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Abstract: Change detection of remotely sensed images is a particularly challenging task
when the time series data come from different sensors. Indeed, many change indicators are
based on radiometry measurements, used to calculate differences or ratios, that are no longer
meaningful when the data have been acquired by different instruments. For this reason, it is
interesting to study those indicators that do not rely completely on radiometric values. In this
work a new approach is proposed based on similarity measures. A series of such measures is
employed for automatic change detection of optical and SAR images and a comparison of their
performance is carried out to establish the limits of their applicability and their sensitivity to
the occurred changes. Initial results are promising and suggest similarity measures as possible
change detectors in multi-sensor configurations.
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1. Introduction

Change detection analyzes a pair of images of the same subject acquired at different times to de-
tect eventual changes occurred between the two data collections. In remote sensing applications, one
deals with the same geographical area trying to perform, for example, environmental monitoring [1–3],
study on land use/land cover dynamics [4, 5], agricultural surveys [6], analysis of forest or vegetation
changes [7–9], damage assessment [10, 11] or analysis of urban changes [12–14].

In most of the literature of common knowledge, the comparison between two or more images is per-
formed on data acquired by exactly the same sensor [2, 9, 14] or by sensors of the same type [13, 15] but
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at present multi-sensor image change detection, using for instance optical and synthetic aperture radar
(SAR) images [5], has also become a concrete possibility, at least in terms of data availability, due to
the increasing number of operational airborne and spaceborne sensors. Hence, there is the need for the
development of technical “tools” to exploit such data in a combined way taking advantage of their char-
acteristics and complementarity. A relevant example of the importance of multi-sensor methodologies is
the following: in the presence of a natural disaster for which rapid mapping of the damages is needed,
it may be given that optical data from an archive are available for the “before” scenario, but only SAR
data are available for the “after” scenario due to adverse atmospheric conditions.

We present here a novel approach for change detection based on the use of similarity measures. Such
measures have been applied until now only to image coregistration [16–19] (and mainly in the field of
medical imagery). In particular, one of their principal properties is their capability to operate in the
multi-sensor case. Our idea is then to profit from this property and to use the correspondence between
the same points in the two images not to correct the relative displacement but, already given their precise
coregistration, to detect eventual changes occurred between the data acquisitions.

Another reason of interest for similarity measures is that basically no example of their use for change
detection has been yet reported in the literature. The works published in this field describe methods that
can be finally divided into two main groups:

• those that operate a preliminary feature extraction or classification of the images and then search
for transitions of the pixels from one feature to another (hence, permitting a boolean comparison
and a direct yes/no response for the change/no-change definition);

• methods that estimate the difference of the radiometric values of the image pixels (via a straightfor-
ward subtraction or using ratios, also in logarithmic form, as is common practise for SAR images)
and then establish if a change occurred based on thresholding criteria. Similarity measures belong
to this second group.

However, even the very extensive review of change detection techniques by Lu et al. [15] does not
mention similarity measures as a possible way to perform this task nor cites any reference to them. Thus,
a summary of the theory on similarity measures, their systematic investigation and a comparative analysis
of their performance represent, in our opinion, a useful scientific contribution. Given these motivations,
optical and SAR images acquired at different times were coregistered and a series of similarity images
were derived and used as indicators of the changes. The experiments were carried out on two data sets
relative to the test sites of Toulouse, France, and Oberpfaffenhofen, Germany, and both qualitative and
quantitative analyses were conducted. Open questions and suggestions for further investigations are
mentioned along with our observations.

In Sections 2 and 3 we begin by reviewing the theoretical background of the similarity measures
objective of this study and, after describing the experimental procedure in Section 4, we report the results
obtained for the two test cases: those based on the Toulouse data are discussed in Section 5 and those
relative to the Oberpfaffenhofen data in Section 6. Final considerations and comments are provided in
Section 7.
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2. Similarity Measures

The leading principle of similarity measures is stated in [19] and may be summarized as the consid-
eration that, although two images of the same scene acquired by different sensors can be characterized
by completely different radiometric properties, a common “basis” is shared by the two data sets since
they are different representations of the same reality. The key question is then to correctly retrieve this
correspondence.

