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Abstract: Recent challenges in the realm of urban studies concern better understanding of
microclimatic conditions. Changes in urban climate affect cities at local and global scales, with
consequences for human health, thermal comfort, building energy use, and anthropogenic emissions.
The extent of these impacts may vary due to different morphologies and materials of the built
environment. The present contribution summarizes the results of a multi-year effort concerned with
the extent and implications of urban heat in Vienna, Austria. For this purpose, high-resolution
weather data across six locations are obtained and analyzed. This allowed for an objective
assessment of urban-level climatic circumstances across distinct low-density and high-density
typologies. Subsequently, a systematic framework was developed for identification of essential
properties of the built environment (geometric and material-related) that are hypothesized to influence
microclimate variation. Results point to a number of related (positive and negative) correlations with
microclimatic tendencies. Additionally, the impact of this location-specific weather data on building
performance simulation results is evaluated. The results suggest that buildings’ thermal performance
is significantly influenced by location-specific microclimatic conditions with variation of mean annual
heating load across locations of up to 16.1 kWhm−2·a−1. The use of location-independent weather
data sources (e.g., standardized weather files) for building performance estimations can, thus, result
in considerable errors.
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1. Introduction

The urban-level climatic circumstances are considered to be of particular relevance to the
domain of environmental sciences. Microclimatic variations within urban domains are found to
affect metropolitan areas at local and global scales, with immediate effects on the health of people
living in cities [1–7]. The extent of these impacts may vary considerably due to global urbanization,
different structural morphologies, land cover, materials of the built environment, and the presence
and density of industrial or commercial buildings [8–21]. Erell et al. [13] discussed the positive
consequences of anthropogenic heat flux on external temperature, specifically the consequential
outdoor temperature rise during summer. They noted that densely developed cities may have
significant summertime anthropogenic heat flux due to the extensive use of air-conditioning systems.
Furthermore, Krpo et al. [14] stressed that building materials with high thermal conductivity and
low heat capacity require more cooling energy in order to maintain internal comfort conditions, thus
increasing the energy use for cooling. This also might lead to an increase of outdoor temperature
due to corresponding anthropogenic emissions. As discussed by Grimmond and Oke [8], the stored
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heat in the physical mass of the city varies based on synoptic-scale climates, distinct surface cover,
urban morphology, and is greater at densely built urban areas and industrial sites. Generally, with
the abundance of impervious surfaces and a small fraction of vegetative cover that characterize
central urban areas, a greater fraction of energy will be stored within the urban fabric and eventually
be re-emitted back into the environment. The resulting implications of these adverse thermal
circumstances for issues such as human well-being (especially related to thermal stress), mortality
rate, local air quality, and energy use in buildings are evident and subject to numerous research
efforts [22–29]. Green et al. [24] pointed to the dramatic increase of heat-attributable mortality in a
majority of US cities. They further analyzed the health impacts with regard to different emission
scenarios and noted that if well-coordinated intervention scenarios are not initiated and implemented,
heat-related deaths might double. Furthermore, Wong et al. [25] examined the impact of the
surrounding urban morphology on the energy consumption of buildings in the city of Singapore.
In particular, they noted that urban morphology plays an important role in microclimatic development.
With varying building density, building height, and vegetation fraction, the air temperature deviation
may be found in the range of 0.9 K to 1.2 K. They further stressed that distinct changes in site
configuration (i.e., the height of surrounding buildings, green and sealed area fraction, sky view factor)
may result in 5–10 percent cooling load reduction of a single building. The cumulative effect, when
observed on a meso-scale, may be even greater. In addition, Colombert et al. [30] studied the effect of
different urban parameters (thermal characteristics of walls, roofs, and roads, but also urban geometry
and density) on urban energy balance. They found that, in the case of a study domain in Paris, roof
albedo and emissivity of walls have the strongest effect on urban energy balance during summer by
lowering the total heat stored in the urban fabric. Furthermore, they noted that the building height
appears to affect the heat storage flux, where by increasing the height of the buildings, the heat storage
flux may increase as well. For these reasons, the study of urban microclimate is recognized as one of
the prime areas of investigation and further requires a global commitment and a global effort.

