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Abstract: Carbon sequestration was estimated in a semi-arid grassland region in Central 

Kazakhstan using an approach that integrates remote sensing, field measurements and 

meteorological data. Carbon fluxes for each pixel of 1 × 1 km were calculated as a product 

of photosynthetically active radiation (PAR) and its fraction absorbed by vegetation 

(fPAR), the light use efficiency (LUE) and ecosystem respiration (Re). The PAR is 

obtained from a mathematical model incorporating Earth-Sun distance, solar inclination, 

solar elevation angle, geographical position and cloudiness information of localities. The 

fPAR was measured in field using hemispherical photography and was extrapolated to 

each pixel by combination with the Normalized Difference Vegetation Index (NDVI) 

obtained by the Vegetation instrument on board the Satellite Pour l’Observation de la Terra 

(SPOT) satellite. Gross Primary Production (GPP) of the aboveground and belowground 

vegetation of 14 sites along a 230 km west-east transect within the study region were 

determined at the peak of growing season in different land cover types and linearly related 

to the amount of PAR absorbed by vegetation (APAR). The product of this relationship is 

LUE = 0.61 and 0.97 g C/MJ APAR for short grassland and steppe, respectively. The Re is 

estimated using complex models driven by climatic data. Growing season carbon 

sequestration was calculated for the modelling year of 2004. Overall, the short grassland 

was a net carbon sink, whereas the steppe was carbon neutral. The evaluation of the 

modelled carbon sequestration against independent reference data sets proved high 

accuracy of the estimations.  
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1. Introduction 

 

Drylands cover more than 30% of the Earth’s surface and comprise a variety of ecosystems, such as 

shrublands and grasslands, which are large reservoirs of carbon as well as potential carbon sinks and 

sources to the atmosphere [1]. In Central Asia, where drylands cover about 85% of the total territory, 

shrubland and grassland carbon sinks represent the major pool for carbon absorption and are believed 

to offset a significant proportion of carbon emissions associated with fossil fuel combustion [2]. Thus, 

the ability to monitor carbon sequestration in drylands is of great interest in relation to understanding 

the current status of the global carbon cycle and to meeting requirements of the Kyoto Protocol.  

The terrestrial carbon cycle is a highly dynamic system that includes several storage pools and 

different components of the flux. Components of the terrestrial carbon flux are gross primary 

production (GPP), net primary production (NPP) and net ecosystem production (NEP). The amount of 

carbon that is fixed from the atmosphere, i.e., converted from CO2 to carbohydrates during 

photosynthesis, is called GPP, which is carbon assimilation by photosynthesis ignoring 

photorespiration. Net ecosystem production, NEP, is the difference between gross primary production 

(GPP) and total ecosystem respiration (Re), which determines the amount of carbon lost or gained by 

the ecosystem without disturbances, such as harvests and fire [3]: 

NEP = GPP - Re (1) 

where Re is the sum of all autotrophic (Ra) and heterotrophic (Rh) respiration over some time period 

from instantaneous fluxes to annual total and is defined by the following equation:  

hae RRR  (2) 

Net Primary Production (NPP) is an important component of the carbon cycle and key information 

of ecosystem performance. NPP represents the net new carbon stored as biomass in stems, leaves or 

roots of plants and defines a balance between GPP and autotrophic respiration Ra [4,5]. The classic 

model for the net primary production of ecosystem is given by: 

GPP (g C/m²/yr) = NPP (g C/m²/yr) + Ra (g C/m²/yr) (3) 

Analysis of biomass inventory data obtained by field survey provides a capability for wide-area 

monitoring of biomass production and carbon sequestration using the regression models between 

remote sensing data and measured biomass data [6,7]. Another concept is used for the physical-based 

models, where the key factors for plant development are extracted from remote sensing data to 

calculate the production of plant biomass [4,5,8]. These and other related studies used the approach 

first described by [9] to calculate biomass by linking the incoming radiation to vegetation production 

through an empirical biophysical conversion factor – the light use efficiency (LUE). According to [9], 

gross primary productivity can be calculated as a product of LUE and the amount of photosynthetically 

active radiation absorbed by plants (APAR):  

APARLUEGPP *  (4) 
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This equation includes both above-ground and below-ground compartments of biomass. In the 

equation above, GPP can be estimated using remotely sensed data. The current methodology for 

estimating GPP and NPP from satellites combines the amount of photosynthetically active radiation 

absorbed by the canopy (APAR) with LUE, most commonly as a biome specific constant, modified 

taking into account the constraints imposed by climatic limitations through using a climatic stress 

factor, SI, as part of LUE [3,10-12,13]. APAR depends upon the geographic and seasonal variability of 

day length and potential incident radiation, as modified by cloud cover and aerosols, and the geometry 

of displayed leaf material. For calculation of APAR from the photosynthetically active radiation 

(PAR), the fraction of photosynthetically active radiation absorbed by vegetation (fPAR) is needed. In 

remote sensing studies, the Normalized Difference Vegetation Index (NDVI) computed from red and 

infra-red satellite channels is commonly used to estimate fPAR [14,15]. The final equation for 

satellite-based GPP estimation will be the following [16,17]:  

PARfPARLUEGPP **  (5) 

The amount of the solar radiation reaching the canopy (PAR) is usually derived from remotely 

sensed data or computed using common mathematical algorithms [18,19]. An important attribute of 

remotely sensed data is that vegetation properties are known over the entire area and estimates of 

GPP/NPP can be obtained for each pixel in the area to be studied. However, satellite estimates of 

GPP/NPP as well as other ecosystem fluxes may not be very accurate [20].  

