K2

c (α + βpd)
2

8β(1− t)
+ Kd

√
A

]
− K2

c (α + βpd)
4t

64β2(1− t)2 − A.

Then, the first order derivatives ∂πd/∂pd, ∂πd/∂A and ∂πd/∂t can be acquired and then take
them to zero.

∂πd
∂pd

= 1
2 (βsd − α− 2βpd)

[
K2

c (α+βpd)
2

8β(1−t) + Kd
√

A
]

+K2
c (sd−pd)(α+βpd)

2

8(1−t) − tK2
c (α+βpd)

3

16β(1−t)2 = 0
(A5)

∂πd
∂A

=
Kd(sd − pd)(α + βpd)

4
√

A
− 1 = 0 (A6)

∂πd
∂t

=
K2

c (α + βpd)
3

16β

[
sd − pd

(1− t)2 −
(α + βpd)(1 + t)

4β(1− t)3

]
= 0 (A7)

After simplifying Equations (A6) and (A7), the expressions of A and t can be derived.

A =
1

16
K2

d(sd − pd)
2(α + βpd)

2 (A8)

t =
4β(sd − pd)− (α + βpd)

4β(sd − pd) + (α + βpd)
(A9)

Note that t should be non-negative in Equation (A9), so here two situations are discussed,
pd < 4βsd−α

5β and 0 < t ≤ 1, or pd ≥
4βsd−α

5β and t = 0.
In the first situation, solve Equations (A5), (A8), and (A9) together. By substituting (A8) and

(A9) into (A5) and after algebraic calculations and replacing Kd/Kc with k, an equation expressed as
functions of pd can be obtained,(

16k2 + 9
)
(α + βpd)

2 −
(

18 + 24k2
)
(α + βsd)(α + βpb) + 8

(
k2 + 1

)
(α + βsd)

2 = 0 (A10)

Treat the operator α + βpb as a variable and use the formula of equation extracting roots
to derive the solution, α + βpd = (α + βsd)

12k2+9±
√

16k4+16k2+9
16k2+9 . Here, for α+βpd

α+βsd
< 1(pd < sd),

12k2+9±
√

16k4+16k2+9
16k2+9 should be less than 1. Therefore, the only feasible solution of this equation

is α + βpd = (α + βsd)
12k2+9−

√
16k4+16k2+9

16k2+9 . Denote r = 12k2+9−
√

16k4+16k2+9
16k2+9 , then pd can be obtained,

which is

pd =
βsdr− (1− r)α

β
(A11)

Note that r is increasing with respect to k, so the range of r is 1/2 < r < 2/3,
where βsdr−(1−r)α

β < 4βsd−α
5β . Therefore, (A11) is the only feasible solution of Equation (A10).
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In the second case where pd ≥
4βsd−α

5β and t = 0, solve Equation (A5) by substituting (A8) and t = 0.

4
(

k2 − 1
)
(α + βpd)

2 + 3
(

1− 2k2
)
(α + βsd)(α + βpd) + 2k2(α + βsd)

2 = 0 (A12)

When k = 1,

pd =
2βsd − α

3β
(A13)

In other cases that k 6= 1, pd is obtained by the formula of equation extracting roots:

pd =
(α + βsd)v− α

β
(A14)

where v = 6k2−3−
√

4k4−4k2+9
8(k2−1) .

However, the value of pd in Equations (A13) and (A14) is not in the feasible region (i.e., more than
4βsd−α

5β ), resulting in that (A12) has no feasible solution with pd ≥
4βsd−α

5β . Therefore, Equation (A11) is
the only feasible solution of pd in Stackelberg disposer equilibrium.

Similarly, to prove that these solutions are optimal, the Hessian matrix should be calculated,

HSd =


∂2πd
∂p2

d

∂2πd
∂pd∂A

∂2πd
∂pd∂t

∂2πd
∂A∂pd

∂2πd
∂A2

∂2πd
∂A∂t

∂2πd
∂t∂pd

∂2πd
∂t∂A

∂2πd
∂t2

.

The second order partial derivatives are as follows.

∂2πd
∂p2

d
= K2

c (α+βpd)
8(1−t)

[
−3α− βpd + 3βsd −

3t(α+βpd)
2(1−t)

]
− βKd

√
A ,

∂2πd
∂A2 = −Kd(sd−pd)(α+βpd)

8A
√

A
, ∂2πd

∂t2 = K2
c (α+βpd)

2

16(1−t)2

[
2(sd − pd)−

(α+βpd)(2+t)
2β(1−t)

]
,

∂2πd
∂A∂pd

= ∂2πd
∂pd∂A = Kd

4
√

A
(−α + βpd − 2βsd),

∂2πd
∂pd∂t =

∂2πd
∂t∂pd

= K2
c (α+βpd)

2

16β(1−t)2

[
3β(sd − pd)−

2(α+βpd)
1−t

]
, ∂2πd

∂A∂t =
∂2πd
∂t∂A = 0.

