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Abstract: Urbanization and the resulting changes in land cover have myriad impacts on 
ecological systems. Monitoring these changes across large spatial extents and long time 
spans requires synoptic remotely sensed data with an appropriate temporal sequence. We 
developed a multi-temporal land cover dataset for a six-county area surrounding the Seattle, 
Washington State, USA, metropolitan region. Land cover maps for 1986, 1991, 1995, 1999, 
and 2002 were developed from Landsat TM images through a combination of spectral 
unmixing, image segmentation, multi-season imagery, and supervised classification 
approaches to differentiate an initial nine land cover classes. We then used ancillary GIS 
layers and temporal information to define trajectories of land cover change through multiple 
updating and backdating rules and refined our land cover classification for each date into 14 
classes. We compared the accuracy of the initial approach with the landscape trajectory 
modifications and determined that the use of landscape trajectory rules increased our ability 
to differentiate several classes including bare soil (separated into cleared for development, 
agriculture, and clearcut forest) and three intensities of urban. Using the temporal dataset, 
we found that between 1986 and 2002, urban land cover increased from 8 to 18% of our 
study area, while lowland deciduous and mixed forests decreased from 21 to 14%, and grass 
and agriculture decreased from 11 to 8%. The intensity of urban land cover increased  
with 252 km2 in Heavy Urban in 1986 increasing to 629 km2 by 2002. The ecological 
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systems that are present in this region were likely significantly altered by these changes in 
land cover. Our results suggest that multi-temporal (i.e., multiple years and multiple seasons 
within years) Landsat data are an economical means to quantify land cover and land cover 
change across large and highly heterogeneous urbanizing landscapes. Our data, and similar 
temporal land cover change products, have been used in ecological modeling of past, 
present, and likely future changes in ecological systems (e.g., avian biodiversity, water 
quality). Such data are important inputs for ecological modelers, policy makers, and urban 
planners to manage and plan for future landscape change. 

Keywords: Landsat Thematic Mapper; time series; seasonal imagery; land cover; land 
cover change; post-processing; landscape trajectories; landscape change rules; Seattle 

 

1. Introduction 

Urbanization, the conversion of lands that were previously undeveloped, rural, or agricultural to 
developed land cover (i.e., urban commercial, industrial, and residential land uses consisting of a 
mosaic of built and vegetated land) is occurring at a rapid pace throughout the world [1,2]. Urban 
growth and associated land use change and subsequent land cover change, have numerous effects on 
ecological systems [3]. Urbanization modifies and often substitutes natural ecosystem processes (i.e., 
surface water runoff, ground water recharge, nitrogen balances, light availability) with human 
constructed infrastructure (e.g., sewer systems and wastewater treatment plants). Urbanization often 
leads to a degradation of ecosystems requiring the monitoring of regional changes through time [2]. 
Intensive agriculture and production forests often have reduced biodiversity stores, but conversion of 
these land uses to urban lands often further reduces the biodiversity present [2], a trend that may be 
modified in residential areas where the human modified landscape may actually increase the available 
resources through the increased habitat heterogeneity [4,5]. 

The land area that is urbanized continues to increase as the human population grows [1,3,6-8], and 
currently covers about 3% of Earth’s land area [9,10]. Characterizing land cover of urban and 
urbanizing areas and change over time [8,11,12] are important activities in several fields including 
urban ecology [13], urban planning [8], land cover change modeling [14] and landscape ecology [15]. 
Documenting land cover change over time is essential in understanding both system trends and the 
specific changes that have occurred [16]. As areas become urbanized and land uses change from 
primarily production agriculture and forestry (lowlands of the Pacific Northwest) to residential, 
commercial, and industrial uses, the land cover of these areas change both in species composition 
(from forests to non-native shrubs, lawn, and planted tree species with remnant patches of native 
forest) and in structure with more impervious surface area, and simplified vertical diversity of 
vegetation [13]. The conversion of large areas of agricultural and forested lands, which hold great 
stores of biodiversity [2,17], into developed land cover has potential impact on the native biodiversity 
of an area [18,19].  

Satellite-based remote sensing provides a ready source of medium-to-high resolution (30 m to 4 m) 
imagery from which to map land cover changes across time. Many studies have documented the use of 
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satellite imagery in developing land cover maps (e.g., [20]), including studies that have documented 
changes in urban extent and pattern over time [21-28]. Urban land cover is a finely grained mosaic of 
land cover types, many of which have similar spectral signatures making their differentiation  
difficult [29-31]. Methods are required that can separate the component parts of urban land cover (i.e., 
buildings, paved surfaces, vegetation, and shade from buildings and taller vegetation). Urban patterns 
often exist at a grain that is much finer (i.e., <30 m) than that of satellites with wide area coverage 
(e.g., Landsat Thematic Mapper [TM], Moderate Resolution Imaging Spectroradiometer [MODIS]) 
making per-pixel classification methods problematic [29]. Satellites with higher spatial resolution (e.g., 
Ikonos, Quickbird) do not have either the spatial or temporal extent necessary to study long term 
changes across large urbanizing regions. Recent advances in spectral unmixing techniques to separate 
reflectance into constituent elements (e.g., impervious surfaces, vegetation, and shade) for each pixel 
in an image, allows finer (sub-pixel) differentiation of land cover classes [32-35]. Linear spectral 
unmixing assumes that recorded spectra are a linear combination of all the component elements within 
each pixel and are directly related to the proportion of ground area they cover within that pixel [36,37]. 
Recent studies [38-41] have used spectral unmixing to improve class differentiation in urban areas. 
Spectral unmixing techniques, however, still have limitations such as the inability to differentiate the 
type of impervious surface (i.e., bare soil, pavement, rooftop, bare rock).  

Another method used in past studies to improve land cover class differentiation is the use of multi-season 
and multi-date imagery. Some classes, such as forest clearcuts, exist as large homogenous patches and 
have temporal characteristics that are quite different from urban objects. A recent clearcut will have 
little vegetation, but will have been forested in earlier images and exhibit re-growth in later images. 
Another common problem in urban remote sensing is the spectral confusion between bare soil and 
urban surfaces. Within our study area, there are numerous agricultural areas that often have tilled or 
unplanted fields and are spectrally similar to urban areas. As with clearcuts, the temporal 
characteristics of agricultural areas are quite different from urban pixels in that they typically alternate 
from a vegetated to non-vegetated state both within and between seasons and years.  

Spatial context, such as elevation or percent slope, also can be used to differentiate developed land 
uses from undeveloped land uses such as clearcuts, which in our region generally occur in the higher 
elevations. Steep slopes are more likely to have bare rock than developed land cover. A combination of 
spatial context with traditional pixel-based classifications has been used in previous studies to add 
additional classes and improve class differentiation [11,12,27,42]. 