Operational monitoring of GPP/NPP at the global scale is now underway using imagery from the 

satellite-borne Moderate Resolution Imaging Spectrometer (MODIS) sensor [3,13]. The MODIS NPP 

algorithm incorporates separate estimation of gross primary production and autotrophic respiration to 

account for potential differences in light use efficiency between vegetation types due to differences in 

respiration costs and climate conditions. These biome- and climate-induced ranges of LUE are taken 

into account in the MODIS algorithm by incorporating the optimal biome-specific LUE parameter, 

derived from extensive set of observations, and linear ramp functions of minimum temperature and 

vapour pressure deficit. The lower and upper limits of these functions are biome-specific  

constants [13,16,21]. Since the year 2000, by using five different data products from MODIS and two 

constant datasets, namely a digital elevation model and global soil information, the aboveground 

biomass in terms of GPP/NPP is operationally being calculated as 8-day time steps and as an annual 

sum with a spatial resolution of 1-km. However, MODIS GPP/NPP products require extensive 

validation, which is being in progress using ground truth data from different regions, to be useful for 

scientific purposes. The ongoing validation of MODIS products reveals significant biome- and region-

specific over- or underestimation of GPP/NPP. Thus, the validation study by [21] reported about 

moderate underestimation in the MODIS products at agricultural land, and strong overestimation at 

grassland. Despite of the fact that MODIS GPP/NPP products cover the entire land surface and are 

freely available, the use of them in many cases may not always be reliable. In these cases, estimation 

of GPP/NPP using remote sensing data from other satellite systems can be preferable.  

Many satellite-based products only yield GPP [22-24], which, however, is only one of the carbon 

cycle processes that affect carbon sequestration and by its definition does not include respiration. 

Respiration is often incorporated as a climate-dependent factor in carbon sequestration models, where 

it is commonly calculated using complex mathematical models driven by climatic data [3,17]. This 
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approach, being used creatively, may supply a feasible alternative to the estimation of ecosystem 

respiration based on cost-expensive and time-consuming ecosystem carbon flux measurements. In a 

number of recent international projects such as AMERIFLUX, EUROFLUX, FLUXNET, HAPEX, 

ecosystem carbon fluxes are investigated in different ecosystems [25,26]. The main deficiency of the 

ecosystem carbon flux measurements is that their results are local. The challenge for modellers, 

therefore, is to find bounds to the application of results from small-scale studies in the elucidation of 

large-scale processes. Spatial extrapolation of small-scale results of flux measurements and monitoring 

carbon fluxes at larger spatial scales is feasible through combining ecosystem flux measurements and 

remote sensed data. The approach combining remotely sensed and ecosystem-flux data has been 

discussed several times [16,17,20,26,27]. However, most of the study sites concentrate in the western 

countries except a few remote areas like the Arctic tundra, Siberian taiga, the Amazonian forest and 

Sahelian savannah. For the drylands ecosystems of Central Asia, knowledge on carbon fluxes is still 

very poor. The challenge for the modellers working in this region, therefore, is to find appropriate 

methods for estimating carbon sequestration without undertaking the expensive and often not 

realizable ecosystem flux measurements. In grasslands of Central Asia and Kazakhstan, ecologists 

have measured annual NPP through direct sampling of biomass growth increment for decades. 

However, most of these studies only provide results of local small-scale measurements from different 

decades that are not feasible for producing carbon stocks maps [28-33]. 

This study describes and tests a satellite data-based model for mapping total carbon sequestration 

over a semi-arid grassland-dominated region in Central Kazakhstan. This model employs the algorithm 

of Monteith and combines remote sensing data from SPOT-Vegetation satellite and ground inventory 

data on biomass. The approach presented in the study expands the algorithm of Monteith incorporating 

ecosystem respiration. Light use efficiency was estimated from the ground-based data using a simple 

empirical approach. Results were considered in relation to design of algorithms for satellite-based 

monitoring of the Kazakhstan-wide carbon cycle.  

 

2. Study Area 

 

The study area is located in the middle part of Kazakhstan between 48°20` and 49°30` northern 

latitude and 72° and 74°10` eastern longitude and encompasses the southern margin of the Kazakh 

Hills. It comprises the northern area of the Shetsky raion (district) in Karaganda oblast’ (province). 

The climate of the region is dry, cold and high continental. Average annual precipitation is about  

250-300 mm. The most part of precipitation falls during warm period from March to October. Inter-

annual rainfall variation has a coefficient of variation of 20-35%. The region is often affected by 

drought hazard. The temperature amplitude is relative high, average January temperature is below –

12°C and average July temperature is about 26-28 °C. The growing season starts in April and 

continues till October.  

In the vegetation cover, xerophylous bunch grasses are dominant in the northern part of the study 

area and dwarf shrubs in the south. The steppe grassland is dominated by the genera Festuca and Stipa. 

Few euryxerophilous forbs occur; the co-dominants are dwarf shrubs of the genus Artemisia and 

sometimes of other genera, particularly Anabasis and Salsola. Species diversity is about 12-15 species 

per square metre. The height of the canopy decreases from 30-40 in the north to 15-20 in the south, 
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while vegetation cover decreases from 50-70% to 20-30%, and even less. The vegetation growth in the 

study area is strongly dependent on precipitation dynamics. Grasses and shrubs in the vegetation cover 

grow during the whole vegetative period, but the vegetation growth is most rapid during May and early 

June (the period of greatest precipitation) in the southern part, and during June in the northern part of 

the study area. During droughty months in summer (July and early August) their rate of development 

is hindered. This period of semi-dormancy occurs throughout the study region [34,35].  

Despite of the fact that the study area shows a wide spectrum of vegetation communities due to 

variations in topography and soils, there are only two main vegetation classes, short grassland and 

steppe grassland (Figure 1). The land cover data in the study area were taken from the digital land-

cover map derived from Moderate Resolution Imaging Spectroradiometer (MODIS) by [36] that has 

been accessible in the United States Geological Survey (USGS) archive centre. According to this map, 

short grassland covers 74.22% of the whole territory, while steppe grassland covers 25.77%.  

 

Figure 1. Location of the study region on the map of Kazakhstan and distributions of land 

cover classes in the study region based on the MODIS land-cover map [36]. 

 
3. Data 

 

3.1. Field data 

 

3.1.1. Carbon data  

 

Carbon stocks residing in the vegetation and soils were calculated from field records collected 

along a 230-km transect in June 2004. The fieldwork was carried out by colleges from the Institutes of 

Botany and Soils science (Almaty, Kazakhstan). 14 test sites were selected for analysis with four 

replicates (sub-plot) per site. Each replicate occupied 0.0625 ha. The test sites were classified by the 

land cover categories in accordance with the land cover map in Figure 1. Of the test sites, 6 were 

located within the steppe grassland and 8 within the short grassland. The data consisted of grass 

biomass (g DM/m²), root biomass (g DM/m²), litter mass (g DM/m²), vegetation cover estimations 
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(%), and mass of soil carbon at the depths from 10 to 50 cm (g C/m²). The peak-season living 

aboveground biomass (AGB1), root biomass (belowground biomass, BGB) and litter was measured by 

destructive sampling of 1.0 m², with samples weighted, sub-sampled, and dried at 65 °C to constant 

weight to correct for moisture content. Four samples per each replicate (i.e., 16 per plot) were taken. 