In registration procedures [20], where the goal is to find a spatial transformation relating two images,
a common way to proceed is to extract features from each image with a segmentation step and minimize
the distance criterion between these features. More recent approaches are based directly on the intensity
values of the image pixels and do not need the preliminary feature extraction. Since image coregistration
and change detection have many aspects in common, the following considerations will be valid for both
topics.

By definition, given two images I and J , a similarity measure is any scalar strictly positive function
f(I, J, c) that quantifies how similar are the images according to the criterion c. f has an absolute
maximum when I and J are identical according to c [19]. The selection of the similarity criterion,
and hence the definition of the function f , can vary according to the type of images under analysis, the
application (e.g., image registration or change detection) and the parameters used to define it (radiometric
values, features characteristics, etc.).

In general, I and J are mappings of the type [18]:

I :
d∏

k=1

[[1 . . . xk]]→ DI (1)

where d is the dimension of the image (for instance, in many medical imaging applications one deals
with the 3D case) and xk is its size along the k-th axis. We will then denote a general spatial co-
ordinate as x. The domain DI is the set of intensities of I and, typically, for the two images it is:
DI = DJ = [0, 255] ⊂ N, referring to the grey levels. I and J may be regarded as two random vari-
ables, taking their values in DI and DJ , which have marginal probability distributions: pI(I(x) = i) and
pJ(J(x) = j), respectively, and joint probability distribution: pIJ(I(x) = i, J(x) = j).

Based on the probability distributions of the images, several similarity criteria c can be defined. The
necessary a priori assumption is the following: the two images are linked, thus the link is maximal
when there are no differences (due to changes or registration errors) between the two. The link may
be evaluated by the notion of dependence. Intensity distributions are dependent if a variation in one
distribution leads to the variation in the other. The case of maximal dependence is given when I and J
are related by a one-to-one mapping T such that:

pI(i) = pJ(T (i)) = pIJ(i, T (i)) (2)

the case of statistical independence when:

pIJ(i, j) = pI(i) · pJ(j) (3)

Inglada [21] already discussed the change detection between two data collected by the same optical
sensor. The solution proposed there, and common to most of the measures discussed in [19], was to



Remote Sens. 2009, 1 125

use the statistics of each pixel’s neighbours. Indeed, pI(i), pJ(j) and pIJ(i, j) can be estimated for the
subsets of the whole images, then a pixel with a given intensity i is defined as changed if the probability
pI(i) calculated with respect to that of the neighbours is not the same as that of the corresponding pixel in
the image J (i.e., if it changes beyond a given threshold). To evaluate this, for each pair of corresponding
pixels in the two images I and J , an estimation window has to be fixed (see Figure 1). Then, the marginal
and joint probabilities are calculated and used in the definition of several functions f .

Figure 1. Calculation of the marginal and joint probabilities.
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More in detail, similarity measures may be distinguished based on only the probability estimations or
on the combined use of the probabilities and the radiometric information (its mean value in the estimation
window or its variance). In the following, we will report the results obtained using five measures of these
two main groups, namely:

1. Measures using only the probabilities:

• distance to independence

• mutual information

• cluster reward algorithm (CRA)

2. Measures combining probabilities and radiometric values:

• normalized standard deviation or Woods criterion (for this measure two different formula-
tions will be discussed)

• correlation ratio.

