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Abstract: Classifying remote sensing imageries to obtain reliable and accurate land use 
and land cover (LULC) information still remains a challenge that depends on many factors 
such as complexity of landscape, the remote sensing data selected, image processing and 
classification methods, etc. The aim of this paper is to extract reliable LULC information 
from Landsat imageries of the Lower Hunter region of New South Wales, Australia. The 
classical maximum likelihood classifier (MLC) was first applied to classify Landsat-MSS 
of 1985 and Landsat-TM of 1995 and 2005. The major LULC identified were Woodland, 
Pasture/scrubland, Vineyard, Built-up and Water-body. By applying post-classification 
correction (PCC) using ancillary data and knowledge-based logic rules the overall 
classification accuracy was improved from about 72% to 91% for 1985 map, 76% to 90% 
for 1995 map and 79% to 87% for 2005 map. The improved overall Kappa statistics due to 
PCC were 0.88 for the 1985 map, 0.86 for 1995 and 0.83 for 2005. The PCC maps, 
assessed by McNemar’s test, were found to have much higher accuracy in comparison to 
their counterpart MLC maps. The overall improvement in classification accuracy of the 
LULC maps is significant in terms of their potential use for land change modelling of  
the region. 
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1. Introduction  

Change in land use and land cover (LULC) is gaining recognition as a key driver of environmental 
changes [1,2]. Preserving the environmental resources while maintaining or enhancing the economic 
and social benefits from their use is a present day challenge. For this reason, there is a need to 
understand the pattern and trends of LULC changes on the local, regional and global scales. Advances 
in remote sensing science and associated technologies have made it possible to obtain valuable 
spatiotemporal information on LULC. The search for methods used for producing accurate LULC and 
determining LULC change over time has been an important component of remote sensing research 
within the last two decades or so. However, classifying a remote sensing imagery still remains a 
challenge that depends on many factors such as complexity of landscape in a study area, the choice of 
remote sensing data, and image processing and classification approaches etc [3,4]. Quite often, LULC 
maps derived from remote sensing are judged insufficient in quality and, thus not trustworthy for 
quantitative environmental application purposes [5-7]. This has led to questioning of the spectral and 
radiometric suitability of remotely sensed data sets for thematic mapping. This means that specific 
types of change must be identified using aerial photography and ground reconnaissance [5].  
Wilkinson [7], based on a review of 15 years of peer-reviewed experiments on satellite image 
classification, observed that there has been no demonstrable improvement in classification 
performance over this 15-year period although a considerable inventiveness had occurred in 
establishing and testing new classification methods during the period [7]. This raises some doubts 
about the value of continued research efforts to improve classification algorithms in remote sensing. 
Jensen [8] opined that low reliability of remote sensing classification is not surprising because 95% of 
the scientists attempt to accomplish classification only using one variable i.e., spectral characteristic 
(colour) or black and white tone. However, other researchers have utilised ancillary data in 
combination with remote sensing data to improve classification accuracy [9-14]. This study is 
therefore built on the premise that the use of ancillary data combined with spectral and contextual 
knowledge will improve the overall accuracy of LULC classification. 

Landsat TM/ETM+ spectral data are frequently used for LULC classification on regional  
scales [4,9,12,14,15] due to their relatively lower cost, longer history and higher frequency of archives. 
This is more important because information regarding the LULC over time and space is a fundamental 
requirement for environmental monitoring in order to prevent detrimental environmental impacts 
before they become irreparable. In this study, the Landsat TM data were classified with the most 
widely used parametric classifier, maximum likelihood decision rule and some ancillary data (e.g., 
DEM and knowledge of the locality, Land use data, vegetation index and textural analysis of the 
Landsat images) were combined through an expert (or hypothesis testing) system to improve the 
classification accuracy so that these classified maps could be used for detailed post-classification 
change detection. The aim of this paper was therefore to assess the hypothesis that the use of ancillary 
data could lead to improvement of land use classification. This aim is particularly pertinent because 
good quality satellite imageries of the study region for specific periods of interest to us were not 
available due to cloud cover and atmospheric haziness-common phenomena in the study region.  
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2. Study Area 