For the complexty of the expressions and difficulty of analytical solution, we adopt the method of
Aust and Buscher [31], which produced 150,000 sets of parameters and computed numerical studies.
In our study, parameters were set that 0.1 ≤ α, β, sd, Kd, Kc ≤ 5. Hence we could prove numerically
that HSd is negative definite at the solution given by Equations (A8), (A9), and (A11), which means
that πd is concave in pd, A, and t; and the specific point is a local maximum of the disposer’s decision
problem. As Equations (A5)–(A7) have only one root expressed in Equations (A8), (A9), and (A11)
within the considered domain of definition, the local optimum is the global optimum of πd. Thus,
the expression presented in Theorem 2 can be derived by substituting Equation (A11) into (A8), (A9),
(A3) for t and m, respectively, and (A3), (A11) into (A4) for a then replace α by α + βsc.

Proof of Theorem 3. In the Stackelberg collector game, as a follower, the disposer’s decision
problem is the same as that in the Nash equilibrium. Thus, Equations (A1) and (A2), and t = 0 can also
be applied in the Stackelberg collector equilibrium. Therefore, by substituting these equations into the
collector’s objective function Equation (24) and through some simplification, the collector’s profit can
be obtained as below.

πc =
m
2
[α + β(sd −m)]

[
Kc
√

a +
K2

d[α + β(sd −m)]2

8β

]
− a (A15)



Sustainability 2017, 9, 1902 27 of 31

Then, the first order derivatives ∂πc/∂m and ∂πc/∂a can be acquired, then set them as zero.

∂πc

∂m
=

1
2
(α + βsd − 2βm)

[
Kc
√

a +
K2

d[α + β(sd −m)]2

8β

]
−

mK2
d[α + β(sd −m)]2

8
= 0 (A16)

∂πc

∂a
=

Kcm[α + β(sd −m)]

4
√

a
− 1 = 0 (A17)

From Equation (A17), a can be expressed as

a =
1
16

K2
c m2[α + β(sd −m)]2 (A18)

Substituting Equation (A18) into (A16) and replacing Kd/Kc with k, the following equality can
be derived.

4β2
(

k2 − 1
)

m2 + β(α + βsd)
(

2− 5k2
)

m + k2(α + βsd)
2 = 0

When k = 1, m = α+βsd
3β . In other cases that k 6= 1, m can be obtained by the formula of equation

extracting roots,

m =
(α + βsd)h

β
(A19)

where h = 5k2−2−
√

9k4−4k2+4
8(k2−1) . Thus, h can be set as 1/3 when k = 1.

To prove these solutions are optimal, the Hessian matrix should be calculated,

HSc =

(
∂2πc
∂a2

∂2πc
∂a∂m

∂2πc
∂m∂a

∂2πc
∂m2

)
.

The second order partial derivatives are ∂2πc
∂a2 = mKc [α+β(sd−m)]

8a
√

a ,

∂2πc
∂a∂m = ∂2πc

∂m∂a = Kc
4
√

a (α + βsd − 2βm) and ∂2πc
∂m2 = −βKc

√
a− 3K2

d [α+β(sd−m)](α+βsd−2βm)
8 .

Similar to Theorem 3. Parameters were set that 0.1 ≤ α, β, sd, Kd, Kc ≤ 5. Hence HSc can be
proved numerically that it is negative definite at the solution given by Equations (A18) and (A19),
which means that πc is concave in m and a; and the specific point is a local maximum of the collector’s
decision problem. As Equations (A16) and (A17) have only one root expressed in Equations (A18)
and (A19) within the considered domain of definition, the local optimum is the global optimum of πc.
Thus, by substituting Equation (A19) into (A18), (A1) for a and pd, respectively, and (A19),(A1) into
(A2) for A, then replace α by α + βsc, the expression presented in Theorem 3 can be obtained.

Proof of Theorem 4. The total profit function is expressed in Equation (9).
With the variables p, a and A, make s = sd + sc and then set the first
order derivatives ∂ πd+c/∂pc, ∂ πd+c/∂a and ∂ πd+c/∂A to zero. These
are ∂πd+c

∂pc
=
(

Kc
√

a + Kd
√

A
)
(sβ− βpc − α) = 0, ∂πd+c

∂a = Kc(s−pc)(α+βpc)
2
√

a − 1 = 0 and
∂πd+c

∂A = Kd(s−pc)(α+βpc)

2
√

A
− 1 = 0.