Another method for classifying change over time is to use the temporal context present in time 
series data to develop a pixel-level “landscape trajectory” of land cover change [12]. Here we use the 
term landscape trajectories to refer both to the phenomenon of urban development where less intensive 
land uses are replaced to more intensive land uses and to describe the reforestation that occurs 
following timber harvest. For example, since urban areas are built up through a progression of 
successively more intense land uses, pixels that transition to a higher percentage of impervious surface 
in successive dates can be assumed to have undergone an increase in land use intensity. Forests are 
often cleared for agriculture or urban development. Extensive bottomland agriculture is often prime 
land for conversion into commercial land uses given the low relief and existing road infrastructure. 
However, because of the fine-grained spatial heterogeneity of urban areas, differences between dates 
are often due to misalignment or mis-classification and not representative of true change. Multi-date 
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images can be used to improve individual date classification accuracies through the use of  
post-classification change rules [43]. When conducting post-classification change detection, it is 
important to have the highest accuracy possible in each date so as to minimize observed change due to 
classification errors in one or more dates [44-46].  

Our objective in this study was to develop a multi-date land cover database for the urbanizing 
Central Puget Sound region of western Washington State, USA, and to examine change in composition 
and configuration of land cover over a twenty year time span. Due to the high heterogeneity of urban 
landscapes and our desire to increase both the spatial and class resolution, traditional satellite image 
classification techniques were insufficient. We developed a technique that combined multiple methods, 
each targeted at classifying a specific land cover class and maximizing class separation. We used 
supervised classification, spectral unmixing, image segmentation, multi-date and multi-season 
imagery, and temporal landscape trajectory rules to accomplish our task. Our specific objectives were: 
(1) develop a multi-date land cover classification for highly heterogeneous urban environments using 
mixed classification methods, post-classification techniques, and landscape trajectory analysis to 
improve class resolution and accuracy of our classifications; (2) document amounts and changes in 
land cover composition and configuration from 1986-2002; and (3) assess the accuracy of  
our classifications.  

2. Methods 

2.1. Study Area 

Our 20,300 km2 study area (17,800 km2 land area) includes the six counties (Island, King, Kitsap, 
Pierce, Snohomish, and Thurston) surrounding the Central Puget Sound of western Washington, USA, 
(Figure 1) and contains all or portions of the major metropolitan areas of Seattle, Tacoma, Bellevue, 
and Everett. This region has experienced dramatic urban growth, especially during the last 30  
years [13,47] and is projected to grow by 41% (an additional 1.2 million people from 2000)  
by 2030 [48]. Documenting land cover change from 1986-2002 is important in understanding how the 
structure of the landscape has changed and is an important first step to understanding how ecological 
processes may have changed over this time period.  
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Figure 1. Six county study area in western Washington, USA showing the 2002 Urban 
Growth Areas, elevation, water, and county boundaries. 

  

2.2. Satellite Data Acquisition and Processing  

Our study area fell within the extent of a single Landsat Thematic Mapper (TM) or Enhanced TM 
(ETM+) scene. We acquired a total of 10 images for five years (1986, 1991, 1995, 1999, and 2002) 
with leaf-on (June-July) and leaf-off images (March-April) for each year. Ideally we would have had 
imagery for every four years (or a constant interval), but cloud cover, atmospheric interference, and 
sensor problems made this impossible. Multi-season data has been successfully used in the past [49,50] 
to differentiate land cover classes that may be spectrally similar in one season and dissimilar in 
another. While the winter months of December and January are ideal for leaf off images, the low sun 
angle which increases shade effects and snow cover in the mountains makes these images less than 
practical for our analysis. We instead acquired leaf-off images from March and early April when the 
sun elevation angle is not as severe and the snow pack has typically receded to higher elevations, but 
leaf-out has not yet commenced.  

2.3. Data Preparation 

We applied a series of data preparation steps to all scenes prior to land cover classification. Many of 
the pre-classification processing steps were performed using ENVI 4.x (ITT Visualization Information 
Solutions). Other steps, including all classification methodologies were performed using Erdas 



Remote Sens. 2009, 1                            
 

 

1358

Imagine 8.6 (Leica Geosystems). Each image was co-registered to the July 7, 1991 image to Universal 
Transverse Mercator projection, North American Datum 1983 with 30-m pixel resolution using nearest 
neighbor resampling and a root mean square error of less than 0.5 pixels for each image. We applied a 
series of radiometric corrections to the image data. All Landsat TM and ETM+ images were pre-
processed by USGS using standard geometric and radiometric correction methods including correcting 
for location and terrain errors. We converted all TM images to the radiometric calibration of ETM+ 
using data conversion algorithms provided by the U.S. National Aeronautics and Space Administration 
(NASA) [51]. We converted the digital number values for each band to radiance at satellite (LS) values 
using gain and bias values from NASA [51]. We used dark object subtraction on each band to correct 
for atmospheric scattering [52]. We then calculated at-satellite reflectance, correcting for seasonal 
illumination differences caused by varying earth sun distance and sun elevation angles [53]. We used a 
10-m Digital Elevation Model and cosine solar incidence angle to correct for topographic errors. 
Finally, we used spectral inter-calibration to correct any lingering spectral differences between images 
that were not the result of land cover change [52,54]. We identified and digitized pseudo-invariant 
objects with varying degrees of albedo and the average spectra of each object was recorded and 
regressed against the corresponding object-values from the 1999 summer image (our clearest recent 
image). The resulting gain and offset from the regression equation was applied to each  
year-band combination to inter-calibrate to the corresponding band in the 1999 image. 

2.4. Classification Scheme 

Our target classification scheme included 14 classes (Table 1) which were identified through the steps 
outlined below. The surface heterogeneity of urban areas leads to spectrally heterogeneous imagery at 
small spatial scales. Because the level of impervious area is an important determinant of many ecosystem 
processes [29,55], we attempted to separate urban areas into four classes: heavy (>80% impervious 
surface), medium (50–80% impervious surface), and light (20–50% impervious surface) intensity urban, 
and land cleared for development (bare land that became urban in subsequent dates).  

Table 1. Preliminary 9-class and final 14-class land cover classification schemes. 

Preliminary 
Classification  Final Classification  Code  Class Definition 
Heavy Intensity 
Urban 

 Heavy Intensity 
Urban  HIU 

 
 > 80% Impervious Area 

Medium Intensity 
Urban 

 Medium Intensity 
Urban  MIU 

 
 50–80% Impervious Area 

Light Intensity 
Urban  

 Light Intensity Urban  LIU  20–50% Impervious Area 

  Land Cleared for 
Development  LCD 

 
 Land that was vegetated in a previous time 

step and urban in a later time step 
Grass  Grass  GR  Developed Grass and Grasslands 
Bare Soil 
 

     Non-vegetated (mixed agriculture, urban, 
clearcut forest) 
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Table 1. Cont. 