The approach adopted here to the statistical analysis necessary to calculate the similarity measures is
analogous to that of [21] and [19]: histograms of the radiometric values for corresponding estimation
windows are used to define the probabilities by simple normalization. Alternatively, in [22] these were
derived from the probability distribution functions obtained by a parameterized formula (made explicit
by calculating its parameters from the pixels of the estimation windows).
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2.1. Distance to Independence

As anticipated, the condition of statistical independence is formalized by Equation (3). Hence, the
difference of the two terms, the product of the marginals and the joint probability, directly measures the
degree of independence of the two images:

DTI(I, J) =
∑
i,j

(pIJ(i, j)− pI(i) · pJ(j))2

pI(i) · pJ(j)
(4)

2.2. Mutual Information

By expressing the same difference in logarithmic form, it is possible to refer to the concept of entropy
introduced by Shannon [23]:

H(I) = −
∑

i

pI(i) · log pI(i) (5)

which is a measure of the amount of uncertainty about the random variable I . The entropy is null when
an event (in our case, a given pixel value) is certain, i.e., pI(i) = 1, and has a maximum when all events
have the same probability: max(H(I)) = log n, where n is the number of possible values of I .

The relationship between the difference of the probabilities and the entropy is given when defining
the quantity [16]:

MI(I, J) =
∑
i,j

pIJ(i, j) log
pIJ(i, j)

pI(i) · pJ(j)
(6)

for which the following equations hold:

MI(I, J) = H(I) +H(J)−H(I, J) (7)

= H(I)−H(I | J) (8)

= H(J)−H(J | I) (9)

H(I, J) is the joint entropy of I and J , whereas H(I | J) and H(J | I) are the conditional entropy of I
given J and of J given I , respectively. These are defined as:

H(I, J) = −
∑
i,j

pIJ(i, j) · log pIJ(i, j) (10)

H(I | J) = −
∑
i,j

pIJ(i, j) · log pI|J(i | j) (11)

where pI|J(i | j) is the conditional probability of I given J .
Since H(I | J) measures the uncertainty left in I when knowing J , the mutual information MI(I, J)

estimates the reduction of the uncertainty of one random variable by the knowledge of the other, or the
amount of information that one contains about the other.

2.3. Cluster Reward Algorithm

A further measure based on only the joint and the marginal probabilities is the cluster reward algo-
rithm, which is defined as:

CRA(I, J) =

∑
i,j p

2
IJ(i, j)−

∑
i p

2
I(i) ·

∑
j p

2
J(j)√∑

i p
2
I(i) ·

∑
j p

2
J(j)−

∑
i p

2
I(i) ·

∑
j p

2
J(j)

(12)
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As stated in [19], theCRA(I, J) index has a large value when the joint histogram has little dispersion.
This can be the result of a good correlation (histogram distributed along a line) or the clustering of the
image intensities within the histogram. In both cases, it is possible to predict the values of one image
from those of the other.

An observed advantage of this measure, with respect to the previous ones, is that the joint histogram
noise resulted from the estimation has a weaker influence, thus smaller windows may be considered to
derive the histogram [19].

2.4. Woods Criterion

Along with the probabilities, the radiometric values of the image pixels can also be directly used to
estimate the correlation between two images. At this scope, it is practical to introduce the conditional
mean:

m(I | j) =
1

pJ(j)

∑
i

i · pIJ(i, j) (13)

and the conditional variance:

σ2(I | j) =
1

pJ(j)

∑
i

(m(I | j)− i)2 pIJ(i, j) (14)

By their means it is then possible to define a measure of the variability of the pixel intensity in one image,
given a certain value of the homologous ones in the other [24]. The assumption is that this variability is
larger in the presence of differences (again, changes or misregistration results) between the images. The
measure is thus introduced as:

W (I | J) = 1−
∑

j

σ(I | j)
m(I | j)

pJ(j) (15)

2.5. Correlation Ratio

Finally, the correlation ratio is defined in a similar way using the conditional mean and variance:

CR(I | J) = 1− 1

σ2
I

∑
j

σ2(I | j) · pJ(j) (16)

but also the variance σ2
I of the radiometric values of one of the images.