Roots were collected by excavating a square of 1 × 1 m² to a depth of 50 cm with a narrow, flat-bladed 

shovel and handsaw. Coarse roots were hand sorted and washed. The remaining sample was dispersed 

in tap water, passed through a 2-mm sieve, and fine roots were collected without differentiation 

between live and dead roots. Roots were washed of gross mineral contamination, dried at 65 °C to 

constant weight, and weighted. The proportions of litter and roots to aboveground biomass were 

calculated. The original values of dry matter (g DM) were converted to carbon (g C). The proportion 

of C in all biomass pools was assumed to be 0.47.  

We reinterpreted the field data with regard to the land cover classes distributed in the study area. 

From the field records of the individual test sites average values for the two land cover categories, 

short grassland and steppe grassland, were determined. The results of these calculations are given in 

Table 1.  

 

Table 1. Description of field data used for the modelling (averaged by land cover type). 

Land cover Dominate vegetation 
Carbon, g/m² 

BGB AGBl Litter Total 

Short grassland (8 sample plots) 
Convolvulus arvensis, Artemisia 

sublessingiana
38.1 54.2 80.5 172.8 

Steppe grassland (6 sample plots) 
Festuca valesiaca, 

Stipa capillata, Coeleria cristata 
58.0 56.4 61.3 195.7 

Average of 14 sample plots  48.0 61.6 70.9 179.5 

 

3.1.2. Vegetation structure variables  

 

Leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are 

two key variables of vegetation structure used as input variables to models that predict NPP over 

extensive terrestrial areas [5,27,37]. Either direct or indirect methods have been used to estimate in situ 

LAI and fPAR. In the present study, LAI and fPAR were measured at 25 sample plots across the study 

area using gap fraction analysis of hemispherical photos. The gap fraction is an integrated canopy 

structural quantity. The vertical gap fraction corresponds directly to the complement to unity of the 

cover fraction and allows estimating both the LAI and fPAR of canopies with an assumption about the 

spatial organisation of the vegetation elements [38,39]. Recent advances in instrumentation and the 

improvement of gap fraction inversion models have significantly increased the attractiveness of this 

technique [40].  

For hemispherical photography, a WinScanopy Image Acquisition instrument from “Regent 

Instruments” (http//www.regentinstruments.com) was used. Field survey was carried out at the peak of 

vegetation activity in June 2008. The plot size was chosen to correspond to an area observed by nine 

30-m Landsat ETM+ pixels. Plot locations and coordinates were determined using global positioning 
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system (GPS) and hemispherical photos were taken at each of the sub-plots. Each plot has a size of 

90 × 90 m with multiple sub-plots over which measurements were averaged to produce a unique value 

per plot. The measurements were made in 30-m transect spacing within each plot. This spacing was 

selected on the basis of test trials conducted in reference plots and analysis of fine-scale vegetation 

patterns at Landsat ETM+ imagery. In order to take pictures underneath the canopy, the hemispherical 

camera was placed on ground surface on such manner that the objective surface was at the similar 

level with the ground surface. On such way, the portion of the light absorbing canopy, missed by the 

measurements, was minimal.  

The “Can Eye” software (INRA, France, http//www.avignon.inra.fr/can_eye/) was used for the 

processing of hemispherical photographs and derivation of LAI and fPAR values for each 

measurement site and than for each plot. “Can Eye” uses a look-up-table approach which is composed 

of gap fraction measurements in different view zenith angles and the corresponding LAI and fPAR 

parameters.  

The hemispherical measurements (non-contact method) were supported by calculation of LAI from 

harvesting biomass by destructive sampling (contact method) at the test sites described above in 

Section 3.1.1. A value of leaf area index for samples of contact measurements was calculated as:  

LAI = AGB (gC/m²)*SLA(m²/gC) (6) 

where AGB is aboveground biomass, and SLA is the specific leaf area. The SLA is an 

ecophysiological biome-dependent constant with values taken from [37]. The LAI calculated from 

contact measurements served as reference for LAI estimations by hemispherical photography. The 

study by [41] compared the LAI values from contact and non-contact measurements in the data set 

used in the present study. They found a high consistency of the LAI values from different sources.  

 

3.2. Satellite data 

 

The Normalized Difference Vegetation Index (NDVI) has been the most common vegetation index 

used throughout the history of satellite data applications. NDVI represents the absorption of 

photosynthetic active radiation and hence is a measurement of the photosynthetic capacity of the 

canopy. NDVI is calculated from reflectance in the red (R) and near-infrared (NIR) bands using the 

following equation: 

)(

)(

RNIR

RNIR
NDVI




  (7) 

NDVI has been established to be highly correlated to green-leaf density, absorbed fraction of 

photosynthetically active radiation and above-ground biomass and can be viewed as a surrogate for 

photosynthetic capacity [42,43].  

10-day 1-km NDVI data set for the growing season (April-October) 2004 was obtained from SPOT-

Vegetation satellite data. The data set had been generated using a maximum value composite 

procedure, which selects the maximum NDVI value within a 10-day period for every pixel. On this 

way, non-vegetated noise originally presented in the row data was significantly reduced [44]. 

Nonetheless, some noised pixels remained in the NDVI data set and were removed by employing a 
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spatial filter, which calculated a new value for each noised pixel from values of neighbouring non-

noised pixels.  

 

3.3. Climate data 

 

10-day maximum, mean and minimum temperature, air humidity and the cloud cover of sky data for 

2004 at nine climate stations located in the study area were obtained from the National Hydro-

Meteorological Centre of Kazakhstan. Gridded maps of 10-day values for each variable were 

constructed using the interpolation method kriging with external drift (KED) where a digital elevation 

model, scaled in meters, was used as an external drift. In order to assess the accuracy of the data 

preparation, we randomly removed three weather stations from the interpolation for one of the 10-day 

from the recorded values of mean temperature. Average error resulted in a value less than 6%. It 

means that the KED approach worked very effectively.  