The study area, generally referred to as the ‘Hunter Wine Country Private Irrigation District’ 
(HWCPID), is located in the Lower Hunter region of New South Wales (NSW) Australia, about 160 
km north of Sydney (Figure 1). The region currently contains the sixth largest urban area in Australia 
with diverse land uses and landscapes, the latter consisting of coastline, mountains, lakes, floodplains 
and a river and also includes the world’s largest coal exporting port. Mining and industrial 
manufacturing have been the source of the strong economic activity of the region [16]. The regional 
planning strategy was focused on provision of sufficient new urban development and employment to 
meet expected strong demand for growth in population from 515,000 persons in 2006 to an estimated 
675,000 persons by 2031 [16]. A substantial proportion of this increase in population is expected to be 
settled in the HWCPID. The HWCPID, covering an approximately 379 km2, is located within an 
undulating plain of the Lower Hunter valley, centred on the little town of Pokolbin. Geographically it 
lies between 151°09'43" E to 151°24'58" E Longitude and 32°37'21" S to 32°51'45" S Latitude. In 
HWCPID land use ranges from viticulture and dairying to extensive grazing and forestry. Pastoral 
systems were the dominant agricultural land use in the region for past 100 years, while grape vines 
were introduced in the 1820s. However, the expansion of vineyards to their present level started in the 
latter half of the 20th century. Other land uses include livestock production for beef, and vegetable 
production. In order to protect the booming grape vine cultivation from drought, Pokolbin Pipeline 
Project (PPP) was established in 2000. The network was designed to supply water to nearly 400 
properties spread throughout the project area (Ken Bray, personal communication, 2008).  

Figure 1. Location of study area (HWCPID) in New South Wales as a Landsat TM image 
of 2005 (in RGB combination of bands 4, 3 and 5).  

 

The area has been gaining popularity as a tourist attraction due to the presence of numerous 
wineries, stretching grape vineyard beyond the horizon, and golf courses. However, Pokolbin’s image 
of a bucolic rural landscape with its varied mosaic of vineyards, pastures, scattered woodlands and 
wineries, has been threatened by the prospects of overdevelopment [17]. This creates concerns among 
the public, and has evoked the inevitable tradeoffs between development, economic growth and 
environmental quality.  
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3. Methods 

3.1. Landsat, Ancillary and Reference Data 

For the purpose of this study the orthocorrected Landsat images of following were procured: 
Landsat 5-MSS of January 8, 1985, Landsat 5-TM of August 6, 1995, and Landsat 5-TM of  
June 8, 2005. The study area is contained within the Landsat path 89, row 83. All images were re-
projected to the new Australian Geodetic Datum GDA-1994 and were all re-sampled to a common 
nominal spatial grid of 25 m resolution using nearest neighbour technique. This was to facilitate the 
operations that would be required for the change detection analysis. The root mean square errors of re-
sampling and re-projection of the images were less than 0.5 pixel, equivalent to approximately 7–15 m.  

High resolution orthorectified aerial photographs acquired sometime between 2004 and 2006 were 
also procured from Plateau Images, Alstonville, New South Wales. Additionally, the following data 
were procured: black and white aerial photographs acquired in 1984, colour aerial photographs 
acquired in 1991 and 1998 (all from Department of Land, NSW Govt.), and the Singleton Land use 
geodatabase (currency 2000-2007) and digital elevation model (DEM) (from Department of Natural 
Resources, NSW Govt.). The aerial photographs were orthorectified using the above mentioned 
orthorectified aerial photographs (years 2004 to 2006). The aerial photographs for each time period 
were mosaicked as one image for convenience of projection. The resolutions of these aerial 
photographs were 2 m. The aerial photographs were mainly used as reference data and the Singleton 
Land use geodatabase and DEM were utilized as ancillary data for post-classification correction using 
knowledge base. 

Table 1. LULC categories delineated for the classification. 