3. Robust Measures

An assumption necessary to the application of the Woods criterion is the inter-image uniformity,
which means that pixels of corresponding areas in the two images should have proportionally similar
radiometric values. For example, in the specific case of [24], this yields that voxels of 3D medical
images representing the same human tissue must have similar intensities within each image. This is a
relatively strong requirement that is rarely verified in other cases of medical imagery coregistration. In
fact, it may be more often observed that the joint histograms of the images to be coregistered represent
a mix of several populations even when considering an homogeneous region in one of the images [17].
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Consequently, the calculation of the averages and variances used in Equation (15) is influenced by the
presence of several populations with different distributions.

In order to improve the robustness of the similarity estimation, especially in the case of multi-sensor
data, averages and variances have to be calculated in such a way to minimize the effects of outliers alter-
ing the distribution of the “main” population. This is possible by using the Geman-McClure estimator,
which is defined as:

ρ(x,C) =
x2

x2 + C2
(17)

In Equation (17), x is the grey level residual given by the difference between corresponding pixels in
the case of mono-sensor images and by the difference with the conditional mean for multi-sensor data
(i.e., in this case, it is implicit in the hypothesis of uniformity of the grey levels in the estimation window)
and C is a scale parameter.

Given its shape, the function ρ(x,C) permits the reduction of the relevance of the largest distribution
deviations. Indeed, it is easy to verify that, as the amplitude of the residual errors increases, ρ(x,C)

tends to a constant value [17].

3.1. Robust Woods Criterion

Based on the properties of robust estimators, an alternative formulation of the Woods criterion is
possible as described in [17]. Conditional mean and conditional variance can be calculated in robust
form as:

m̃ = m(I | ̃) (18)

with

̃ = arg min
j

(∑
i

ρ((i−m(I | j)), Cj)

)
= arg min

j

(∑
i

(i−m(I | j))2

(i−m(I | j))2 + C2
j

)
(19)

and

σ̃2(I | j) =
1

pJ(j)

∑
i

(i− m̃)2

(i− m̃)2 + C2
j

pIJ(i, j) (20)

The parameters Cj are defined as the median values of the absolute values of the residual errors:

Cj = 1.4826 ·mediani |i−m(I | j)| (21)

This last expression derives from the fact that the median value of the absolute values of a large number of
samples normally distributed and with unitary standard deviation is just equal to

1
1.4826

= 0.6745 [17, 25].
The robust definition of the Woods criterion is:

W̃ (I | J) = 1−
∑

j

σ̃(I | j) pJ(j) (22)

4. Experimental Approach

The performance analysis of the similarity measures presented in the previous sections was based on
two data sets relative to the test sites of Toulouse, France, and Oberpfaffenhofen, Germany. Optical and
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SAR data were considered. The study was split in two parts related to each data set: a general analysis
of the similarity images was first conducted, aimed at defining their main characteristics and retrieving
the features that define a low or high similarity, then a more detailed study was carried out to provide
accuracy estimations of the derived change/no-change maps (with reference to man-made structures).

Some processing steps were performed in common for both data sets:

• Ground control points were selected by visual inspection for a preliminary “manual” coregistration

• Fine coregistration was then performed using, in turn, an automatic selection of the homologous
points in the image pairs based on the CRA. Indeed, this was the method providing the best ac-
curacy according to the tests reported in [19] (the relevance of a precise coregistration is great in
every change detection process as put into evidence in [26])

• Each similarity measure S(I, J) was expressed in normalized form (i.e., rescaled to range from
0 to 1) and then, also to facilitate visual interpretation, its complementary value 1 − S(I, J) was
used to derive the images. In this way, the most significant changes (i.e., the smallest similarity
estimates) are represented by the brightest pixels.