  Agriculture  AG  Row Crops, Pastures 
Deciduous and 
Mixed Forest 

 Deciduous and Mixed 
Forest  DMF 

 
 >80% Deciduous Trees, 

10–80% each Decid./Conif. Trees 
Coniferous Forest  Coniferous Forest  CF  >80% Coniferous Trees 
Clearcut Forest  Clearcut Forest  CC  Clearcut Forest 
  Regenerating Forest  REG  Re-growing Forest 
Open Water  Open Water  WAT  Water 
  Non-forested Wetlands  NFW  Non-forested Wetlands 
  Shoreline  SHO  Tidal areas bare during low tide 
 
 

 Bare Rock /Ice/Snow  ROCK
 

 High elevation areas with no vegetation or 
snow cover 

2.5. Image Classification Protocol 

Our general approach to classification was interactive and hierarchical (Figure 2). We started with 
broad classes and worked within these classes to disaggregate them into more detailed classes. We 
used several classification techniques throughout the process to achieve a final classification for each 
year. Our starting point was a top-level classification in which each summer image was segmented into 
three categories (vegetation, non-vegetation, and water) using a combination of spectral unmixing 
(spectral mixture analysis) and supervised classification (Figures 2A, 2B). With all supervised 
classifications we used high-resolution digital orthophotographs to identify specific land cover types 
including dense urban surfaces (e.g., pavement, roofing surfaces), mixed-urban areas (e.g., residential), 
grasses, clear-cut, deciduous and mixed forest, conifer forest, bare soil, and agricultural lands. We then 
used spectral unmixing, supervised classification, or both on separate image segments (i.e., pixels 
identified as vegetation or non-vegetation) to disaggregate each segment into specific land  
cover classes. 

2.6. Preliminary Nine-Class Maps 

We began by segmenting our images into vegetation (deciduous forest, coniferous forest, green 
grass), non-vegetation (urban, mixed urban, bare soil, dry grass, and grasslands), and water using 
supervised classification and spectral unmixing in combination. Supervised classification was done on 
each summer 6-band image with the summer NDVI image added as a seventh band (Figure 2A) and 
spectral unmixing [38] was performed on each 6-band summer image to separate non-vegetation (soil 
and urban pixels), vegetation (forest and agriculture), and shade/water (Figure 2B). Spectral end 
members were selected based on the following criteria: (1) they must exist as unique spectra that 
bound the majority of the pixels in the data cloud, (2) they must exist on a general linear plane between 
the other end members, and (3) they are not extreme pixels. We combined the results from the spectral 
unmixing and the preliminary supervised classification as follows: (1) pixels with ≥75% shade end 
member and ≤20% vegetation end member and the supervised water class were classified as water;  
(2) pixels where the shade normalized vegetation end member image was >80% of the pixel were 
added to the supervised vegetation class and classified as vegetation; and (3) the remaining  
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non-vegetation pixels from spectral unmixing were added to the supervised non-vegetation class and 
classified as non-vegetation. 

Figure 2. Classification steps, landscape trajectory analysis, and ancillary GIS-derived 
classes used to develop the 14 land cover classes for each year of imagery.  

 
We next separated non-vegetation pixels into clearcut forest, cleared agriculture (bare soil), or urban 

classes. We used different techniques to identify these classes. Clearcuts are created as large 
homogeneous patches of non-vegetation that quickly return to vegetation. We used spatial and temporal 
patterns in the imagery to differentiate these areas from urban patches. We used supervised classification 
on bands 3-6 from our target year and those of our two endpoints (1986, 2002) from the non-vegetation 
image segment for each year (Figure 2C). We selected trainings sites for observed clearcuts. While the 
inference available for our end dates is less strong than for those dates bounded by our endpoints, the 
method was still applicable throughout our time series. We differentiated between urban and agriculture 
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classes by comparing the pixel-specific variance in band 4 across all dates and adding this index to each 
date’s 6-band summer image (Figure 2D). We hypothesized that agricultural areas would display greater 
variance in the near-infrared portion of the spectrum than would urban areas because agricultural areas 
are cleared, planted, and harvested within a growing season and between years whereas urban areas 
experience a single flush of vegetation and senescence during the growing season and once impervious, 
remain impervious. We used supervised classification on the non-vegetation pixels in the 7-layer images 
using signatures for urban, mixed urban, grass, and agriculture (bare soil). We used the urban and mixed 
urban classes from this classification to further segment the image into urban classes. We then used 
spectral unmixing on these urban pixels (Figure 2E) to separate heavy urban (80–100% impervious), 
medium urban (50–80% impervious, and light urban (20–50% impervious).  

For vegetation pixels identified in the first image segmentation (Figure 2B), we used supervised 
classification of the 6-band summer image plus NDVI for each year to separate forest from 
grass/shrub/agriculture (Figure 2F). To further differentiate forest types, we used a second supervised 
classification for each year using signatures for conifer and mixed forest classes on leaf-off and leaf-on 
images and bands 3-6 for each year (Figure 2G). Finally, we combined all classified image segments 
representing water, non-vegetation and vegetation classes from above into a preliminary 9-class 
classification for each year (Table 1). 

2.7. Landscape Trajectory Analysis 

Our multi-temporal dataset provided the opportunity to use temporal patterns in land cover to 
further differentiate confused classes and correct for classification errors in the preliminary 9-class 
datasets. Intuitive landscape trajectory rules were developed for plausible combinations of classes 
among our five years of land cover data. For example, heavy intensity urban in 1986 would not be 
expected to become coniferous forest in any later date. Specific rules were developed for each of the 
final land cover classes in Table 1. For example, Bare Soil in the preliminary classification was split 
into Cleared for Development (if the pixel was forested at an earlier date and became one of the 
developed classes at a later date), Agriculture (if bare soil or grass in prior/later dates), or Clearcut (if 
later a forest class and above 300 m elevation) (Figure 2H). Clearcut was constrained to those pixels 
forested in the previous time step and above 300 m elevation because commercial timberland primarily 
occurs in the higher elevations surrounding Seattle and previous experience indicated this threshold 
would clearly differentiate harvesting operations from site conversion. Regenerating Forest was 
derived from Clearcut pixels in the previous time step. 