LULC category Description 
Woodland Forest covers including tree cover along the creeks 

Pasture/scrubland Natural and cultivated pastures, and scrubs with partial grassland

Vineyard Irrigated and non irrigated vineyards 
Built-up Commercial, and residential areas, and other areas with man-

made structure; roads, railway lines 
Water-body Farm dams, sewage ponds 
Mine/quarry Mining areas 
Olive Olive plantations (for 2005 only) 

3.2. LULC Classification Based on Maximum Likelihood Classifier 

Maximum likelihood classifier (MLC) is the most widely adopted parametric classification 
algorithm [8,11,18-20]. For this reason we used MLC for the spectral classification of the Landsat 
images. Taking into account the spectral characteristics of the satellite images and existing knowledge 
of land use of the study area, six LULC categories (Table 1) were respectively identified and classified 
for 1985 and 1995 and seven for 2005, as the Olive category did not exist prior to 1995. Though this 
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category covered only a small proportion of the region, we delineated it due to its expansion in  
recent years. 

Jensen [8] has opined that the derivation of the level II classes of US Geological Survey Land-use 
Land-Cover Classification System, using Landsat TM data, is inappropriate due to the limitations 
imposed by the medium spatial resolution and the difficulty in interpretability. The same limitations 
were applicable in this study as Pasture/scrubland and Vineyard could not be separated into irrigated 
and non-irrigated ones, due to their noisy Landsat spectral signatures and difficulty in interpreting 
them. Of the two Landsat TM images used, one thermal band (band 6) was excluded prior to MLC 
classification. However, in the case of Landsat MSS image, all the four bands were used for 
classification. The aerial photograph corresponding to each year was used to identify the “true” LULC 
parcels on the ground used for training. In cases where a single pre-defined LULC category has a 
different spectral signature in different areas, multiple signatures were created, but were later merged 
into one signature for a given LULC category. We performed an evaluation of collected signatures 
through exploratory analysis of histogram, contingency matrix and computing signature separability 
using a given transformed divergence for a distance between signatures. Signatures were recollected if 
not producing satisfactory results. In the case of Water LULC category, signature was collected from a 
feature space of 2-5 band combination (non-parametric rule). Thresholding was also done which is the 
process of identifying the pixels in a classified image that are the most likely to be classified 
incorrectly [21]. The distance image and output thematic raster layer produced by MLC were used for 
thresholding. The tails of histograms (pixels that are most likely to be misclassified have the higher 
distance file values at the tail of the histogram of the distance image) were cut off interactively and 
saved and the removed pixels were viewed. Consequently there were only a few small speckles of the 
removed pixels. Once the collected signatures were comparatively satisfactory, multiple signatures 
were merged into one signature for a given LULC category and used for the classification.  

3.3. Post-Classification Refinement Using Ancillary Data and Logic Rule 

As the LULC maps were noisy due to similarities of the spectral responses of certain land cover 
categories such as Pasture/scrubland, Vineyard and Built-up (as discussed in section 4.1 below), a 
post-classification refinement was developed and applied using ancillary information using a 
hypothesis testing framework of Knowledge Engineer [21] to reduce classification errors. The 
hypothesis framework was constructed by using the Singleton land use map, DEM, textural analysis 
and NDVI (Normalized Difference Vegetation Index) derived from the Landsat images. The 
framework was further augmented by the use of the orthorectified aerial photographs. Through this 
framework the misclassified pixels of MLC were re-evaluated and correctly reclassified. The different 
post-classification procedures adopted for the mix-classified LULC categories, namely, Built-up and 
Vineyard, are described as follows. 

3.3.1. Built-up post-classification correction 

The Built-up LULC patches under Landsat images were generally characterized by high textural 
value resulting from variegation caused by different features such as buildings, street grids and urban 
corridors. This is in contrast to the homogenous Pastures which have little to no textural variation. In 
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this study, the MLC maps had high commission error especially in low built-up areas. For this reason, 
a modified textural analysis [9] was used. However, in our case, the correction based on textural 
analysis was only applied for the low-built-up areas to avoid increasing the omission error. For this, an 
AOI (area of interest) was drawn around the high-built-up area, and using the logic rule shown in 
Figure 2, all Built-up pixels of MLC were retained as such in the post-classification corrected (PCC) 
map. The MLC Built-up patches in the rest of the study area were modified using the following logic 
rules: the Built-up pixels of MLC classification with texture value above some critical level (it was ≥5 
for 1985 and 2005 Landsat images, and ≥20 in the case of 1995 images) are retained as new Built-up 
pixels (Figure 2a). The remainder of the MLC Built-up patches were reclassified based on their NDVI 
threshold values, for example, if NDVI is less than -0.05, then allocated it to Water-body, and if the 
NDVI value is between -0.05 and 0.15, then reclassified to Vineyard, otherwise to Pasture/scrubland 
(Figure 2b). These threshold values were determined by detailed inspection of the textural images and 
NDVI images derived from the respective Landsat imageries corresponding to the LULC categories of 
interest which was guided with the use of orthorectified aerial photograph of the nearby period.  