Given the far-reaching negative effects of excessive urban heat, it becomes apparent that further
research efforts are needed to foster a broad understanding of microclimate and its implications.
One way to explore the distinctive climatic circumstances of the urban realm is to compare the urban
climate with that of the surrounding rural terrain. This difference, which appears in temperature
records, is referred to as the urban heat island (UHI). UHI occupies a unique position in the realm
of microclimatic studies and has been extensively studied [31–38]. The magnitude of the UHI
phenomenon is usually expressed in terms of the urban heat island intensity. This term denotes the
temperature difference between simultaneously measured urban and rural temperatures. Empirical
observations suggest that the magnitude of the UHI effect generally falls in the range of 1 K to 3.5 K [39].
However, this is expected to increase by approximately 1 K per decade [40].

Currently, there is an ongoing discussion within the scientific community concerning the very
nature of the UHI, as it may be potentially a problematic concept [41–43]. One of the problems
of this concept is related to the fact that urban-level microclimatic peculiarities may, and do, vary
considerably across the city. Thus, the UHI concept is considered to be too general, as the assessment
of its magnitude should be more location-specific than global. Further challenges have to be addressed
when selecting the rural domain, as it should be situated outside the urban influence [41]. In light of
this, there is a critical need for diverging from the UHI concept and, instead, focus on the extent of
intra-urban microclimate variation.

In this context, the present contribution summarizes the results of a multi-year effort concerned
with the extent and implications of urban heat and microclimatic variation in the city of Vienna, Austria.
For this purpose, the following steps were envisioned:

• High-resolution data streams across six key locations are obtained, structured, and analyzed.
This facilitated the search for location-dependent manifestations of urban-level climatic
circumstances across distinct low-density and high-density typologies in Vienna.
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• Subsequently, a systematic framework was developed for the identification of the essential
properties of the built environment that are hypothesized to influence the intra-urban
microclimate variation. These properties pertain to both geometric (morphological) and semantic
(material-related) urban features. Generally, there is a lack of practical assessment approaches
focusing on microclimatic development while considering a relatively wide range of built
environment attributes. Related assessments frequently focus on a few specific urban features
instead of exploring the cumulative effect of the urban fabric on resulting urban heat.

• Once these features are derived, the existence and extent of the possible correlations between
intra-urban microclimate variation and the urban features are explored. The resulting correlations
can serve as the starting point toward developing empirically-based predictive models for
prediction of local differences in the urban climate.

• Furthermore, the impact of this location-specific weather data streams on building performance
simulation results is evaluated. For this purpose, systematic thermal performance simulations
were carried out for a distinct sample of buildings using the obtained weather information
as boundary conditions. The computed performance indicators were then analyzed across
all locations.