Because of yearly environmental differences (primarily wetness) between satellite images, the exact 
separation between urban land cover classes was variable between dates, leading to temporal 
sequences such as Heavy Urban-Medium Urban-Light Urban-Medium Urban-Heavy Urban. Two 
dates, 1991 and 1999, representing the best original imagery, were chosen as base classifications from 
which to determine when urban classes for the other dates were incorrect (Figure 2I). Urban classes 
were constrained to maintain or increase intensity over time, since urban abandonment was uncommon 
during this time period. If there was a disagreement between 1991 and 1999 urban classes, the 1999 
class designation prevailed.  
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2.8. GIS Overlays 

We derived several land cover classes from ancillary GIS data (Figure 2J), including: (1) Open 
Water (lake or pond, ditch or canal, stream or river, bay, estuary, gulf, ocean/sea, and reservoir derived 
from 1:24,000 scale hydrography from WA Department of Natural Resources [WADNR]);  
(2) Non-Forested Wetlands (marsh, wetland, swamp, bog, and cranberry bog from WADNR 
hydrography); (3) Shoreline (tidal, mud, sand, and gravel flats from WA Department of Ecology 
[WADOE] 2001 Marine Shorelines); and (4) Rock/ice/snow (glacier or permanent snowfield: 
WADNR hydrography). These classes were “burned-in” to the final classifications for all dates. Each 
of these ancillary GIS data layers have errors associated with omission, commission, and temporal 
mismatches with our multi-date TM data. Because of this, we made no effort to ascertain the accuracy 
of these classes in our final maps.  

2.9. Land Cover Composition and Configuration over Time 

We were interested in documenting how the landscape has changed over time. We calculated 
several landscape metrics of composition (area and percentage of each land cover class) and 
configuration for each date using the 30-m map grain [56]. Metrics can be calculated on individual 
land cover classes or for all classes at once. We grouped urban classes, grass and agriculture, and 
forest classes and calculated class metrics for each (number of patches[NP], mean patch size [MPS], 
edge density [ED], landscape shape index [LSI], percentage of like adjacencies [PLADJ], and 
aggregation index [AI]) using Fragstats 3.3 software [56]. We chose these metrics for several reasons. 
Metrics measuring patch dynamics (NP, MPS) are metrics describing the fragmentation of a patch 
type. Edge density (the length of class edge per hectare of the study area) is an indication of how much 
of a class exists as edge pixels. Landscape shape index, PLADJ (class-specific contagion), and AI 
(internal like-adjacencies) all measure slightly different aspects of class aggregation [56]. These simple 
metrics have been used in many other studies including studies of urban landscape pattern and change 
over time [23,28,57-61]. These metrics, and other similar metrics, have also been used by many 
ecological studies to document how ecosystems [62] or species respond to landscape pattern [14,63].  

We also compared landscape change within and outside of a 2002 “urban growth boundary”. These 
areas are designated as such by town, city, or regional planning departments inside of which urban 
development is encouraged [64]. If these policies are having their intended effects, we would expect 
more development (as a percentage of the total new development) would occur within these 
boundaries. A more complete exploration of the changes in landscape pattern in our study region by 
various political boundaries is under way in a separate study. 

2.10. Land Cover Reference Data and Accuracy Assessment 

We developed reference datasets for each year using high resolution (0.3–1 m) large map scale 
(1:9,600 to 1:30,000) black and white scanned aerial photographs (1986) and true color digital 
orthophotographs (1991, 1995, 1999, 2002) for selected areas throughout our study area. A 90 m 
fishnet was developed for the study area and 10% of the polygons were randomly selected for 
identification and typing using aerial photography. An independent photo interpreter typed each cell to 
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one of our final land cover classes (Table 1) only if located on a homogeneous patch of land cover. 
The number of reference sites for each class for each year ranged from 37 to 102 (Appendix A).  

We generated standard contingency tables [65] comparing reference and classified data using the 
majority land cover class within the 90 m reference cell. We compared the preliminary 9-class datasets 
and the final 14-class datasets created from the class trajectory analysis to determine if our methods 
improved class accuracy. We tested for a significant difference between the Kappa accuracy of 
preliminary and final classifications [65]. We did not attempt to assess the accuracy of those classes 
derived from ancillary GIS layers. Additionally, the Land Cleared for Development class did not occur 
frequently enough in our aerial photographs to adequately assess, so that class was combined with 
Light Urban in our land cover maps prior to conducting the accuracy assessment. Since our Medium 
Urban and Light Urban classes contained mixed pixels and represented land cover types that are 
heterogeneous at spatial extents larger than our 30 m pixel scale, we evaluated the accuracy of our 
classifications at spatial extents larger than single 30 m pixels: we tabulated the individual number of 
urban pixels within the 90 m reference polygon to determine the proportion of urban class pixels 
within each urban class reference polygon. 

3. Results and Discussion 

Our study combined image segmentation, supervised classification, spectral mixture analysis, time 
series analysis, GIS data integration, and trajectories of landscape change to derive five  
dates (1986, 1991, 1995, 1999, and 2002) of land cover at a relatively high spatial resolution (30 m) 
for a large, highly heterogeneous, and changing urban region. The use of these techniques in concert 
allowed us to map 14 land cover classes, including three classes of urban land cover, and compare both 
the composition and configuration of the landscape over time. 

3.1. Land Cover Classifications and Landscape Trajectories 

We developed 9-class maps for all five dates using the methods described above. These preliminary 
maps did not differentiate between grass, agriculture, and land cleared for development. In these 
preliminary maps there was considerable confusion between Deciduous and Mixed Forest (DMF) and 
Coniferous Forest (CF) classes and between different classes of urban with intensity (i.e., heavy, 
medium, light) varying between dates. In addition, areas of cloud and cloud shadow were classified as 
urban or as water, respectively. To address these problems, we used a series of landscape trajectory 
rules, each developed specifically for an observed problem. For example, if a pixel was classified as a 
higher intensity of urban in two or more, earlier dates, it was assumed to remain at least that intensity 
of urban into the future. In general the urban class confusion was between High and Medium or 
Medium and Low Intensity Urban classes. We illustrate the effect of this rule for transitions  
between 1986 and 1991 (Table 2). We addressed the confusion between DMF and CF by classifying a 
pixel to the majority class from across all five dates, weighted towards CF at elevations above 300 m 
above sea level and towards DMF at elevations below 300 m. We separated grass and bare soil into 
Grass (GR), Agriculture (AG), Land Cleared for Development (LCD), and Clearcut (CC) using the 
temporal patterns observed in the 9-class maps. Specifically, GR would remain grass over time; AG 
would vary between grass and bare soil over time; LCD would start out in a class with vegetation, 
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become a class without vegetation [LCD], and then become an urban class; Clearcut would begin as 
forest and change to bare soil or grass. 

Table 2. Change in urban land cover class area (km2) between 1986 and 1991 for the 
preliminary (hybrid classification approaches applied) and final (landscape trajectory  
post-classification rules applied) maps. 

Preliminary Nine Class 1986 
HUI MUI LUI Total 

1991 HUI 7771 249 69
MUI 262 588 231
LUI 46 225 316 2,7641 

Final Fourteen Class 
1991 HUI 235 34 7

MUI 558 136
LUI 458 1,427 

Note: 1 Class and total contained many cloud-affected pixels 

While it would be useful to have a standard set of trajectory rules, it is unlikely that such rules exist 
given that each landscape is undergoing transitions potentially driven by many different  
factors [19,66]. In areas where urbanization is driving anthropogenic landscape change, assumptions 
can be made that land use is becoming more intensive and therefore land cover is likely increasing in 
impervious surfaces [40]. 