5. Toulouse Test Site

5.1. Scene and Data Processing

The experimental data set of the Toulouse site consisted of two optical images (the blue band of multi-
spectral, XS, data) and one SAR (X-band) image, taken from the PELICAN and the RAMSES systems,
respectively. The scene is mainly urban with limited vegetation patches represented by a park and some
avenues with trees (see Figure 2). The first optical image simulates the push-broom mode of the SPOT
satellite; details on the sensors and on the data may be found in Table 1. A significant time span of
almost six years is given between one of the optical images and the remaining two.

Figure 2. Toulouse data set: (a) push-broom, (b) SAR and (c) XS images.

(a) (b) (c)
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Table 1. Toulouse data set: images and sensors details.

sensor PELICAN RAMSES PELICAN

data type optical - XS blue SAR - X-band optical - XS blue

(push-broom mode)

resolution 2.4 m 0.93 m × 0.98 m 2.8 m

(gr. range × azimuth)

date 09/05/98 22/07/04 17/09/04

After reducing the SAR and push-broom images to the same resolution of the other optical data, the
three images were coregistered. Then, the similarity measures presented in the previous sections were
applied to the push-broom/SAR and push-broom/XS pairs.

For all the measures, two series of tests were conducted [27]:

• Case a used a 7 × 7-pixel estimation window to determine the histograms and then calculate the
measures by the pixels of that window;

• Case b used a larger window (21 × 21 pixels) to determine the histograms and the pixel value
probabilities but then evaluate the similarity using only the pixels of a smaller area (again of
7 × 7 pixels). Referring again to Figure 1, in this case, one considers the outer and inner square
windows for the two calculations.

The selection of the windows dimensions is a delicate point related to the resolution of the sensors
and the nature and the size of the targets in the scene. Further investigations on this topic are presently
underway.

5.2. Result Analysis

We reported in Figures 3 and 4 the images obtained using the same estimation window (7× 7 pixels)
for the statistical analysis and the measures calculation (case a), and in Figures 5 and 6 those obtained
considering different window dimensions (case b). Based on these similarity images, considerations can
be made having a qualitative character.

The initial general observation is that the results present relevant variations depending on the measure,
indicating that each of them has a different sensitivity and may perform more or less efficiently. It is also
evident that differences exist between the cases a and b that have then to be evaluated separately.

The similarity images show a strong dependence on the change of the sensor as well as on the change
of the date (the time span between two acquisitions). This happens with all the similarity measures, so
that none of the methods provides an unbiased (system independent) estimation of the occurred changes.
This is an important question to keep in mind, since an eventual fusion of the results, i.e., the use of
several similarity images derived by various combinations of different sensors, should then take into
account the sensor type and weight each contribution differently. In order to do this, a dedicated analysis
of each method would also be necessary to assess the specific thresholds that define the occurrence of
the change.
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5.2.1. Case a

Referring to the targets in the scene, one can note that the areas of the park and of the avenues are
often characterized by the lowest indexes of similarity. This is within expectation. In fact, vegetated
areas usually provide an unstable and changing scenario (in terms of the signals received by the sensors)
leading to low probabilities of the specific values measured at each pixel. With respect to this point, it
is interesting to observe the analogy between the considered similarity measures and the interferometric
coherence of two SAR images. In both cases, the calculated quantities finally provide an estimation of
the correlation of the pixel values (for the SAR, taking into account the phase of the coherent travelling
signal) within an estimation (averaging) window. The characteristics of a similarity image are then
close to those of the coherence one obtained from a pair of SAR images. Hence, similarity images
may be suggested for classification applications to detect vegetated areas as is commonly practiced for
interferometric coherence data [28, 29].

Figure 3. Similarity images of the push-broom and SAR data - case a: (a) distance to
independence; (b) mutual information; (c) cluster reward algorithm; (d) Woods criterion; (e)
robust Woods criterion; (f) correlation ratio.

(a) (b) (c)

(d) (e) (f)
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Figure 4. Similarity images of the push-broom and XS data - case a: (a) distance to in-
dependence; (b) mutual information; (c) cluster reward algorithm; (d) Woods criterion; (e)
robust Woods criterion; (f) correlation ratio.