 

4. Methods 

 

Figure 2 illustrates the processing stream. The parameters inside the ellipsoids, represents the raw 

data (including constants derived from the literature) used in the model, whereas the parameters inside 

the boxes are derived during the execution of the model. Note that Equations 1-4 represent a highly 

generalized form of this flowchart, and are depicted in the white boxes in Figure 2. Derivation of 

individual parameters at per-pixel level will be described below. Parameters used as constants are 

joined together in Table 2.  

 

Figure 2. Flowchart of the NEE model.  
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Table 2. The constant parameters, their descriptions, and values used for the light use 

efficiency model in this study. 

Parameter Units Description 

Land cover class 

Source  Short 

grassland 

Steppe 

grassland 

LUEopt gC/MJ 
Optimum radiation conversion 

efficiency  
0.61 0.97 This study 

10Q  none Temperature sensitivity factor 2.0 2.0 White et al. [37]  

bT  °C Base temperature  20.0 20.0 White et al. [37]  

SLA m²/kg C Specific leaf area 40.0 40.0 White et al. [37]  

rootmr ,
 

gC/gC/day 
Maintenance respiration 

coefficient for fine roots at 20°C 
0.005 0.006 White et al. [37]  

leafmr ,
 

gC/gC/day 

Maintenance respiration 

coefficient for above-ground 

plant parts at 20°C 
0.009 0.01 White et al. [37]  

rootgr ,
 

gC/gC 
Growth respiration coefficient for 

fine roots 
0.3 0.3 White et al. [37]  

leafgr ,
 

gC/gC 
Growth respiration coefficient for 

above-ground plant parts 
0.3 0.3 White et al. [37]  

rootar ,
 

none 
Carbon allocation fraction for 

fine roots 
1.0 1.0 White et al. [37]  

leafar ,
 

none 
Carbon allocation fraction for 

above-ground plant parts 
1.0 1.0 White et al. [37]  

BGB/AGB1 none 
Ratio of below ground biomass 

to above ground biomass 
0.63 1.08 This study 

VPDstop Pa 
Vapour pressure deficit at 

photosynthesis stop  
5000 4100 White et al. [37]  

VPDstart Pa 
Vapour pressure deficit at 

photosynthesis start  
1000 970 White et al. [37]  

optT  
°C 

Temperature at which LUE = 

LUEopt 
25.0 25.0 White et al. [37]  

rangeT  
°C Maximum temperature range  40.0 40.0 White et al. [37]  

F gC/m²/day Soil respiration rate at 0°C 1.250 1.480 

Raich et al., [55]; 

Tesarova & Gloser, 

[62] 

 

4.1. PAR and APAR 

 

The photosynthetically active radiation (PAR) is defined as the domain of incoming solar radiation 

exploited by green vegetation for photosynthesis (400 – 700 nm). PAR can be derived from a budget 

modelling approach, with the potential solar radiation calculated from the geographical  

location [45,22], or modelled from remote sensing data [18,19]. In this study, PAR was obtained on 

pixel-by-pixel basis from the budget modelling approach, which computes the solar irradiance at the 
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top of the atmosphere and transforms it to the amount of solar radiance coming to the Earth’s surface. 

For obtaining the solar radiance at the top of the atmosphere this algorithm uses the following 

variables, Earth-Sun distance, solar inclination, the angle between the Earth’s orbital and equatorial 

planes, solar elevation angle, geographical position, and day of year [45]. The variables of surface 

elevation, day length and cloud cover information at localities were used to compute optical depth of 

the atmosphere and to estimate solar irradiance reaching the ground. Spatial distribution of the 

radiation reaching the ground strongly depends on the geometry of terrain (relief slope, exposition, 

aspect). These variables were obtained from a digital terrain model and inputted into the equation 

given by [46]. The incoming solar energy is reduced to the photosynthetically active radiation by a 

factor of 0.48 [18]. Amount of the absorbed photosynthetically active radiation (APAR) was calculated 

through multiplication of PAR with fPAR.  

 

4.2. fPAR and LAI 

 

Recent studies have shown that both fPAR and LAI are strongly related to multispectral vegetation 

indices and can be determined from satellite derived NDVI data [14,15,43,47]. Relationships between 

these both vegetation structure variables and NDVI have been found to be remarkably consistent over 

a range of non-woody vegetation types. In the present study, we estimated fPAR on pixel-by-pixel 

basis using a linear regression model between the ground-based fPAR values and corresponding NDVI 

values from SPOT VGT recorded on the sample plots at the time of the in situ measurements (3rd 
decade of June 2008): 

179.0*25.1  NDVIfPAR (8) 

For calculation of LAI we employed an empirical model described by [41,48]. This model was 

established using the data set of ground-based LAI from the study region with combination of Landsat 

ETM+ and SPOT-VGT data. The formulation of the model is given by the following equation: 

0205.1)ln(*4377.0  NDVILAI  (9) 

Previous results have shown that both models were statistically significant at the level of  

p-value < 0.01 with values of R² = 0.59 and R² = 0.67, respectively [41,48]. The models were 

considered to have sufficient prediction accuracy and were used for modelling 10-day time series of 

fPAR and LAI from SPOT VGT NDVI data. Thereafter, the derived fPAR data set was used for 

computing APAR as the product of PAR and fPAR, whereas the derived LAI data set was used for 

estimating leaf growth and maintenance respiration (see Equations 16 and 17).  