Figure 2. Hypothesis testing framework for Built-up correction. In both (a) and (b): the left 
white box is the hypothesis being tested, the ellipses represent the conjunctive decision rules 
and right shaded boxes represent the variables used. (a) Built-up of MLC classification with 
the Landsat textural value above some critical level only is retained as Built-up of PCC 
classification in case of low Built-up areas. (b) Built-up of MLC classification which is not 
included as Built-up of PCC classification are reclassified to other LULC categories based on 
critical levels of NDVI values. 
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The texture analysis [21] of the TM band was performed using a 3 × 3 moving window and the 
variance Equation (1): 
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where xij = DN value of pixel (i, j); n = number of pixels in a window; and M is the mean of the 
moving window which is defined in Equation (2): 
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Normalized Difference Vegetation Index (NDVI) is the most widely used vegetation index to 
distinguish healthy vegetation from others or from non-vegetated areas. NDVI was derived using the 
expression given in Equation (3): 
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where NIR = Near Infra Red (band 4 for both Landsat TM and Landsat MSS); R = Red (band 3 in case 
of Landsat TM images and band 2 for Landsat MSS). 

3.3.2. Vineyard post-classification correction  

The identification of Vineyards by the satellite sensor is made difficult because they are 
characterised by bare ground or pasture-like feature between the vine rows, leading to high spectral 
similarity with the bare ground, scanty grasses in the military reserve (Figure 1) in the north-west and 
the rocky open woodland to the west. Therefore, the initially misclassified Vineyard pixels in the 
military reserve were reclassified into Pasture/scrubland, and the apparent Vineyard pixels among the 
Woodland in the western part of the study area were reclassified into Woodland using a hypothesis 
testing logic rule. For this, the military reserve and state forest boundaries of the Singleton land use 
map were utilized for reclassifying the pixels. Additionally, as Vineyard was not expected to be found 
on elevations higher than 250 m, the misclassified Vineyard pixels above this elevation were also 
reclassified as Pasture/scrubland. This approach largely corrected the Vineyard and Pasture/scrubland 
areas. However some further minor corrections were done based on the interpretation of aerial photos 
and field validation through visits to the study area and personal communication with the local people. 

3.3.3. Other minor post-classification corrections 

Apart from the Built-up and Vineyard LULC categories, some corrections were made on the 
Mine/quarry LULC category. The apparent Built-up and Vineyard classified in the real mining patches 
were converted to Mine/quarry (by using AOI of the area and with a logic rule). Similarly for the 2005 
MLC LULC map, the apparent Olive Farms identified at high elevation to the west of the study area 
were converted to Woodland as olive farms were not expected in state forest areas. Finally the road 
and railway networks (derived from the Singleton land use map) were added to the Built-up category. 
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The major transport infrastructure had been developed in the area long before 1980s, which was 
confirmed using historical aerial photographs. 

3.4. Accuracy Assessment 

The users of LULC maps need to know how accurate the maps are in order to use the data more 
correctly and efficiently [22,23]. According to Anderson et al. [24], the minimum level of 
interpretation accuracy in the identification of land use and LULC categories from remote sensing data 
should be at least 85%. The most widely promoted classification accuracy is in the form of error matrix 
which can be used to derive a series of descriptive and analytical statistics [6,22,25-27]. The procedure is 
a very effective way to represent accuracy in that the accuracies of each category are plainly described 
along with both the errors of inclusion (commission errors) and errors of exclusion (omission errors) 
present in the classification [25]. Overall accuracy, producer’s accuracy, user’s accuracy and Kappa 
statistics are generally reported, and these terms have been explained in detail in many  
studies [6,19,22-23,25-28].  