2. Methodology

2.1. Urban Climate Diversity

This research is informed by the insight that microclimatic conditions can vary considerably due
to the features of the surrounding urban fabric. To illustrate this point, consider a case study for the city
of Vienna, Austria. For this purpose, the notion of “Urban Unit of Observation” (U2O) is introduced to
systematically address the extent of microclimatic diversity within the urban domains [44–47]. U2Os
represent clearly bounded spatial segments of the urban domain. The size and features of an U2O
were determined following insights formulated in previous research [44]. Stewart [42] further stressed
the role of scale in microclimate investigations. Thus, for measured microclimatic parameters (e.g., air
temperature, wind speed, humidity) to be spatially representative, the size of a sample area should not
exceed a few hundred meters in radius. Therefore, a spatial dimension (diameter) of approximately
400 m was targeted for this study. The selected U2Os include both low-density and high-density
typologies in and around Vienna (see Figure 1 and Table 1).
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Each U2O contains a stationary weather station centrally positioned within the observed domain.
A height of 2 m above ground is typically suggested for the elevation of air temperature sensors [48].
However, deviations from this reference height might be occasionally unavoidable due to practical
reasons, such as safety issues in the urban context (as seen in Table 1). This circumstance is not
seen as problematic, as all air temperature sensors are positioned within the urban canyon and the
vertical gradients are small [49]. All stations are operated by the Central Institution for Meteorology
and Geodynamics (Zentralanstalt für Meteorologie und Geodynamik, ZAMG). The ZAMG network
comprises of approximately 250 semi-automatic weather stations (Teil Automatisches Wetter
Erfassungs System—TAWES), which are classified according to the SYNOP (surface synoptic
observations) numerical codes [50]. The weather stations records are stored in 10-min resolution.
Once stored, quality control of meteorological observations is done using QualiMET system [51]
and according to the WMO guidelines, following five test steps: completeness check, climatological
consistency check, temporal consistency check, internal consistency check, and spatial consistency
check. Additionally, the correction of the hourly-based data is performed using GEKIS (Geografisches
Klimainformationssystem—Geographic Climate Information System). After examining and correcting
the measured data, they are stored into the main database and archived.

Table 1. Overview of the weather stations representing the selected U2Os.

Name LCZ
Classification Coordinates Station Elevation

(above Ground) (m) Site Elevation (m)

IS Innere Stadt LCZ 2
Lat 48◦11′54.00′ ′

9.3 177Long 16◦22′1.00′ ′

HW Hohe Warte LCZ 6
Lat 48◦14′55.00′ ′

1.9 198Long 16◦21′23.00′ ′

DF Donaufeld LCZ 6
Lat 48◦15′27.00′ ′

2 161Long 16◦26′0.00′ ′

MB Mariabrunn LCZ 9
Lat 48◦12′0.00′ ′

2.1 225Long 16◦13′59.88′ ′

SW Schwechat LCZ DE
Lat 48◦06′39.0′ ′

2.2 184Long 16◦34′15.0′ ′

SD Seibersdorf LCZ 8D
Lat 47◦58′35.00′ ′

2.1 185Long 16◦30′18.00′ ′

The collected information (air temperature, wind speed, solar radiation, and precipitation) from
the aforementioned six weather stations was used to illustrate temporal and spatial variation of
microclimatic conditions. To facilitate the representation, visualization, analysis, and processing of
the data, we opted to represent the main prevailing “overheating” tendencies (i.e., characteristic
location-dependent atmospheric warmth) for the summer season (representing meteorological
summer) in terms of two distinct reference days. This intention may be realized via different methods.
As there is neither a unique nor a standardized statistical method to achieve this, we opted for the
following two-step procedure. In a first step, both warmest and coldest continuous one-week periods
were identified for meteorological summer in 2014 (Table 2). Thereby, “warmest” denotes that this
period included the highest number of days with maximum hourly temperatures, whereas “coldest”
denotes the period of minimum hourly temperatures. In a second step, data from these two one-week
periods was further processed to derive respective reference days. Once the one-week period is selected,
hourly temperature data is averaged over each day to derive the hourly reference day temperatures
of aforementioned one-week period. It should be noted that the above mentioned data evaluation
processing was conducted for the central urban area (IS) as it is the most developed part of a city.
Hence, the same time frame was then applied for the other areas.
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Table 2. Overview of the dataset used for analysis with additional information regarding climatic
circumstances during the observed period.