 

4.3. LUE  

 

The most common approach to determining LUE is through its relation with various environmental 

and vegetation-type specific factors that describe the limits to the carbon uptake [20,50-52]. For 

remote sensing based estimations of GPP, the efficiency of light conversion has been commonly 

assumed to have a constant value [22,24]. [52] used estimates of GPP and APAR from 

micrometeorological flux measurements at test sites for calculation of daily light use efficiency: 
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APAR

GPP
MJgCLUE )/(

 
(10) 

Unfortunately, we did not have micrometeorological flux measurements of net ecosystem exchange 

from the study area. However, we had the peak growing season estimations of carbon from 14 test 

sites. For that reason, we modified Equation (10) for the use with the available ground data. The 

modified equation is presented by: 







9

1

3/
)/(

i
i

l

APAR

BGBLAGB
MJgCLUE

(11) 

where lAGB  is the peak-season living aboveground biomass (g C/m²), L is the peak-season litter 

(g C/m²), BGB is belowground biomass divided by 3 (turnover time of roots for grassland biome) [29], 

and APAR1 is amount of photosynthetically active radiation absorbed by vegetation during a 10-day 

period. The equation sums APAR during nine decades over a period from the beginning of the 

growing season (1st decade of April) to the time-point of the field measurements (3rd decade of June). 

A LUE value for each test site was estimated using Equation (11).  

 

4.4. Modelling factors limiting light use efficiency 

 

In general, a variation in LUE over time for an ecosystem depends mainly on temperature and 

moisture deficit. To simulate the reduction of the light use efficiency coefficient due to climate 

conditions departed from the optimum, the SI was modelled as a product of two limiting indices based 

on air temperature (T) and vapour pressure deficit (VPD):  

)(*)( VPDfTfSI   (12) 

where the environmental functions T and VPD are scalars between 0 and 1 which are formed in the 

same way as in BIOME-BGC [37,53]. The temperature function is based on an equation for a 

Gaussian temperature response that scales the temperature variable to an index between 0 and 1. At the 

temperature minimum the plant growth amounts to 0; the photosynthesis rate achieves its maximum at 

the temperature optimum; a further increase of temperature reduces the plant growth rate; and at the 

temperature maximum photosynthesis stops. The VPD index scales the availability of moisture in air 

between the values at which the photosynthesis process stops and the optimum value corresponding to 

each vegetation type. These functions are expressed as:  












)ln(/)ln(

))/()(
2

cos(

0

)(

opt

optrangeopt

TT

TTTTTf


 

opt

opt

TT

TT

T




1  

(13) 











1

)/()(

0

)( startstopstop VPDVPDVPDVPDVPDf

 

stop

stopstart

stop

VPDVPD

VPDVPDVPD

VPDVPD





   

(14) 

The values for minimum, maximum and optimum of T and VPD parameters were taken from 

BIOME-BGC [37]. 
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4.5. Modelling ecosystem respiration  

 

The annual sum of autotrophic and heterotrophic respiration was estimated using complex models 

driven by climatic data. These models combine a number of biome-specific constants, which were 

borrowed from recent literature, and variables, which were empirically estimated in this study (see 

Table 2). Conventionally, autotrophic respiration is separated into maintenance respiration Rm and 

growth respiration Rg [3,54]: 

gma RRR   (15) 

Maintenance respiration is strongly dependent on temperature and can be modelled using the 

following equation [3,54]: 
10/)(

10,,
bTT

imiim QrMR   (16) 
where Rm,i is maintenance respiration of plant component i , iM  is the biomass of plant component i , 

rm,i is maintenance respiration coefficient for component i , 10Q is the temperature sensitivity factor, and 

Tb is the base temperature. Rm,i was calculated separately for plant leaves (above-ground biomass) and 

roots (below-ground biomass). The Mi for plant leaves was estimated as LAI/SLA, where LAI, the leaf 

area index, is obtained from remote sensing data (see description above), and the specific leaf area is a 

biome-specific constant (Table 2). The roots mass (Mi) was calculated as a product of leaf mass 

multiplied with shoot-root ratio (BGB/AGB1 in Table 2).  

Growth respiration is generally considered to be independent of temperature and is proportional to 

GPP [3,54]: 
GPPrrR iaigig ,,,   (17) 

where rg,i is a growth respiration coefficient for plant component i, and ra,i is the carbon allocation 

fraction for plant component i. The values of rg,i and ra,i are biome-specific constants (Table 2). Rg,i 

was computed separately for above-ground and below-ground plant components. The separation of 

annual GPP into below-ground and above-ground components was achieved using the variable 

BGB/AGBl empirically derived from the ground-based data.  

Heterotrophic respiration is the sum of respiration by decomposers (animals, bacteria and fungi 

feeding on dead tissue or soil organic matter) and is most closely associated with the decomposition of 

residue and soil organic matter. The relative contributions of autotrophic and heterotrophic respiration 

to the total are important, whereas heterotrophic respiration includes soil respiration and respiration of 

dead biomass on the ground surface (litter). In the present study Rh was modelled using equation given 

by [55]: 
)P259.4/(P*)T*05452.0exp(*FR ah   (18) 

In this equation Rs refers to the mean monthly soil efflux in g C/m²/day, F is the base soil 

respiration rate, Ta refers to the mean monthly air temperature (°C), and P is the mean monthly 

precipitation (cm). The base soil respiration rates for the soil types dominating steppe grassland and 

short grassland were borrowed from literature.  
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5. Results 

 

5.1. Light use efficiency 

 

The derived values of the LUE coefficient for the individual test sites ranged from 0.34 to 

1.59 g C/MJ, with a mean value of 0.86 g C/MJ and a standard deviation of 0.42 g C/MJ. LUE value 

was lowest at a degraded test site, highest at a steppe test site covered by perennial gramineous grasses 

used as pasture, and intermediate at test sites in short grassland and slightly degraded steppe grassland. 

The values of LUE for the two land cover categories, short grassland and steppe grassland, were 

0.61 gC/MJ and 0.97 gC/MJ, respectively. This pattern is generally consistent with differences among 

the biomes in net primary production and in light use efficiency for net primary production [37,56,57].  

 

5.2. Carbon sequestration 

 

The model is used to calculate GPP, NPP and NEE at a spatial resolution of 1 km² and a temporal 

resolution of ten days. The basis for this modelling is a time series of the described SPOT-Vegetation 

data set. From 10-day values we calculated growing season products of GPP, NPP, Re and NEE for the 

year 2004. Figure 3 shows final maps of these products. We also disaggregated our estimates on the 

basis of land cover classes (Table 3). Class totals of GPP, NPP, Re and NEE are given, as well as their 

means per category and standard deviations.  

 

Table 3. Modelled GPP, NPP and NEE* by cover type. 

*Positive NEE indicates that site was a sink for carbon, and negative NEP indicates the sites were a 

source for carbon to the atmosphere. 