3.2. Land Cover Amounts and Patterns over Time  

Our study region, the Central Puget Sound, is dominated by forests, with lesser amounts of water, 
urban, grass, and agriculture (Table 3). Over our 16 year study period, urban land cover increased  
from 1,632 km2 (8.0%) in 1986 to 3,661 km2 (18.0%) in 2002 in our six county study area (Table 3). 
The majority of new urban areas in our study were Deciduous and Mixed Forest (DMF) in 1986  
with 1,291 km2 DMF lost by 2002 (from 20.8 to 14.4%) and 800 km2 lost in Grass (GR) and 
Agriculture (AG) classes (from 11.4 to 7.5%). While urban land cover increased steadily  
from 1986–2002, the loss of DMF, GR and AG was non-linear, alternating which land cover class was 
predominately being converted to urban land cover (Table 3). The total area in forest (DMF, CF, CC, 
and REGEN) decreased between 1986 (12,420 km2) and 2002 (11,045 km2) with losses in Conifer 
Forest replaced by Clearcut and Regenerating Forest (Table 3). Actual losses in Conifer Forest in 2002 
may be masked by the larger snowpack in the 2002 TM images. 

Our study found patterns similar to other recent studies. For example, Ji et al. [23] documented a 
steady increase in urban lands, from 8.7% in 1972 to 19.2% in 2002, with the conversion of lands 
primarily from non-forested lands for the 8,215 km2 surrounding and containing the Kansas City 
metropolitan area. In the 7,000 km2 Twin Cities Metropolitan Area, urban land increased  
from 23.7% to 32.8% of the total area, with losses primarily in Agriculture [27]. Other cities 
surrounded primarily by forest have also seen a similar loss of forests to urban lands. For example, 
Boentje and Blinnikov [28] observed between 14–35% of mature forest lost in the districts surrounding 
Moscow’s Green Belt from 1991 to 2001. 
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Table 3. Six county study area amount (km2) and percent (%) of study area for each land 
cover class and three class groupings for 1986, 1991, 1995, 1999, and 2002.  

 1986  1991  1995  1999  2002  
 km2 % km2 % km2 % km2 % km2 % 
HIU 252 1.2 321 1.6 385 1.9 491 2.4 639 3.1 
MUI 644 3.2 892 4.4 1,095 5.4 1,166 5.7 1,301 6.4 
LIU 720 3.5 1,085 5.3 1,248 6.1 1,431 7.0 1,706 8.4 
LCD 15 0.1 52 0.3 44 0.2 45 0.2 15 0.1 
GR 1,754 8.6 1,676 8.2 1,870 9.2 1,539 7.6 1,142 5.6 
AG 575 2.8 791 3.9 534 2.6 482 2.4 388 1.9 
DMF 4,226 20.8 3,781 18.6 3,808 18.7 3,159 15.5 2,935 14.4 
CF 6,906 33.9 6,028 29.6 5,464 26.8 5,658 27.8 5,774 28.4 
CC 714 3.5 313 1.5 295 1.4 264 1.3 775 3.8 
REGEN 574 2.8 838 4.1 1,138 5.6 1401 6.9 1,561 7.7 
NFW 108 0.5 90 0.4 90 0.4 90 0.4 90 0.4 
OW 2,553 12.5 2,666 13.1 2,638 13.0 2,576 12.7 2,626 12.9 
ROCK 1,277 6.3 1,801 8.8 1,724 8.5 2,032 10.0 1,383 6.8 
SHORE 43 0.2 27 0.1 27 0.1 27 0.1 27 0.1 
Total Urban1 1,632 8.0 2,350 11.5 2,773 13.6 3,133 15.4 3,661 18.0 
GR & AG 2,329 11.4 2,467 12.1 2,404 11.8 2,021 9.9 1,530 7.5 
Total Forest2 12,420 61.0 10,960 53.8 10,706 52.6 10,482 51.5 11,045 54.2 

Notes: 1 Total Urban include four urban classes (HIU, MIU, LIU, and LCD). 
2 Total Forest includes forest classes (DMF, CF, CC, and REGEN). 

As areas become more urban, the patterns of land cover change. We were interested in documenting 
these changes since landscape patterns influence regional biodiversity [19,63,67]. Between 1986  
and 2002, urban areas spread out from the existing cities of Seattle, Bellevue, Tacoma, Olympia, 
Everett, and Bremerton, into the lower elevations and up canyons. Urbanization seemed to increase 
regardless of location within or outside of Urban Growth Boundaries with Figure 3 showing a zoomed-
in view northeast of downtown Seattle. Many new patches of urban are clearly visible in 1991 with 
subsequent areas often adjacent to these. Many large contiguous areas were developed  
between 1995–1999 and 1999-2002, clearly corresponding to the rapid growth of the area during  
this period.  

The configuration of the landscape changed greatly between 1986 and 2002 (Table 4) with both the 
number of patches and patch density of urban peaking in 1991, but mean patch size of urban increasing 
across the same time period, indicating a consolidation of urban patches over time. Both GR and AG 
and Forest patches decreased in mean size with Forest becoming more patchy (larger NP) and more 
irregular in shape (larger LSI). Most other metrics for GR and AG peaked in 1995, indicating a change 
in the overall pattern of these classes at that time. PLADJ and AI, both measures of the dispersion of 
patches with lower values indicating more dispersed patches of the focal class, decreased for Urban 
and increased for both GR and AG and for Forest (Table 4).  

The ecological implications of the change in composition (Table 3) and configuration (Table 4) of 
our study are many. Species associated with forests and/or grass and agriculture were likely reduced in 
regional abundance and diversity both from absolute loss of habitat area, but also through the 
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fragmentation of remaining habitat patches (e.g., more patches but with a smaller mean patch size). 
The separate and potentially additive effects of habitat composition and configuration on species 
occupancy of sites have been well documented in a variety of taxa [5,68-70]. Companion studies have 
used these land cover maps in several studies. Hepinstall et al. [14] used three dates (1991, 1995,  
and 1999) to build and test (using 2002 land cover) a land cover change model that predicted land 
cover 25 years into the future. Hepinstall et al. [63,71] used the 2002 land cover to develop avian 
species richness models and output from land cover and urban development models to predict possible 
changes in avian richness by 2027. 

Figure 3. Urban land cover from 1986 to 2002 showing when land transitioned to urban 
classes with respect to the 2002 Urban Growth Boundaries (UGB). 
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Table 4. Basic land cover composition and configuration metrics over time (NP = number 
of patches, MPS = mean patch size [ha], ED = edge density [m/ha], LSI = landscape shape 
index, PLADJ = percentage of like adjacencies, AI = aggregation index [56]. 