In this study, accuracy assessment was performed for the MLC and PCC classified maps of all three 
time steps: 1985, 1995, and 2005. Stratified random sampling design was adopted for the accuracy 
assessment. Only five categories, Woodland, Pasture/scrubland, Vineyard, Built-up, and Water-body 
were considered for accuracy assessment with the minimum of 50 sample points for each considered 
category, as recommended by Congalton [25]. The other two LULC categories–Mine/quarry, and 
Olive- were not considered for accuracy assessment as they cover only a small proportion of the study 
area. Interpretation is based on aerial photographs and field verification. Overall accuracy, user’s and 
producer’s accuracies, and the Kappa statistics were derived from the error matrices to find the 
reliability and accuracy of the maps produced. 

3.5. Comparing Classifier Performance 

The z-test based on Kappa coefficients is commonly used to infer the superiority of one map 
production over another. However, this may not be appropriate if the same sample of sites is used in 
the comparison [29-31], as these coefficients assume that the samples used in their calculations are 
independent. We have used the same set of reference points for testing the accuracy of maps produced 
by MLC and PCC methods for the same year, to avoid the difference of accuracy due to sampling 
variability. For this reason, we have performed McNemar’s test [30] to evaluate the superiority of the 
LULC maps resulting from post-classification over the MLC classified maps. The McNemar’s test is 
preferable because it is parametric, very simple to understand and execute. Additionally it is more 
precise and sensitive than the Kappa z-test. The test is based on a chi-square (χ2) statistics, computed 
from two error matrices using Equation (4):  
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12 21
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where f12 denotes number of cases that are wrongly classified by classifier 1 but correctly classified by 
classifier 2, and f21 denotes number of cases that are correctly classified by classifier 1 but wrongly 
classified by classifier 2.  

4. Results and Discussion  

4.1. Classification Accuracy Assessment Using Error Matrices 

As would be expected classification using the classical MLC algorithm did not produce satisfactory 
results especially in the case of Built-up and Vineyard LULC categories. Table 2 shows the mean DN 
(digital number) values of training pixels of the various LULC categories over band 1–5 and band 7. 
The difficulty with these signatures is that the mean DN among the LULC categories are quite similar 
for bands 1 to 3, while there is significant difference among the LULC categories for bands 4, 5 and 7. 
Pasture/scrubland, Vineyard have relatively larger DN for band 5 followed by Built-up, while Water-
body has distinctly lower DN for bands 4, 5 and 7.  

Table 2. The mean DN values of the training pixels of different LULC categories used for the 
maximum likelihood classification; values in bracket are the standard deviations. 

LULC category Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
Woodland 36.4 

(1.3) 
13.4 
(1.1) 

11.2 
(1.6) 

34.2 
(7.4) 

25.4 
(6.9) 

8.5 
(2.5) 

Pasture/scrublan
d 

43.8 
(1.5) 

19.2 
(0.9) 

22.1 
(1.8) 

32.2 
(4.4) 

58.0 
(5.0) 

24.4 
(3.5) 

Vineyard 43.1 
(2.7) 

18.8 
(2.2) 

21.4 
(3.9) 

27.1 
(7.3) 

54.4 
(8.9) 

27.6 
(5.9) 

Built-up 47.9 
(4.5) 

20.7 
(2.4) 

21.6 
(3.7) 

30.6 
(4.3) 

39.2 
(6.6) 

20.5 
(4.6) 

Water-body 38.3 
(1.6) 

14.6 
(1.7) 

11.9 
(2.2) 

7.2 
(2.0) 

7.0 
(2.2) 

3.8 
(1.3) 

Mine/quarry 43.1 
(1.2) 

16.7 
(0.9) 

16.3 
(1.1) 

13.8 
(2.3) 

20.1 
(3.2) 

11.5 
(1.0) 

Olive 39.4 
(0.8) 

15.9 
(0.6) 

16.0 
(0.6) 