 

The maps of the growing season GPP and NPP reveal clear spatial patterns in their distribution over 

the study area (Figure 3a,b). The growing season GPP and NPP was significantly higher in the areas 

covered by the steppe grassland. This difference was primarily a reflection of differences in the 

Cover type Area (km²) 
Modelled 

variables  

Mean (g 

C/m²/year) 

Standard 

deviation  
Total (g C×106) 

Short 
grassland 

20,028 GPP 
NPP 
Re 
NEE 

211.03 
131.30 
187.05 
13.17 

51.42 
44.29 
35.12 
32.03 

4,226,509 
2,629,877 
3,446,237 
263,768 

Steppe 
grassland  

6,955 GPP 
NPP 
Re 
NEE 

243.70 
145.61 
243.79 
-0.09 

59.50 
54.22 
44.47 
39.56 

1,694,934 
1,012,648 
1,695,351 
-625 

Total  26,983  GPP 
NPP 
Re 
NEE 

227.35 
138.9 
215.4 
6.54 

55.46 
49.25 
44.9 
35.80 

5,921,442 
3,642,525 
5,658,300 
263,142 
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productive potential of the vegetation in the two land cover types. As the steppe grassland occupies 

territories with significantly higher precipitation amount, the conditions for vegetation growth are 

much better. It is well known that, because precipitation is the major limiting factor for vegetation 

growth in drylands, it controls strongly the spatial patterns in vegetation [35,58,59]. Within the short 

grassland, there is a distinct gradient in the distribution of GPP and NPP from South to North. The 

southern areas show low biomass production with values of 12-150 g C/m² for GPP and 100-

120 g C/m² for NPP, while the northern areas of the short grassland demonstrate much higher values of 

GPP and NPP, 200-250 g C/m² and 130-160 g C/m², respectively. This pattern was driven primarily by 

the South-North precipitation gradient clearly presented in the flatland areas, which are occupied 

mainly by short grassland. The mean GPP was 243.7 g C/m²/year for the steppe grassland and 

211.03 g C/m²/year for the short grassland (Table 2). The mean NPP was 145.6 g C/m²/year for the 

steppe grassland compared to 131.31 for the short grassland. 

 

Figure 3. Spatial distribution of the modelling results, (a) Gross primary production, GPP, 

(b) Net primary production, NPP, (c) Total ecosystem respiration, Re, and (d) Net 

ecosystem exchange, NEE. The units are g C/m²/year.  

(a) (b)  

(c) (d)  

 

The modelled NEE ranges throughout the study area from highly negative to positive values (about 

–100 to more than 100 g C/m²/year) (Figure 3d). Spatial pattern in the NEE is different from those of 

GPP and NPP. The spatial distribution of the net ecosystem production, NEP, was strongly imposed by 

the patterns in the ecosystem respiration, Re (Figure 3c). There is a strong gradient in the distribution of 

NEE from SE to NW. Most of the areas with positive values of NEE are located in the western and 

southern parts of the study area, while the north-eastern part is dominated by low or negative values of 

NEE. This gradient is more consistent with the temperature gradient than with the precipitation 

gradient. This result agrees with the results reported by [20] who found no simple relationship between 

annual NEE with annual precipitation for grass prairie in North America. The association of NEE 

distribution with the land cover categories was not as strongly as that of GPP and NPP. As a whole, the 

short grassland was a carbon sink, while the steppe grassland was nearly in carbon balance (Table 3). 
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The NEE values totalled by the cover type showed that the steppe grassland as a whole was 

characterized by a slight escape of carbon into the atmosphere (-625.9 tons), while the short grassland 

assimilated a total of 263768 tons carbon (about 13.7 tons C/km²/year). A positive balance of carbon 

characterizes the whole study region in the year 2004.  

 

5.3. Evaluation of the modeling results 

 

We used three techniques to assess model performance. First, a comparison of modelling results 

with biomass and GPP values reported in recent literature for the similar biomes was made. Secondly, 

the modelling results were directly compared with the ground-based field data on biomass at 14 test 

sites. And finally, the results of the modelling were compared with the MODIS GPP/NPP product for 

the year 2004. In this section we describe the results of model validation. 

 

5.3.1. Qualitative comparison with previous studies  

 

Intensive efforts have been made to collect all credible published estimates of biomass, GPP and 

NEP from grassland biomes, particularly in the study region. The method used to predict NPP/GPP in 

previous studies range from biomass harvesting, simple above-ground NPP-NDVI correlations to 

complex ecophysiological simulation models, and cover a number of scales from point to regional and 

global. For qualitative comparison with our results, we compiled a number of published studies carried 

out in grasslands of Kazakhstan [28-34]. We also took some studies providing averages of vegetation 

productivity with regard to vegetation biome and climatic zone, which are calculated globally [60] or 

regionally [61].  

Table 3 gives a summary of the comparison, which we based on the literature survey. The table also 

contains some studies carried out in grasslands in other regions (USA, Sahel, former Czechoslovakia). 

Qualitative agreement of productivity estimations in previous studies, particularly in the studies from 

Central Asia, with our LUE model is good. The compilations of the studies from Central Asia have 

defined the known range of NPP in the dry steppe biome, from 126 g C/m²/year to 326 g C/m²/year [28-

30] and the semidesert short grassland from 114 gC/m²/year to 220 gC/m²/year [31,32]. These values 

are highly consistent with values obtained in the present study, 145 gC/m²/year and 131 gC/m²/year for 

dry steppe and semidesert grassland, respectively. The NPP estimates for semidesert in Central 

Kazakhstan by [33] has in some extent higher values, from 90 to 310 gC/m²/year. This may be 

explained by more favourable precipitation conditions, which were observed in the years of their field 

investigations.  

The results of the present study go well with the scope of NPP values averaged for grassland 

biomes by [60] and [61]. Our results are also consistent with NPP and GPP estimations in other 

regions such as South of the USA [20] and Sahel in Niger [22]. Of particular interest is a quantitative 

comparison of NEP estimates. However, as NEP estimations need collection of much more field data 

than NPP/GPP estimations, they have been carried out relatively not often. Recent literature is 

characterized by a scarcity of NEP estimates from grasslands in Central Asia. A comparison with other 

regions revealed that the magnitude of NEP obtained in the present study was, in general, consistent 

with the NEP values in grasslands of Wyoming, USA, and former Czechoslovakia [20,62,63]. These 
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results boost confidence in the NPP, GPP and NEP values obtained in our LUE model with values 

from the previous studies in the study region and in other regions with similar vegetation classes. 