Hot Week 7–13 June 2014 Cold Week 20–26 August 2014

IS HW DF MB SW 1 SD IS HW DF MB SW 1 SD

Max temperature (◦C) 34.7 33 34.4 33.1 26.9 34.6 23.5 22.3 22.6 22.4 23.9 22.4
Min temperature (◦C) 16 13.2 12.9 9.7 9.9 11 12.2 10 9.8 8 9.7 8

Total precipitation (mm) 0 0 0 1 - 2 49 58 44 26 - 22
Mean wind speed (m/s) 2 2 1 1 4 2 3 3 2 2 4 2

1 Weather station SW did not record precipitation data.

2.2. The Essential Features of an Urban Unit of Observation

The study of the variables relevant to the formation of urban climates holds great potential in
generating urban resilience via the realization of effective mitigation measures. As a contribution to
ongoing research efforts in this direction, we introduced a systematic framework for the representation
of the urban environment and the assessment of its microclimatic variation [44–47]. The proposed
methodology aims to identify essential features of the built environment that are hypothesized to
influence urban microclimate variation, thus supporting the development of explanatory theories
and predictive models toward the prediction of local differences in the urban climate. To realize this
framework, we defined an essential set of geometric (morphological) and semantic (material-related)
urban features, hereafter referred to as the U2O variables. The geometric properties (e.g., sky view
factor, aspect ratio, built area fraction, built surface fraction, effective mean compactness, etc.) are
applied for identification of the urban morphology in an U2O. The physical properties (e.g., albedo,
emissivity, specific heat capacity, etc.) describe the thermal characteristics of urban surfaces. A more
detailed description of the candidate U2O variables can be found in [44,52].

Once defined, U2O variables must be numerically expressed to make them comparable and
accessible for further analysis. In this context, we employed the GIS technology [53] as an operational
solution for comprehensive urban form analysis. Comprehensive DEMs with non-spatial text-based
attribute information (e.g., land use type, number of building floors, building construction age)
provided by the city of Vienna were used as a basis for this analysis. Extensive collaborative
efforts have been made to develop a Python-based framework incorporated into the GIS tool for
the automated calculation of the salient geometric and physical features of an urban environment,
as described in [54–56]. It should be noted that detailed urban databases containing comprehensive
spatial information are, at times, difficult to obtain. Currently, a number of local municipalities and
commercial vendors provide digital datasets. However, the number of such data repositories is
expected to increase in the future. Subsequently, we explored the potential relationships between U2O
variable values and urban-level microclimatic patterns.

2.3. The Implications for the Buildings

Advancing the understanding of complex urban-level physical phenomena and resulting
implications requires, amongst other things, the deployment of sophisticated numeric models
and computational platforms [57]. In this context, we focus on comprehensive building thermal
performance simulations conducted using Thermal Analysis Simulation Software—EDSL TAS
(EDSL, Milton Keynes, Buckinghamshire, United Kingdom) [58]. This tool was selected as it has
the capability to systematically asses the thermal behaviour of buildings, while considering a relatively
comprehensive range of factors, such as complex building shapes, the shadow effect between buildings,
multizone building modelling, and integrated natural and forced airflow [59,60]. To address the issue
of model reliability, we have documented the potential of model calibration and validation based
on empirical data in [61,62]. Therefore, the tool represents a valuable resource for the assessment of
the building’s energy consumption, carbon emissions from buildings, operating costs, and occupant
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comfort. Four different buildings were selected and made subject to a systematic inquiry (Figures 2
and 3). These buildings constitute a large fraction of total building stock in Vienna [63] and are
selected to represent different building typologies (as seen in Table 3). Namely, MFH 1 represents a
multi-family house built using todays design and standards, MFH 2 represents a multi-family house
as a typical building of this category from the 1960s, MFH 3 represent a multi-family house of the
“Gründerzeithaus” period (from around 1910), and an office building representing todays design and
standards. The office building is freestanding, while residential buildings have adjacent buildings on
both sides. All buildings have unconditioned basements, while MFH 2 and MFH 3 have unconditioned
attics, as well.Sustainability 2017, 9, 177  6 of 15 
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Table 3. General information about the selected buildings.