After some simplification, the decision variables can be derived as below.

pc =
sβ− α

2β
(A20)

a =

[
Kc(s− pc)(α + βpc)

2

]2
(A21)

A =

[
Kd(s− pc)(α + βpc)

2

]2
(A22)
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To prove these solutions are optimal, the Hessian matrix should be

calculated, HC =


∂2πd+c

∂pc2
∂2πd+c
∂pc∂a

∂2πd+c
∂pc∂A

∂2πd+c
∂a∂pc

∂2πd+c
∂a2

∂2πd+c
∂a∂A

∂2πd+c
∂A∂pc

∂2πd+c
∂A∂a

∂2πd+c
∂A2

. The second order partial derivatives

are ∂2πd+c
∂p2

c
= −2β

(
Kc
√

a + Kd
√

A
)

, ∂2πd+c
∂a2 = −Kc(s−pc)(α+βpc)

4a
√

a , ∂2πd+c
∂A2 = Kd(s−pc)(α+βpc)

4A
√

A
,

∂2πd+c
∂pc∂a =

∂2πd+c
∂a∂pc

= Kc(sβ−βpc−α)
2
√

a , ∂2πd+c
∂pc∂A =

∂2πd+c
∂A∂pc

= Kd(sβ−βpc−α)

2
√

A
and ∂2πd+c

∂a∂A =
∂2πd+c
∂A∂a = 0.

Then, at the solution (A10)–(A22), the Hessian matrix can be expressed as

HC =


− (α+βs)2(K2

c+K2
d)

4 0 0

0 − 32β2

K2
c (α+βs)2 0

0 0 − 32β2

K2
d(α+βs)2

.

Therefore, HC is negative definite and πd+c is concave at this specific point, which is local
maximum. As it is the only maximum candidate, the point is the globally profit maximizing solution.
Then, by inserting Equation (A20) into (A21) and (A22), the optimal expressions shown in Theorem 4
can be obtained.

Proof of Proposition 1. Setting s = t1α/β(t1 ≥ 2), then β = t1α/s(t1 ≥ 2).

πPN
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(βs + α)4(2K2
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d
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d
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324t2
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Thus,
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d
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324t2
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−
α2(K2

c 2scsd + K2
ds2

d
)

4
(A23)

After substituting s = sc + sd and setting Kd/Kc = k and sd/sc = ss, equation (A23) can be
simplified to

α2K2
c s2

c
4

[
(1 + t1)

4

81t2
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)
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(A24)

Similarly, πPN
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, then

πPN
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4
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When the two players’ profits in Joint Model are all larger than those in Single Model respectively,
Joint Model should be chosen for Pareto improvement. Therefore, Equations (A24) and (A25) are more
than zero simultaneously which is the condition stated in Proposition 1.

Proof of Proposition 2 and 3. The proofs of Proposition 2 and 3 are similar to those of Proposition
1, except that the expressions of optimal solutions are diffident when sd > sc/2 and sd ≤ sc/2. Hence,
the results should be discussed in two cases.

Proof of Proposition 4.
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Therefore, πPC
d+c > πNC

d+c.

QPC
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(βs+α)3(K2
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d)
16β
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)
+ 3

 (A26)

When s > α/β, βs/α > 1. Regarding βs/α as a whole x and setting
f (x) = 1

8

(
x2 + 1

x + 3x + 3
)
(x > 1), f (x) can be testified as increasing in x for f ′′ (x) = 1

4

(
1 + 1

x3

)
> 0

and then f ′(x) = 1
8

(
2x− 1

x2 + 3
)
> f ′(1) = 1

2 > 0. Therefore, f (x) > f (1) = 1 which is the same

result in Equation (A26) and means QPC > QNC.
Proof of Proposition 5. To compare pc in four game scenarios, their difference should be

calculated. pPC
c − pPN

c = 1
6

(
s + α

β

)
> 0 apparently for s and α/β are all positive, so pPC

c > pPN
c .

pPC
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c = 1−r
2

(
s + α

β

)
> 0 and pPN
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c = 2−3r

6

(
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)
> 0, because 1/2 < r < 2/3.

Similarly, 1/4 < h < 1/2, then pPC
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c = h
2

(
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β

)
> 0. pPN

c − pPSc
c = 3h−1
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(
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.

When 1/3 < h < 1/2 (k < 1), pPN
c > pPSc

c ; when 1/4 < h < 1/3 (k > 1), pPN
c < pPSc

c ; h = 1/3 (k = 1)
is the condition for equality. pPSd

c − pPSc
c = r+h−1

2

(
s + α

β

)
equals to 0 when r + h− 1 = 0 which is a

complicated function of k, so we solve it by software and obtain the solution k1 ≈ 0.7164. Moreover,
r + h− 1 = 0 is decreasing with k because r and h are all decreasing with k. Therefore, when k < k1,
r + h− 1 > 0 which leads to pPSd

c > pPSc
c and vice-versa. Based on the above relationships, the results

listed in Proposition 5 can be gained.
Proof of Proposition 6 to 11. These proofs are exactly similar to the proof of Proposition 5 except

that in proofs of Propositions 7–11, their ordinal relationships can be cleared by comparing their
quotients with 1.

Proof of Proposition 13. It is evident from Table A2 in Appendix A that aNC>NSd > aNS+ and
ANC>NSd= ANS+ . Because ss = sd/sc > 1/2, the following relationships can be proved.
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