However, the comparison of the present results with the results of previous studies should be taken 

with a caution, because there is a lot of variability within the results of previous studies. Even though, 

that the mean values of NPP, GPP and NEE from this study are well within the range of previous 

grassland studies, the large variability within the previous studies puts the comparison into 

perspective.  

 

Table 4. Previous estimates of primary production (GPP and NPP) and net ecosystem 

production (NEP) in arid and semi-arid zones.  

Location and 

vegetation type  

Estimating technique  GPP (gC/m²) NPP(gC/m²) NEP*(gC/m²) Reference  

Central Asia 

Dry steppe 

Dry steppe  

Dry steppe  

Semidesert  

Semidesert  

Semidesert 

Semidesert  

 

Field observations  

 

 

 

326 

126 

148  

90-310 

117-189 

220 

114 

  

Pershina & Yakovlewa 

[28]  

Makarova [29] 

Tyurmenco [30] 

Robinson et al. [33]  

Tyurmenco [30] 

Fartushina [31] 

Gristchenco [32]  

Former 

Czechoslovakia 

Grassland 

Grassland  

 

 

Field observations  

 

 

664 

492 

 

 

481 

318 

 

 

18 

21 

 

 

Tesarova & Gloser [62] 

Rychnovska et al. [63]  

Global  

Grassland 

Grassland  

 

Field observations 

  

70-410 

91-385  

  

Zheng et al. [60] 

Rodin et al. [61]  

Wyoming, USA 

Mixed-grass 

prairie 

Sagebrush steppe  

 

Measurements of net 

ecosystem exchange  

 

 

321 

239 

 

 

 

 

 

14 

42 

 

 

Hunt et al. [20]  

Sahel, Niger 

Grassland  

Satellite-based LUE 

model  

 

352.1 

 

169.3 

  

Seaquist et al. [19]  

Central 

Kazakhstan 

Dry steppe 

Semidesert  

 

 

Satellite-based LUE 

model 

 

 

243.70 

211.03 

 

 

145.61 

131.30 

 

 

-0.09 

13.17 

 

 

The present study  

*Positive NEP indicates that site was a sink for carbon, and negative NEP indicates the sites was a 
source for carbon to the atmosphere. 
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5.3.2. Direct comparison with ground-based data 

 

Next, we compared the modelled GPP with ground-based GPP at the 14 test sites. The main 

problem, which limits a comparing the field data with the modelling results, is a significant mismatch 

in the spatial resolution of the SPOT-VGT data (1-km) and the test sites. However, we suggested that 

the problem of the scale difference could not hinder the assessment of the model through the direct 

comparison. The reasons for this suggestion are the following:  

The scale problem had been partly solved by a collection of several replicates at 

each test site. An average of these replicates for each test site was than computed.  

The ground surface at the most test sites and around them was relatively homogeny. 

We examined the homogeneity of the surface using a fine-resolution satellite image 

(Landsat ETM+) and considered that the variability of spectral reflection of the 

ground surface around the test sites was relatively low.  

In Figure 4, the scatter plot between the peak aboveground biomass and the growing season GPP is 

presented. The accumulated GPP accounts for more than 82% of all variations in the biomass  

(p < 0.001). Taken into account the mismatch between spatial resolutions of the source data, this result 

is very positive for a regional modelling approach. 

 

Figure 4. Relationship between the growing seasons GPP modelled in this study and 

ground-based GPP. Points represent the observed GPP collected at the 14 test sites across 

the study area. 

 
 

5.3.3. Comparison with MODIS GPP product  

 

The final evaluation of the modelling results was done using a pixel-by-pixel comparison between 

the growing season GPP modelled in this study and the MODIS GPP product for the growing season 

2004. A scatter plot between these both data sets is shown in Figure 5. The figure proofs strong 

relationship between the both GPP products, even though individual pixels show relatively high 

scattering in the plot, particularly at high values of GPP. The reason for the scattering may be a 

number of distinct artefacts within the MODIS GPP product, which cause a mismatch between the 

MODIS GPP and the GPP from this study. The global approach used for construction of the MODIS 

GPP cannot model the conditions of specific regions in details. The MODIS approach uses global 
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climate data with a spatial resolution of 1° × 1° to parameterise the growing conditions. All other input 

variables are considered as biome-specific constants, which ignore local variations in environmental 

factors and vegetation conditions [37].  

A visual analysis of the scatter plot in Figure 5 proved that the relationship between the GPP 

modelled in this study and the MODIS GPP deviated from the 1:1 line. As a consequence, the model 

presented in this study underestimates lower values in the MODIS data set and overestimates higher 

values of MODIS GPP. Our model has a wider value range than the MODIS model. This is also 

reflected in descriptive statistics calculated for the data sets. The MODIS GPP ranged from 87.07 to 

474.3 g C/m² with a mean value of 201.4 and a standard deviation of 38.1 g C/m², while the GPP from 

this study varied between 43.86 and 494.1 g C/m² with a mean value of 220.4 g C/m² and a standard 

deviation of 55.5 g C/m². With regard to the high consistency between the GPP predicted by our model 

and the ground-based GPP (Section 5.3.2 and Figure 4), the difference between the mean values may 

suggest that the MODIS algorithm appears to slightly underestimate the growing season GPP in the 

grassland biome of Central Asia. This suggestion agrees with the results reported by [64] who also 

found an underestimation of GPP in the grassland biome in the semi-arid Sahel by the MODIS 

algorithm.  

 

Figure 5. Pixel-by-pixel relationship between MODIS GPP and the GPP modelled in this 

study. Points represent individual pixels (1 × 1 km, n = 31500). The thin line represents 1:1 

line, while the thick one is the regression line between the data sets.  