Type MFH 1 MFH 2 MFH 3 OFFICE

Residental, Multi-Family Office Building

Year of construction 2014 1960s 1900s 2010
Height (m) 18 24.3 23.3 26.5

Heated floor area (m2) 1407 1434 1949 15,472
Gross volume (m3) 4062 4307 7357 58,412

Mean floor height (m) 2.89 3.00 3.78 3.78
Gross floor area/Gross building volume 0.29 0.36 0.23 0.17

Six sets of simulation runs were conducted for each building: A building was virtually placed
within each location, and its performance evaluated using six obtained location-specific weather files
as boundary conditions. Input assumptions, such as occupancy, internal gains, solar gains, ventilation,
and thermostat settings, were based on Austrian standards: ÖNORM B 8110-3, B 8110-5, and B
8110-6 [64–66]. The occupancy profiles were defined according to the building typology: For the
residential buildings the occupancy was set on 365 days per year and 24 h per day. For the office
building, a standard calendar and occupancy schedule were generated based on weekday/weekend



Sustainability 2017, 9, 177 7 of 16

schedules, with occupancy hours from 8 a.m. to 8 p.m. on weekdays. All simulations were conducted
twice: first in a passive mode (UNCON) to investigate overheating tendencies during summer
months, and then in an active operation mode (COND), with an upper and lower limit for the indoor
temperature, to investigate heating and cooling loads. Internal gains are divided into equipment gains
(Eg), lighting gains (Lg), and latent and sensible occupancy gains (Ol and Os), as seen in Tables 4–6.
It should be noted that in case of residential buildings, the summer overheating in UNCON mode was
computed with an air change rate of 1.5 h−1 (from 9 p.m. to 9 a.m.) and 0.4 h−1 (from 9 a.m. to 9 p.m.).

Table 4. Input assumptions for residential buildings (COND).

Internal Gains (Wm−2)
Ach (h−1)

Eg Lg Os Ol

24 h 1.5 1.5 0.6 0.15 0.4

Thermostat settings

Upper limit 27 ◦C 24 h

Lower limit 20 ◦C 24 h

Table 5. Input assumptions for office building, offices (COND).

Internal Gains (Wm−2)
Ach (h−1)

Eg Lg Os Ol

Occupied 5.0 2.5 0.6 1.5 0.7

Unoccupied 1.0 0.5 0 0 0.4

Thermostat settings

Occupied Unoccupied

Upper limit 26 ◦C 29 ◦C

Lower limit 20 ◦C 17 ◦C

Table 6. Input assumptions for office building, lobby (COND).

Internal Gains (Wm−2)
Ach (h−1)

Eg Lg Os Ol

Occupied 0 3.0 0.6 0.15 0.4

Unoccupied 0 1.0 0 0 0.4

Thermostat settings

Occupied Unoccupied

Upper limit 29 ◦C 29 ◦C

Lower limit 17 ◦C 17 ◦C

For the office building, different input assumptions were considered for the office rooms, lobby,
and bathroom areas. However, the COND and UNCOND simulations for office rooms and lobby areas
differ in air change rates only, thus having an air change rate of 1.5 h−1 during the summer night hours
(from 9 p.m. to 9 a.m.). The air change rate for the bathroom area was assumed to be 1 h−1.

To systematically address the role of microclimatic development in thermal performance of
buildings, computed performance indicators were compared and analysed across all locations. Firstly,
the mean annual cooling and heating loads for the COND mode were computed with respect to the
heated net floor area. Cooling and heating loads of each building were further investigated with
respect to the corresponding simulations conducted with weather file obtained at non-urban location
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SD, thus accounting for the urban influence on thermal performance of buildings [41]. Additionally,
in order to determine the differences between locations, spatial variance (VS,l) was calculated for the
annual heating and cooling loads, as follows:

VS,l = Lmax − Lmin (1)

Herein, Lmax denotes maximum annual heating/cooling load for a building for each location, and
Lmin denotes the corresponding minimum annual heating/cooling load.