37.3 
(1.2) 

38.3 
(1.0) 

13.5 
(0.6) 

 
The poor performance of the MLC classification algorithm is confirmed by the accuracy assessment, 

which indicated high commission error (i.e., low user’s accuracy) for the Built-up and Vineyard 
categories, meaning that there is a probability (proportionate to the error) that pixels classified as 
Built-up and Vineyard may not actually exist on the ground (Table 3). On the other hand, 
Pasture/scrubland category had high omission error (i.e., low producer’s accuracy), meaning that there 
is a probability (proportionate to the errors) that ground reference points for this category were 
classified incorrectly. Lu et al. [32] also found that most of the time, the traditional approach to 
classification (such as MLC) only distinguishes clearly between forest and non-forest land use and 
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land covers. Similar findings were recorded in this study. The MLC classification accuracy for 
Woodland and Water body was found to be good, while for other LULC categories the MLC 
performed quite poorly. As Vineyard paddocks are either characterised by bare ground or alternate 
pasture between the rows of grape crops, the spectral signatures resembled that of scanty vegetation of 
Pasture/scrubland, more so in the military reserve and rocky outcrops of the mountainous State Forest 
to the west. Additionally, the Built-up category also was overestimated.  

Table 3. Summary of Accuracy (%) and Kappa statistics of MLC and PCC maps. 

LULC category 1985 Accuracy 1995 Accuracy 2005 Accuracy 
 Producer’s User’s Producer’s User’s Producer’s User’s 
 MLC maps 
Woodland 85.1 93.4 90.7 96.3 83.2 91.8 
Pasture/scrubland 47.9 90.0 55.4 96.7 65.0 90.3 
Vineyard 81.5 44.0 89.3 52.6 87.7 62.5 
Built-up 93.2 55.6 96.0 51.1 95.7 56.3 
Water-body 98.0 100.0 83.3 100.0 88.9 96.0 
Overall accuracy 71.8 76.3  79.3 
Kappa statistics 0.64 0.70 0.74 
 PCC maps 
Woodland 98.5 100.0 94.2 91.0 88.8 89.6 
Pasture/scrubland 81.7 98.6 88.5 90.9 81.1 88.6 
Vineyard 98.2 71.6 92.9 77.6 87.7 73.5 
Built-up 98.3 82.9 80.0 88.9 91.5 82.7 
Water-body 98.0 100 90.0 98.2 90.7 96.1 
Overall accuracy 91.3 89.5 86.6 
Kappa statistics 0.88 0.86 0.83 

 
Upon post-classification correction that involved integrating ancillary information in hypothesis 

testing framework of Knowledge Engineer, the commission errors of the Built-up and Vineyard 
categories and omission error of the Pasture/scrubland categories were largely reduced (Table 3). 
These results were quite encouraging. The identification of Built-up category was improved as 
indicated by increased user’s accuracy from less than 60% to greater than 80% accuracy in all of the 
three time steps of our analysis. Similarly, the user’s accuracy of Vineyard category increased to  
above 70%, and producer’s accuracy of Pasture/scrubland improved to above 80%. The overall 
accuracies of all three PCC maps were above 85%, and Kappa statistics are well above 0.8, indicating 
a strong agreement or accuracy between the classification map and the ground reference  
information [26]. It is obvious that the misclassified patches of vineyards in the western forest as well 
as in the military reserve have disappeared in addition to the reduction of overly estimated Built-up 
patches resulted from MLC classification (see Figure 3 for example).  

Although MLC is one of the most widely used classifiers, it requires input samples to have normal 
distribution, which makes it to be heavily dependent on statistics. The recent approach is to let the 
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geographical data “have a stronger voice” rather than let statistically derived parameters dictate the 
analysis [33]. Integration of remotely sensed data with other sources of georeferenced information, 
such as previous land use data, spatial texture, and digital elevation models (along with their 
derivatives: slope, aspect, etc.), geology, soils, hydrology, transportation network, vegetation, enable 
us to achieve greater classification accuracy [9,14,33,34].  

Figure 3. Classified maps: (a) MLC and (b) PCC maps for 2005.  