(a) (b) (c)

(d) (e) (f)

The similarity images derived from the optical data are generally clear and permit a good recognition
of details such as borders and edges, those obtained from the push-broom/SAR pair are blurred, and lots
of features recognizable using the other pair are confused and not clearly detectable (e.g., the asphalted
parts of the avenues flanked by trees and some open spaces in the park).

5.2.2. Case b

The results obtained using a larger window (21× 21 pixels) for determining the pixel value probabil-
ities and then a smaller one (7 × 7 pixels) for the similarity measures are quite different from those of
the previous case.

As expected, a larger number of samples yields a more stable and reliable assessment of their prob-
abilities but this also implies that pixels from heterogeneous areas could be mixed together and used,
leading to a spread of the histogram width. The relative variation of the probabilities in the 7 × 7-pixel
window is reduced, and the “intensity” of the estimated changes is minor with respect to that character-
izing the examples of case a. A practical effect on the similarity images is the blurring of the borders
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between the two main homogeneous features present in the scene, buildings and trees, that are generally
not so well separated as in case a (see Figures 5 and 6).

Figure 5. Similarity images of the push-broom and SAR data - case b: (a) distance to
independence; (b) mutual information; (c) cluster reward algorithm; (d) Woods criterion; (e)
robust Woods criterion; (f) correlation ratio.

(a) (b) (c)

(d) (e) (f)

Also interesting is the fact that the measures based only on probabilities provide results partly con-
trasting with those of the previous case. Indeed, just the reduced relative variation of the probability
in one pixel neighbourhood yields a more uniform behaviour of estimation windows corresponding to
different features. In particular, the relevant changes of the vegetated areas observed with the small esti-
mation window of case a turned out no longer as such on a larger scale. Consequently, also the similarity
measure values for these areas are no longer so small. A more strict correspondence between the results
of the two cases is given by the measures using also radiometry values.
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Figure 6. Similarity images of the push-broom and XS data - case b: (a) distance to in-
dependence; (b) mutual information; (c) cluster reward algorithm; (d) Woods criterion; (e)
robust Woods criterion; (f) correlation ratio.

(a) (b) (c)

(d) (e) (f)

6. Oberpfaffenhofen Test Site

6.1. Scene and Data Processing

Three different airborne images were used for this second series of tests: panchromatic, X-band SAR,
and hyper-spectral (HS), taking for the last one the blue band (see Table 2).

The acquisition campaigns were carried out over the test site of Oberpfaffenhofen, Germany, at dif-
ferent times, with a major span between the first and the last data take of about fourteen years. A limited
scene was selected containing mainly agricultural fields and forests but also a technology campus where
some new buildings and a parking lot appear in the more recent images and are not yet present in the
first one (see Figure 7). The accurate identification of the new buildings permitted us to concentrate on
changes of man-made structures and to define the precise ground truth for both changes (new buildings
or the parking place) and the false alarms (“old” buildings always present in the scene).

The panchromatic and SAR images were reduced to the same resolution of the HS one and the three
images were coregistered. Then, the similarity images were derived from the panchromatic/SAR and
panchromatic/HS pairs.
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Table 2. Oberpfaffenhofen data set: images and sensors details.

data type optical - panchromatic SAR - X-band optical - HS blue

resolution 2 m 2.5 m × 1.5 m 4 m

(gr. range × azimuth)

year 1990 1993 2004

Figure 7. Oberpfaffenhofen data set: (a) panchromatic, (b) SAR and (c) HS images.

(a)

(b)

(c)
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For all the measures, the tests were conducted using a larger window (21× 21 pixels) for determining
the histograms and the pixel value probabilities and then a smaller area of 7× 7 pixels for evaluating the
similarity of the images [30].