 Year NP MPS ED LSI PLADJ AI 

Urban1 1986 77,648 2.1 22.7 306.4 77.2 77.3 

 1991 91,959 2.6 32.8 365.3 77.4 77.4 

 1995 83,847 3.3 33.4 348.4 80.2 80.2 

 1999 84,747 3.7 35.0 346.8 81.4 81.5 

 2002 78,315 4.7 34.0 337.4 83.3 83.3 

GR&AG 1986 236,340 1.0 38.9 541.7 66.3 66.4 

 1991 227,485 1.1 46.0 563.5 66.0 66.0 

 1995 308,332 0.8 49.7 630.4 61.4 61.5 

 1999 283,947 0.7 43.3 603.0 59.8 59.8 

 2002 257,151 0.6 31.1 561.2 56.9 57.0 

Forest2 1986 71,845 15.5 33.7 310.1 91.2 91.2 

 1991 88,125 11.1 44.4 341.5 89.7 89.7 

 1995 89,814 10.3 47.0 367.1 88.6 88.6 

 1999 96,691 9.1 42.8 368.7 88.2 88.2 

 2002 106,423 8.2 37.2 412.7 86.7 86.8 

Notes: 1 Urban includes four urban classes (HIU, MIU, LIU, and LCD). 
2 Forest includes four forest classes (DMF, CF, CC, REGEN). 

Table 5. Land cover area (km2) and percent (%) of class over time inside (In) and outside 
(Out) of the 2002 Urban Growth Boundaries (UGB). 

 1986 1991 1995 1999 2002 

 km2 % km2 % km2 % km2 % km2 % 

Urban1 1,166.7 71.5 1,459.0 62.1 1,635.1 59.0 1,747.6 55.8 1,883.8 51.5 

 464.9 28.5 891.4 37.9 1,138.1 41.0 1,386.0 44.2 1,777.4 48.5 

GR&AG 488.5 21.0 409.8 16.6 341.8 14.2 283.7 14.0 175.7 11.5 

 1,841.0 79.0 2,057.3 83.4 2,062.2 85.8 1,737.6 86.0 1,354.0 88.5 

Forest2 1,007.8 8.1 794.9 7.3 689.6 6.4 635.4 6.1 606.3 5.5 

 11,412.6 91.9 10,165.7 92.7 10,016.8 93.6 9,847.2 93.9 10,438.6 94.5 

Notes: 1 Urban includes four urban classes (HIU, MIU, LIU, and LCD). 
2 Forest includes four forest classes (DMF, CF, CC, REGEN). 

In Washington State, a 1990 state law mandated the delineation of Urban Growth Boundaries (UGB), 
inside of which urban development is encouraged [64]. We compared the area and percent of each class 
falling inside or outside of the 2002 UGBs and summarize our finding here for summary classes (Urban, 
Grass and Agriculture, and all Forest; Table 5). While land cover changed differentially within and 
outside of the 2002 UGB and the total area of urban steadily increased over time, we observed an 
increase in the percentage of urban areas outside of the UGB from 28.5% in 1986 to 48.5% in 2002. The 
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area in Grass and Agriculture declined greatly during this same time period, with a lower percentage 
inside the UGB by 2002. Both the area and percent of total forest (including Clearcut and Regenerating 
forests) decreased over time inside the UGB. Clearly urbanization was proceeding both inside and 
outside of the UGB with the change coming at the expense of both GR and AG and Forest (Table 5). 

3.3. Land Cover Accuracy Assessment 

We compared class accuracy of major land cover classes (Urban, Grass and Agriculture, and Forest) 
for preliminary and final land cover maps (Table 6). Overall classification accuracies for our major 
classes were high, ranging from 79.5 to 89% with kappa values of between 0.687 and 0.841 (Table 6). 
The accuracy of Grass and Agriculture was consistently higher with our final classification often at the 
cost of accuracy of our final urban classes; likely because our Light Intensity Urban class represented a 
mixed land cover class as well as the difficulty of locating reference samples for this class.  
The 14-class maps had significantly higher overall accuracy (kappa) for 1986 and 1991 and 
significantly lower accuracy for 2002. The lower accuracy in 2002 was from a larger number of grass 
and agriculture reference sites being classified as urban classes (Appendix A). The application of 
landscape trajectories for 2002 improved user’s accuracy for some classes and producer’s accuracy for 
others (Table 6, Appendix A). For 2002 the use of landscape trajectory rules for urban classes may 
have overestimated the amount of urban land; however it is also possible that the photo interpretation 
underestimated the true extent of the Light Intensity Urban class.  

We also generated error matrices showing the number of reference sites and user’s and producer’s 
accuracy for the preliminary 9-class datasets and 14-class datasets regrouped to match the 9-class 
datasets (Appendix A). Our final classification consistently did a better job at correctly classifying our 
reference sites and not over-classifying (i.e., commission errors) for all classes except Light Intensity 
Urban (User’s Accuracy; Appendix A). Heavy Intensity Urban, Medium Intensity Urban, Grass, 
Agriculture, and Clearcut user’s accuracies were substantially higher after applying the landscape 
trajectory rules. In addition, Clearcut and Regenerating Forest and Agriculture/Bare Soil were mapped 
with much higher accuracy in our final classification than in our preliminary classification (Producer’s 
Accuracy: Appendix A). Total accuracy ranged from 50.3% to 73.3%, was lowest for 1986 maps and 
was consistently higher for the final versus preliminary classifications (significantly higher  
for 1986, 1991, 1995, and 2002), indicating the landscape trajectory rules improved the overall 
accuracy of the maps (Appendix A). Previous studies have had similar success in using multi-date land 
cover maps and temporal rules to improve classification accuracies [12,43]. 

Because we did not apply any majority filters to our final land cover maps, our Light Intensity 
Urban pixels were often interspersed with Grass and Forest classes, making comparisons with the 90 m 
reference dataset difficult. In addition to the traditional accuracy assessment presented above, we 
tallied the number of pixels in each reference cell that were classified as Heavy, Medium, or Light 
Intensity Urban for our 2002 map. Using this methodology, we observed a much higher agreement 
between our classification and the reference data set (Table 7). For Light Intensity Urban, over 70% of 
our reference sites had a least one of nine pixels classified as Light Intensity Urban, our most 
heterogeneous urban class. Medium and Heavy Intensity Urban had a higher proportion of reference 
sites with clear majorities (74% and 90%, respectively). Previous attempts at pixel-based classification 
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have also found high error rates (especially errors of commission) when attempting to classify areas of 
low density urban development [30].  

Table 6. Class accuracy assessment (user’s and producer’s, total and Kappa-adjusted 
accuracy, and significance difference between two classifications at alpha 0.05) for three 
land cover class groupings for the preliminary and final land cover maps. For individual 
class accuracies see Appendix A. 