Lastly, the overheating tendencies were analysed in terms of cooling degree hours (CDH),
as follows:

CDHb =
n

∑
i=1

(Ti − Tb), for all cases when Ti > Tb (2)

Herein, Ti denotes the temperature in the room, and Tb denotes the base temperature.
The reference base temperature for the residential buildings is 27 ◦C and, for the office building,
26 ◦C. However, in order to make this information comparable, the weighted mean overheating (OHm)
for each building was calculated as follows:

OHm =
(CDHR1 × AR1 + . . . + CDHRn × ARn)

AR1 + . . . + ARn
(3)

Herein, ARn denotes the area of the room (m2), and CDHRn denotes the corresponding cooling
degree hours (Kh).

3. Results and Discussion

3.1. Representation of Microclimatic Variance

Figure 4 illustrates, for both one-week periods, the mean hourly air temperature for the selected
locations. These results demonstrate the significant extent of the urban ambient temperature differences
across time (day, within-season) and space (location). Generally, the central urban location (IS) displays
the highest air temperature values, during both the cool and the hot period. The results suggest
more pronounced temperature differences (up to 5 K) between the locations during the night hours.
This may be explained with regard to the factors such as the thermal inertia of the building masses, the
abundance of impervious surfaces, and the reduced night-time skyward radiation. However, during
the day, temperature differences are significantly reduced (up to 1 K) as all locations show a similar
warming trend. Results further revealed the lowest diurnal fluctuations of air temperature at the
central urban location (IS), of 11 K and 6 K, during hot and cool periods, respectively. This further
stresses impeded potential for night-time long-wave radiative heat loss.
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Figure 4. Mean hourly air temperature for a reference summer day: (a) hot week; (b) cold week.
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3.2. Influence of Independent Variables

Once the air temperature values are computed, they can be analysed in the context of the
respective U2O attributes. Figure 5 illustrate the explanatory potential of the derived U2O values
in an original differential profile format, in which the scales are arranged in a manner so as to bring
out the characteristics of specific urban locations and highlight their differences. Distinct clusters
observed in this figure highlight the differences between highly developed densely built-up areas
(right side of the graph) and less developed areas (left side of the graph). One important aspect of
further inquiry is to empirically test the specific role of U2O variables in view of the heat balance of
urban systems. Despite the presently very small number of instances, we undertook such an inquiry for
the selected hot summer week, due to the severe risks of heat waves in Central Europe in the summer
period [67]. Specifically, we investigated how the surrounding urban fabric affects the night-time
cooling potential. In general, the initial results suggest a positive or a negative correlation between
the values of selected U2O variables and minimum night-time air temperatures computed for the
selected hot week period. Thus, U2O variables, such as aspect ratio, built area fraction, equivalent
building height, and effective mean compactness are observed to obstruct night-time skyward radiation,
whereas sky view factor, unbuilt area fraction, pervious surface fraction, and albedo may enhance the
potential for night-time cooling. Figure 6 illustrates a number of these correlations. The highest positive
correlation (R-squared equals to 0.93) was noted between minimum night-time air temperature and
impervious cover within an area. The highest negative correlation (R2 = 0.90) was noted between the
minimum night-time air temperature and albedo. As stressed before, six data points are undoubtedly
insufficient to offer statistically meaningful correlations. Nonetheless, our findings so far are promising
and encourage further explorations in this direction. We are, thus, currently collecting data from a
larger network of public and private weather stations to be deployed toward future research and
improvement activities.
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Figure 5. Values of selected U2O variables for locations around six weather stations.
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Figure 6. Minimum night-time air temperature computed for the selected hot week period as a function
of selected U2O variables: (a) aspect ratio of urban canyon; (b) built area fraction; (c) impervious
surface fraction; and (d) albedo.