6.2. Result Analysis

In Figure 8 the similarity images shown are obtained using the panchromatic/SAR pair, and those in
Figure 10 are obtained with the panchromatic/HS pair. Starting from these images, a quantitative assess-
ment of the performance of the various similarity measures was obtained by selecting some man-made
structures as the ground truth for both actual changes and false alarms. Then the respective percentages
were measured by fixing a threshold for the values of the similarity images (hence, dividing them in two
change/no-change regions) and counting the number of pixels of the ground truth areas included in the
correct binary partition.

Figure 8. Similarity images of the panchromatic/SAR pair: (a) distance to independence; (b)
mutual information; (c) CRA; (d) Woods criterion; (e) robust Woods criterion; (f) correlation
ratio.

(a) (d)

(b) (e)

(c) (f)
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Figure 9. Panchromatic/SAR pair, change/no-change maps based on manually selected sim-
ilarity measure thresholds: (a) distance to independence; (b) mutual information; (c) CRA;
(d) Woods criterion; (e) robust Woods criterion; (f) correlation ratio. In yellow and red,
respectively, the ground truth areas corresponding to new and always present man-made ar-
tifacts.

(a) (d)

(b) (e)

(c) (f)

In Tables 3 and 5, the estimates reported are obtained by automatically choosing the mean values of
the similarity images as the threshold, i.e., a pixel is considered as changed if its measured value is larger
than the average of the image to which it belongs. In contrast, the results collected in Tables 4 and 6 refer
to thresholds fixed “manually” by trying to optimize the changes/false alarms ratio. For this second series
of examples, the practical criterion was adopted where thresholds that lead to a percentage of detected
changes lower than 50% were never used. Figures 9 and 11 show the corresponding change/no-change
maps for the panchromatic/SAR and panchromatic/HS pairs, respectively.

From the estimated performance of the panchromatic/SAR pair (see Tables 3 and 4), one may note
the poor reliability of the Woods criterion and correlation ratio. In both cases, the false alarms rate is
larger than the percentage of detected changes (although, again, this could be improved by adequately
selecting the discriminant threshold). For the three measures using only the probabilities, the accuracy of
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the change detection is much higher, but the false alarms rate remains too large for these measures to be
reliable. In other words, the theoretical capability of the considered measures to deal with passive/active
multi-sensor images presents some limits in practical applications.

Table 3. Panchromatic/SAR pair: change and false alarm estimates based on mean similarity
measure thresholds.

dist. to mutual CRA Woods rob. Woods corr.

indep. info. criterion criterion ratio

threshold 0.902 0.820 0.980 0.143 0.312 0.073

changes (%) 67.3 68.9 93.7 17.0 56.7 56.5

false alarms (%) 57.4 66.4 64.8 83.2 26.7 90.6

Table 4. Panchromatic/SAR pair: change and false alarm estimates based on manually
selected similarity measure thresholds.

dist. to mutual CRA Woods rob. Woods corr.

indep. info. criterion criterion ratio

threshold 0.850 0.800 0.985 0.100 0.300 0.075

changes (%) 89.1 86.1 85.8 63.3 65.0 53.4

false alarms (%) 69.0 72.9 57.1 93.9 31.3 90.3

Table 5. Panchromatic/HS pair: change and false alarm estimates based on mean change
measure thresholds.

dist. to mutual CRA Woods rob. Woods corr.

indep. info. criterion criterion ratio

threshold 0.952 0.877 0.957 0.157 0.506 0.085

changes (%) 88.3 80.8 90.1 56.0 48.9 69.6

false alarms (%) 21.6 0.0 8.1 0.0 55.8 11.6

Referring to the results obtained using images from passive sensors (panchromatic and hyper-spectral),
Tables 5 and 6 indicate that the automatic selection of the change/no-change thresholds from the average
value of the similarity images provide reliable results for the ground truth samples. The worst accuracy
(the smallest number of changed pixels detected) and the largest false alarms percentage are given by the
Woods criterion in both its standard and robust formulation. However, in the first case a weakening of
the change/no-change discriminant (i.e., a reduction of the threshold) leads to an improvement of more
than 23% in the change detection accuracy with only a 13% increase in the false alarms.
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Table 6. Panchromatic/HS pair: change and false alarm estimates based on manually se-
lected similarity measure thresholds.