Classified Reference Data Reference Data 
Data Preliminary (9 Class) Final (14 Class) 
1986 Urban Grass & Ag Forest User's Urban Grass & Ag Forest User's 

Urban 578 97 8 84.6 495 37 4 92.4 
Grass & Ag 111 319 53 66.0 151 436 31 70.6 
Forest 99 111 966 82.1 109 48 976 86.1 
Producer's  73.4 60.5 94.1  65.6 83.7 96.5  
Total    79.6    83.4 
Kappa    0.678    0.741* 

1991 Urban Grass & Ag Forest User's Urban Grass & Ag Forest User's 
Urban 830 44 12 93.7 812 30 12 95.1 
Grass & Ag 44 148 83 53.8 44 178 72 60.5 
Forest 63 23 602 87.5 56 7 601 90.5 
Producer's  88.6 68.8 86.4  89.0 82.8 87.7  
Total    85.5    87.8 
Kappa    0.757    0.800* 

1995 Urban Grass & Ag Forest User's Urban Grass & Ag Forest User's 
Urban 673 76 8 88.9 685 78 8 88.8 
Grass & Ag 36 457 46 84.8 20 427 25 90.5 
Forest 48 38 712 89.2 46 50 730 88.4 
Producer's  88.9 80.0 93.0  91.2 76.9 95.7  
Total    88.0    89.0 
Kappa    0.818    0.833 

1999 Urban Grass & Ag Forest User's Urban Grass & Ag Forest User's 
Urban 402 63 2 86.1 426 94 6 81.0 
Grass & Ag 20 288 8 91.1 2 226 10 95.0 
Forest 17 25 463 91.7 13 36 455 90.3 
Producer's  91.6 76.6 97.9  96.6 63.5 96.6  
Total    89.5    87.3 
Kappa    0.841    0.806* 

2002 Urban Grass & Ag Forest User's Urban Grass & Ag Forest User's 
Urban 808 90 16 88.4 871 229 38 76.5 
Grass & Ag 30 553 89 82.3 1 383 19 95.0 
Forest 35 70 905 89.6 16 75 928 91.1 
Producer's  92.6 77.6 89.6  98.1 55.7 94.2  
Total    87.3    85.2 
Kappa    0.807    0.773*1 

* Significantly different Kappa values between 10- and 14-class maps. 

*1 Fourteen-class map accuracy significantly lower than 10 class map.  
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Table 7. Accuracy of urban classes (Heavy, Medium, Light) using a cutoff of number of 
pixels from 1 to a ≥ 5 (a clear majority) of 9 pixels in each 90 m × 90 m reference 
assessment polygon for the final 2002 land cover map. 

 Heavy Medium Light 

Cutoff (N = 279) (N = 339) (N = 288) 
1 95.3 92.6 70.5 
2 94.6 88.5 61.8 
3 94.3 86.4 56.6 
4 91.8 80.2 50.0 

≥ 5 90.3 73.5 40.6 

3.4. Limitations of Approach and Future Directions 

Our hybrid approach to classifying medium resolution multi-spectral satellite imagery in 
heterogeneous urban environments proved successful in that we were able to map three intensities of 
urban land and differentiate between bare soil cleared for development, agriculture, or forest 
harvesting with high levels of accuracy. However, there are limitations and assumptions inherent in 
our approach. For example, when conducting spectral unmixing, some of the literature regarding end 
member selection suggests using the extreme pixels that bound all other pixels in image feature space, 
but this requires that these pixels represent pure pixels and not statistical outliers which would skew 
results  [37]. Locating spectral end members for urban surfaces, however, presents a unique problem in 
that there is a tremendous degree of spectral variance among urban reflectance. Previous research has 
shown that pure impervious surfaces tend to lie along an axis of low to high albedo spectrum. As a 
result, pure urban pixels often exist without actually being end members because they fall somewhere 
between low and high albedo (non-vegetation) end members [38,72,73]. If an urban pixel does contain 
bare soil, this component will most likely be modeled as shade and impervious surface during the 
unmixing. Using a low albedo end member as an impervious proxy will most likely model this shade 
component as impervious surface, when in reality it cannot be determined whether the shade is caused 
by a building, tree or is in fact part of the impervious surface spectra [74].   

Bare soil, similarly, did not seem to exist as a truly distinct urban end member in spectral space, but 
rather exists along the vector containing urban at one end and shade/water at the other.  This vector 
extended from high albedo bare soil/urban surface through low albedo bare soil/urban surface and 
finally to water. The pixels along this plane (except for water pixels at the end of the plane) are some 
combination of urban surface, bare soil and shade. Because we used a supervised classification that 
separated 100% bare soil from urban pixels, we assumed that most bare soil pixels in the image were 
already classified and removed from the analysis in a previous step. Furthermore, because the shade 
fraction image was used to derive impervious estimates, urban pixels along this plane would be 
estimated at close to 100 percent impervious. Pixels that contain both impervious surface and bare soil, 
however, were likely difficult to detect.  

Another possible limitation of our results concerns our reference data. The reference data sets were 
interpreted without the benefit of stereo pairs and in the case of 1986, were in black and white. 
Because the reference data were derived from aerial photographs with differing spectral and spatial 



Remote Sens. 2009, 1                            
 

 

1371

resolutions, some classes may have been interpreted differently across time. For example, 
differentiating between deciduous, mixed, and coniferous forest was more problematic with the older 
imagery.  In addition, precisely matching the three classes of urban across time was problematic for the 
photo interpreter.  

Several of our classes were added to our land cover map through the use of ancillary GIS data 
layers. Each of these classes, therefore, has their own temporal relevance and location errors. For this 
reason, we used only GIS data for classes that were unlikely to change significantly over our study 
time period. Roads were not used to aid in classifying urban classes because there was likely 
significant change in roads between 1986 and 2002 and the only available spatial dataset depicted 
roads as of 2001 for our study area.  

Previous studies have measured the patterns of urban development change over time (e.g.,  [75]). 
We used both multi-season imagery for each date and rules of landscape trajectory to differentiate 
those bare soil pixels that represented agriculture, clearcuts, or land cleared for development. A recent 
study exploring the increase in impervious surface over time used temporal rules to improve 
classification accuracy  [40]. Another recent study used classification techniques (Principal 
Components Analysis) on multiple dates of imagery to improve the classification of landscape  
change  [76]. Future work needs to determine how applying post-classification rules of change may 
influence pattern measurements and introduce errors of a different type into classified maps [77,78]. 

We used dates of imagery that were three to five years apart because of image availability. For this 
region, where urbanization was an important process driving landscape change, this time interval was 
large enough for measurable change to have occurred. Shorter time periods may have been too short to 
observe change and longer time intervals may have masked changes especially in Medium and Light 
Intensity Urban classes where vegetation re-growth over time may mask the amount of impervious 
surfaces present. In addition, the number of time steps increases the ability to use landscape 
trajectories. Our inferences for the first and last dates were limited to including data only after or only 
before, respectively, the target date.  Longer time spans would allow further separation of land cover 
types with high temporal variability (e.g., agriculture, urbanization, forest harvesting and re-growth).  