 

4.2. Classifier Performance 

Table 4 shows McNemar’s test results with the number of pixels correctly or wrongly classified by 
MLC and PCC methods. The symbol, f11, denotes the number of cases wrongly classified by both 
MLC and PCC classifier while f22 denotes the number of cases correctly classified by both the 
classifiers, while f12 and f21 are the cases that are correctly classified by one classifier but wrongly 
classified by the other. The table indicates the classifiers agree on f22 and f11 cases but disagree on f12 
and f21 cases. The McNemar’s test clearly shows significant improvement of the PCC maps over the 
MLC maps (Table 4). 

Table 4. McNemar’s test showing the superiority of PCC maps vs. MLC maps. 

Year f11 f12 f21 f22 Total  Chi-square (χ2) P value 

1985 maps 34 79 1 286 400 76.1 <0.001 
1995 maps 32 65 11 302 410 38.4 <0.001 
2005 maps 46 39 9 316 410 18.8 <0.001 

f11 - number of cases with wrong classification in both maps; classifier 1 (MLC) and classifier 2 ( PCC)  
f12 - denotes number of cases that are wrongly classified by MLC but correctly classified by PCC 
f21 - number of cases that are correctly classified by MLC but wrongly classified by PCC and 
f22 - number of cases with correct classification in both MLC and PCC maps 
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4.3. Maps and Area Statistics of PCC Classifications 

The final maps derived from PCC classification are shown in Figure 4. When each LULC type was 
compared among the different years, the result indicated that Pasture/scrubland contracted from 53% 
(of total land of the area) in 1985 to 48.9% in 1995 and then to 46.2% in 2005 (Table 5).  

Figure 4. Post classification corrected maps for the years: (a) 1985, (b) 1995 and (c) 2005.  

 
 
In contrast, Built-up category sequentially increased from 2.0% in 1985 to 2.8% in 1995, and then 

more than doubled to 4.2% in 2005. However, Vineyards and Woodland categories show inconsistent 
trends; in the case of Vineyard, it decreased from 9.9% in 1985 to 7.9% in 1995, and then increased by 
3% to 10.9% in 2005. On the other hand Woodland area increased from 34.7% in 1985 to 40.1% in 
1995, and then decreased to 38% by 2005. In 20 years from 1985 to 2005, all types of LULC were 
found to have increased except Pasture/scrubland (Table 5). Broadly speaking, more than 95% of the 
study area is constituted of three LULC categories; Pasture/scrubland, Woodland and Vineyard in all 
three time steps. 
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Table 5. Summary of Area statistics based on PCC maps for 1985, 1995 and 2005. 

LULC category 1985 1995 2005 Relative 
change 

1985-2005 
(%) 

Area 
(ha) 

% of 
total land

Area 
(ha) 

% of total 
land 

Area 
(ha) 

% of 
total land 

Woodland 13,156.1 34.7 15,190.9 40.1 14,412.6 38.0 9.6 
Pasture/scrubland 20,078.8 53.0 18,526.6 48.9 17,526.9 46.2 -12.7 
Vineyard 3,766.1 9.9 2,983.1 7.9 4,147.1 10.9 10.1 
Built-up 757.0 2.0 1,050.7 2.8 1,580.3 4.2 108.8 
Water-body 95.3 0.3 77.1 0.2 118.2 0.3 24.1 
Mine/quarry 60.7 0.2 85.6 0.2 82.3 0.2 35.6 
Olive     46.5 0.1 new LULC 
Total 37,913.9 100 37,913.9 100 37,913.9 100 12.4 

5. Conclusions 

Although the MLC is a widely used classifier, it could not perform satisfactorily in deriving 
accurate and reliable classification of Built-up and Vineyard LULC categories. In this study, we were 
able to significantly improve MLC maps by incorporating additional data, such as land use, DEM, 
spatial texture and NDVI value of the Landsat imagery using a hypothesis testing framework based 
system of classification. The resulting PCC maps can be satisfactorily used for detailed post-
classification change detection. This study has demonstrated the usefulness of integrating ancillary 
data and knowledge-based rules into a classification scheme to improve accuracy of LULC classification.  
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