dist. to mutual CRA Woods rob. Woods corr.

indep. info. criterion criterion ratio

threshold 0.945 0.860 0.940 0.100 0.470 0.075

changes (%) 90.6 91.9 97.7 79.5 57.7 77.7

false alarms (%) 25.5 0.0 11.3 13.2 60.6 13.2

Figure 10. Similarity images of the panchromatic/HS pair: (a) distance to independence; (b)
mutual information; (c) CRA; (d) Woods criterion; (e) robust Woods criterion; (f) correlation
ratio.

(a) (d)

(b) (e)

(c) (f)

In general, the CRA and the mutual information measures perform the best. For the latter, it was also
possible to improve the change detection accuracy by manually setting the threshold without affecting
the false alarms rate.
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Figure 11. Panchromatic/HS pair, change/no-change maps based on manually selected sim-
ilarity measure thresholds: (a) distance to independence; (b) mutual information; (c) CRA;
(d) Woods criterion; (e) robust Woods criterion; (f) correlation ratio. In yellow and red,
respectively, the ground truth areas corresponding to new and always present man-made ar-
tifacts.

(a) (d)

(b) (e)

(c) (f)

7. Summary

In this work, a new approach for the change detection of remotely sensed data has been presented
and the feasibility of multi-sensor images change detection at pixel level was verified; indeed, alternative
procedures are also possible [15], for instance, to operate at feature level after a preliminary segmentation
or classification process [31]. Methods normally used for image coregistration, the similarity measures,
have been applied, investigating their performance when the data are provided by different sensors. The
general interest is motivated by the need, in the near future, for techniques which permit the exploitation
of complementary optical and SAR data from satellites planned to work in a cooperative way like the
Pléiades and COSMO-SkyMed ones. A further reason of interest is that these measures express, by their
very definition, the degree of similarity between two images and hence are natural candidates to estimate
their difference (their “dissimilarity”). Since basically no example of their application has been reported
in the literature, we decided to fill this gap and to study them providing also a basic review of their theory.



Remote Sens. 2009, 1 141

Our observations do not allow, at this stage, to draw definitive conclusions but suggest a methodology
able to cope with a major remote sensing issue, which opens the way to several interesting research
perspectives. The presented results are indeed promising and indicate similarity measures as possible
tools to detect changes of the Earth surface [27, 30].

We could see that the considered algorithms perform differently and that they do not offer an “ab-
solute” measure of the changes. In fact, they depend more on the type of the sensor than on the time
difference between the data takes. Also the selection of the dimensions of the estimation windows (for
the pixel statistics and the similarity measure calculation) affects the results, in particular, when using
measures based only on the probabilities. The definition of the optimal dimensions for the estimation
window is also an open question to be further investigated. It is also worth noticing that we used a
straightforward definition of the neighbourhood of a given pixel (based on square estimation windows)
for the statistical analysis and the similarity estimation, and that the accuracy of these steps may be im-
proved using any of the techniques that actively redefine region boundaries. These algorithms present
the advantage of effectively identifying homogeneous areas and reducing the smearing of the radiomet-
ric values due to the straddling of the fixed window on two or more different regions. Our observations
would remain valid and the use of each similarity measure could in this way be refined.

Although not originally intended to accomplish this task, the finding that similarity images can distin-
guish vegetated areas from man-made structures suggests their application for classification purposes in
a similar way as for interferometric coherence SAR data (hence permitting, e.g., forest classification in
area with limited availability of clouds-free optical images). However, since the characteristics of natural
targets lead to confusion with the response from changing man-made structures, step-wise procedures
are suggested to firstly establish the nature of the targets and then their eventual changes. Dedicated
studies are presently in progress on both these topics.
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