Measuring the accuracy of land cover change presented several challenges. For one, it is difficult to 
select sites of land cover change before completing a classification. The simplest estimate of accuracy 
of land cover change is to multiply the individual class accuracies between two dates  [27]. It is also 
possible to report the individual class accuracies of only those areas that changed or to compare 
aggregate measures of change versus no change. Because we had an insufficient number of reference 
sites available for the same location between sequential land cover maps, we were unable to directly 
measure the accuracy of land cover change over time.  

4. Conclusions  

Urban land cover in the Central Puget Sound increased dramatically between 1986 and 2002, often 
at the expense of forestlands. In addition, grass and agricultural areas have declined in extent. Urban 
patches also grew in size and became less dispersed as individual patches expanded and coalesced into 
larger patches. Patches of forests, grass, and agriculture all became smaller and more dispersed. Urban 
development has increased disproportionally in areas where development regulations were expected to 
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limit or even reduce development. Urban land cover outside of the Urban Growth Boundaries grew 
from 2.6% of our land area in 1986 to 10.0% in 2002, whereas it grew from 6.7% to 10.6% of the area 
inside of the Urban Growth boundaries between 1986 and 2002, respectively. A more in-depth analysis 
of the trends in land cover change with respect to urban growth management is currently underway.  

Our hybrid methods and landscape trajectory rules improved our accuracy in separating mixed 
classes. Segmenting vegetation and impervious surfaces increased our ability to extract impervious 
areas within the mixed urban classes, as observed in previous studies (e.g.,  [79]). Multi-season 
imagery assisted in the differentiation of forest types and agriculture. Multi-date imagery allowed for 
the development of landscape trajectory rules, which allowed for the separation of bare soil into 
clearcut forest, agriculture, and cleared for new development and corrected for mis-classifications in 
different intensities of urban classes across multiple dates.  

The observed changes in our study area have profound economic and ecological implications. The 
ability to map these changes is the first step in many ecological analyses, especially those involving 
mapping wildlife habitat. Several studies have already used these maps to build models of land cover 
change [14], avian diversity [63,71,80], and scenario planning [81]. Access to a temporal sequence of 
land cover maps for large regions is important for measuring change, calculating benchmarks of 
sustainable development [28], and many other applications. Land cover data such as ours also can be 
used to calculate other “sprawl indices” (e.g., [23]) and analyze more complex landscape patterns and 
change  [23,82,83]. 
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Appendix A. Land cover class accuracy (user’s, producer’s, total, and kappa adjusted) and 
number of accuracy assessment sites (N) for preliminary (9 class), final (14 class), and the 
difference (accuracy for 14 class minus 10 class) for user’s and producer’s accuracy. 

1986     
 Preliminary Final Difference Preliminary Final Difference 
 User's N User’s N (14-10) Producer's N Producer's N (14-10) 

HU 34 172 57 83 22 78 76 64 73 -13 
MU 76 346 89 281 13 68 386 66 379 -2 
LU 51 165 47 172 -4 26 327 27 304 1 
GR 15 479 27 286 12 53 137 59 133 6 
DMF 58 682 61 627 3 69 574 67 564 -1 
CF 57 448 55 455 -2 77 332 76 330 -1 
CC/REG 52 46 86 51 34 19 124 37 120 17 
AG/Bare Soil  NA 4 83 332 NA 1 390 70 389 69 
WATER 92 50 90 51 -2 100 46 100 46 0 
Total 50.3  62.0        
Kappa 0.420  0.550*        
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1991           

 Preliminary Final Difference Preliminary Final Difference 
 User's N User’s N (14-10) Producer's N Producer's N (14-10) 

HU 71 352 91 262 20 94 267 90 265 -4 
MU 63 368 65 408 2 67 345 79 335 12 
LU 67 166 67 184 -1 34 328 39 317 5 
GR 13 247 32 151 18 49 67 70 69 20 
DMF 70 327 72 301 2 87 263 84 256 -3 
CF 82 260 83 258 1 92 231 92 234 0 
CC/REG 77 101 94 105 17 38 203 51 195 12 
AG/Bare Soil 79 28 71 143 -7 15 148 70 146 55 
WATER 100 102 100 102 0 100 102 100 102 0 
Total 65.0  73.3        
Kappa 0.601  0.695*        
 
1995 

 Preliminary Final Difference Preliminary Final Difference 

    User's       N User’s N (14-10) Producer's N Producer's N (14-10) 
HU 62 232 64 229 2 56 258 55 266 -1 
MU 67 336 73 332 6 78 288 84 289 6 
LU 54 189 44 210 -10 48 211 47 197 -2 
GR 39 504 61 271 21 74 267 64 255 -9 
DMF 68 444 74 406 7 85 354 86 350 1 
CF 55 302 62 258 7 94 178 92 175 -2 
CC/REG 77 52 80 162 3 17 234 54 238 37 
AG/Bare Soil 78 36 88 202 10 9 304 59 301 50 
WATER 100 59 97 60 -3 98 60 98 59 0 
Total 58.6  69.1        
Kappa 0.529  0.649*        
 
1999 

 Preliminary Final Difference Preliminary Final Difference 

 User's N User’s N (14-10) Producer's N Producer's N (14-10) 
HU 75 158 80 142 4 89 134 85 133 -4 
MU 45 265 53 214 8 82 146 79 145 -3 
LU 61 44 54 170 -7 17 160 56 163 40 
GR 67 305 82 163 16 81 250 57 236 -24 
DMF 84 261 87 229 4 91 240 84 239 -7 
CF 83 193 77 206 -6 95 169 95 167 1 
CC/REG 71 51 55 69 -16 56 64 58 65 2 
AG/Bare Soil 82 11 83 75 1 7 126 52 120 45 
WATER 98 40 100 37 3 100 39 100 37 0 
Total 70.0  72.7        
Kappa 0.652  0.687        
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2002 

 Preliminary Final Difference Preliminary Final Difference 

 User's N User’s N (14-10) Producer's N Producer's N (14-10) 
HU 74 326 72 348 -2 88 275 93 272 5 
MU 57 454 52 469 -6 78 333 73 334 -6 
LU 67 135 45 321 -22 34 268 51 282 17 
GR 47 640 77 221 31 78 385 47 365 -31 
DMF 65 554 80 414 15 76 472 72 456 -3 
CF 71 428 75 394 3 85 359 87 338 2 
CC/REG 77 30 63 212 -13 11 201 70 191 59 
AG/Bare Soil 67 33 89 182 22 7 330 50 324 43 
WATER 64 76 96 54 32 92 53 98 53 6 
Total 61.7  68.1        
Kappa 0.557  0.636*        

* Significantly different Kappa values between 10- and 14-class maps. 
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