3.3. Implications for the Buildings

Finally, the impact of above-mentioned location-specific weather data on building’s energy use
can be estimated. The computed mean annual heating and cooling load data point to a significant
location-dependent differences between the performance of the buildings (Figures 7–9). Thereby, MFH3
displays the highest deviation of mean annual heating loads across locations of 16.1 kWhm−2·a−1

(Figure 7). The mean annual cooling load data show less variation, with maximum reaching
4.7 kWhm−2·a−1 for the office building. The highest deviation in heating loads for all buildings,
in respect to the corresponding SD case, can be observed in location IS (Figure 8). It can be further
observed that all buildings have a tendency toward a lower heating load than the SD case when
positioned within locations with a higher built area fraction, higher impervious cover, and lower sky
view factor (from 3.62 kWhm−2·a−1 to 12.81 kWhm−2·a−1 lower). Furthermore, the mean annual
cooling load data at same locations (IS, HW, and DF) is higher than the respective SD case (Figure 9).
Additionally, the highest values were again noted in location IS. This might be due to the impeded
cooling regimes and corresponding higher air temperatures of respective urban domains.

Additionally, simulation results reveal substantial variation in overheating values across different
building typologies (Figure 10). The highest overheating was noted in MFH1 and OFFICE (as seen in
Figure 10). This might be due to the higher fraction of window area of these buildings, with 16.8% in
MFH1 and 27.2% in OFFICE, compared to the 9.4% in MFH2 and 11.8% in MFH3. Looking at different
locations, the highest values can clearly be seen for IS in all four buildings, followed by location DF.

It can be concluded that deployment of location-independent weather data sources
(e.g., standardized weather files) in the thermal performance of buildings involves various sources
of errors and may lead to considerable misestimations of energy use in buildings. In other words,
simulation-based assessment of buildings’ thermal behavior can be expected to face considerable
additional uncertainties if the deployed representations of microclimatic boundary conditions are:
(i) indifferent to complex geometry and material properties of the surrounding urban domain; and
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(ii) ignore the dynamic variability of microclimatic conditions around the designated location of
a building.
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4. Conclusions

We presented the results of a multi-year effort concerned with the extent and resulting implications
of the microclimatic variation in the city of Vienna, Austria. The objectives of this research effort
were to contribute to a deeper understanding of the location-dependent microclimatic conditions and
related implications for thermal performance of buildings. The systematic study of the intra-urban
microclimatic variation was conducted across a number of low-density and high-density typologies.
The main findings may be summarized as follows:
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• Empirical observations revealed certain time-dependent (diurnal, nocturnal, and within-season)
patterns implying larger temperature differences (up to 5 K) between locations during the night
hours of a hot week in summer.

• The results further suggested that local climatic context can vary considerably depending on the
site features such as the urban density and morphology, surface properties, extent of vegetation,
etc. To further analyze this circumstance, we defined and computed the values of a number of
morphological and physical features of urban settlements that influence the formation of urban
microclimates. The obtained data further allowed for the exploration of plausible correlations
between the night-time cooling potential and specific urban attributes. For example, it was
noted that a higher impervious surface fraction noticeably correlated with higher night-time air
temperature in the urban canyon (R2 = 0.93). Likewise, higher albedo may reduce the night-time
air temperature in the urban canyon (R2 = 0.90). These findings offer a promising starting point
for further explorations toward developing empirically-based predictive models that can improve
the understanding and prediction of local differences in the urban climate.

• Furthermore, we investigated the ramifications of observed microclimatic variation for the
simulation-based assessment of buildings' thermal performance. Our findings point to the
significant deviations in computed heating and cooling loads, as well as in overheating levels, with
regard to both the location and input data (weather file). Thereby, the variation of mean annual
heating load across locations may be as high as 16.1 kWhm−2·a−1 for residential building typology.
This issue is especially critical given the potential for additional uncertainties when conducting
simulations using standardized (location-independent) representations of the microclimatic
boundary conditions.
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