 
 

6. Discussion and Conclusions 

 

Based on SPOT-VGT, in situ measurements of carbon residing in the aboveground and 

underground vegetation and climate data, the values of gross primary production (GPP), net primary 

production (NPP), total respiration of ecosystem (Re) and net ecosystem exchange (NEE) were 

calculated for a large grassland region in Central Kazakhstan. The presented study used the well-

known Monteinth’s approach, but the most important advantage of the model presented is the 

exclusive use of the variables obtained from field survey data for model’s calibration and validation. 

The model is fixed in its regional scale with the spatial resolution of 1 × 1 km and temporal resolution 

of 10 days.  
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Our analysis showed that for the investigated year 2004 the short grassland was a net carbon sink, 

while the steppe grassland was a net carbon float. The average accumulation of carbon in the short 

grassland was 13.17 g C/m²; this resulted in 263,768 tons over the whole area of the short grassland. 

The steppe grassland was losing carbon with a low rate of –0.09 g C/m². One of the reasons for the 

carbon loses by the steppe grassland was a higher rate of respiration and lower NPP modelled in this 

zone. Other reasons were not investigated in this study and are objective of an ongoing research. 

However, basing on the conclusions by [65], we can suggest that climate, particularly precipitation 

amount, should be the major driving force for dynamics of carbon flux. [65] concluded that globally 

about 44% of interannual variability in NEP resulted from precipitation, about 16% from temperature 

and about 12% from soil carbon.  

In general, the evaluation of the modelling results reveals a high reliability. On the one hand, the 

comparison of the results with directly measured field data suggested a strong relationship between the 

values of GPP derived by the model and the peak aboveground carbon amount at 14 test sites. No 

attempts have been made to quantify the uncertainty of the direct comparison, but as in all cases of 

evaluating coarse resolution satellite based primary production models by harvest measurements some 

uncertainty must be expected due to differences between the spatial unit size of the ground 

measurements and the coarse resolution of the satellite sensor [66-71]. In the present study, the total 

size of the samples taken in each of the 14 test plots was only 256 m² (four samples of 1 x 1 m per 

replicate and four replicates per plot). It encompasses 0.0256% of a MODIS pixel. Without doubt, the 

surface of an area covered by one MODIS pixel has more variations than the surface covered by one 

test site. Fortunately, the heterogeneity of surface for grassland is much less than it is for forested 

ecosystems. The study by [72] estimated magnitude of surface heterogeneity and its influence on the 

results of LAI modelling with MODIS data. They found that the surface heterogeneity in grassland of 

the Sahel within one MODIS pixel is low, and its influence can be neglected by direct comparison of 

MODIS data with field measurements. Taking some uncertainty related to scale differences between 

observed biomass and satellite data into account the model presented in this study performs well for 

the grassland of Central Kazakhstan.  

On the other hand, the model bears comparison with the global MODIS GPP dataset. This 

comparison reveals a general similarity in the spatial pattern of the MODIS GPP and GPP from this 

study, even though the first dataset includes a number of block artefacts and some data gaps at the 

level of individual pixels. The average value of GPP for the MODIS dataset was slightly 

underestimated (about 8%, considering mean values of the two data sets) in comparison to the dataset 

in this study. The comparison with data from recent literature on GPP/NPP in similar vegetation types 

also proofed the reliability of the modelling results. Estimates of the NEE are more difficult to evaluate 

than the GPP or NPP because of the greater uncertainty about the modelled NEE. Quantifying the NEE 

requires estimates of carbon budget components that each has associated errors. NEE can range from 

10-50% of NPP depending on the soil carbon pools available for decomposition [73]. The results of 

the present study revealed the value of NEE for short grassland accounts to about 10% of NPP, while 

steppe grassland was approximately in balance with a slightly negative value. For the modelled values, 

one of the greatest uncertainties is the amount of soil respiration. In this study, soil respiration was 

calculated using empirical equation for estimation soil respiration at the global scale [55]. Obviously, 

more accurate results would be achieved in the presented model if we had had in situ measurements of 
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soil respiration from the study area, for example, using the chamber approach. Such measurements are 

planned for the prospected research work in the study area. Certainly, they will greatly improve the 

model’s accuracy. 

Remotely sensed data provide necessary inputs, such as land cover categories and leaf area index, 

but other required spatial data such as root-leaves ratio, litter-leaves ratio, base rate of maintenance or 

growth respiration etc. are poorly known and considered as biome-dependent constants, which limit 

the accuracy of model predictions. In the model presented here, most of these constants were 

calculated from the in situ measurements of carbon residing in the vegetation and soil at a number of 

test sites. This improves the general accuracy of the model. However, the values of these constants 

were averaged over the two land cover categories without taking into account spatial variance of them 

between localities. Obviously, values of all input variables might demonstrate significant spatial 

variability within each land cover category. This variability was not incorporated into the model 

presented in the study. Additional studies are required in order to investigate possibilities of mapping 

the input variables at the per-pixel scale. The use of such information would significantly improve 

modelling results at localities.  

Finally, considering the applicability of the model, we should also take the different time scales of 

the application into account. In this study, in situ measurements of biomass were carried out at the end 

of June. This period is considered to represent the peak of the growing season in the study area. 

Normally, the middle part and the end of June in this region are characterized by the peak of 

precipitation [30,74]. However, there is a lot of variability in distribution of precipitation throughout 

the growing season, and this intra-annual variability is overlapped with inter-annual variability of 

precipitation. An additional source for uncertainty in localization of the growing season peak is a 

different reaction time of the vegetation to precipitation. Previous studies proved that vegetation types 

in Central Asia and the study region are characterized by different time-lags in their response to 

precipitation. Thus, the short grassland in the region of the study shows the peak of plant growth about 

10-20 days after the precipitation peak, while the time-lag for the steppe grassland accounts to about 

20-40 days [74]. For this reason, it is difficult to forecast exactly the peak of the growing season for a 

certain year before making in situ measurements of the peak biomass. This may limit to some extent 

the applicability of the LUE model based the one-time measurements of biomass. To reduce the 

uncertainty in the model’s applicability, data on biomass from different periods within the growing 

season are needed. 

The findings of the study serve to a better understanding of carbon cycle in dry lands of the interior 

Eurasia and should play an important role in the establishing of an appropriate model for calculation of 

carbon assimilation in grasslands of Kazakhstan for annual reports for the Kyoto Protocol. 
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