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Abstract: Interferometric synthetic aperture radar (InSAR) provides the capability to detect surface
deformation. Numerous processing approaches have been developed to improve InSAR results
and overcome its limitations. Regardless of the processing methodology, however, temporal
decorrelation is a major obstacle for all InSAR applications, especially over vegetated areas and
dynamic environments, such as Interior Alaska. Temporal coherence is usually modeled as a
univariate exponential function of temporal baseline. It has been, however, documented that temporal
variations in surface backscattering due to the change in surface parameters, i.e., dielectric constant,
roughness, and the geometry of scatterers, can result in gradual, seasonal, or sudden decorrelations
and loss of InSAR coherence. The coherence models introduced so far have largely neglected the
effect of the temporal change in backscattering on InSAR coherence. Here, we introduce a new
temporal decorrelation model that considers changes in surface backscattering by utilizing the
relative change in SAR intensity between two images as a proxy for the change in surface scattering
parameters. The model also takes into account the decorrelation due to the change in snow depth
between two images. Using the L-band Advanced Land Observation Satellite (ALOS-2) Phased
Array type L-band Synthetic Aperture Radar (PALSAR-2) data, the model has been assessed over
forested and shrub landscapes in Delta Junction, Interior Alaska. The model decreases the RMS
error of temporal coherence estimation from 0.18 to 0.09 on average. The improvements made by the
model have been statistically proved to be significant at the 99% confidence level. Additionally, the
model shows that the coherence of forested areas are more prone to changes in backscattering than
shrub landscape. The model is based on L-band data and may not be expanded to C-band or X-band
InSAR observations.
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1. Introduction

Interferometric synthetic aperture radar (InSAR) provides an all-weather, day-or-night capability
to remotely sense mm to cm scale surface deformation with a high spatial resolution of tens of
meters or better (e.g., [1–4]). InSAR has been successfully used to detect surface deformation due
to various mechanisms, such as volcanism, subsidence, permafrost, and landslides [5–9]. So far
numerous methods and approaches have been developed to improve InSAR performance. However,
temporal decorrelation, regardless of the processing methodology, is one of the major obstacles for
all InSAR applications, especially over vegetated areas. The main sources of the loss of coherence,
i.e., decorrelation, are temporal decorrelation, spatial decorrelation, volume decorrelation, thermal
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decorrelation, and processing errors (e.g., [10,11]). Generally, InSAR coherence decreases with
increasing spatial and temporal baselines between two images.

InSAR coherence is sensitive to the changes in surface backscattering, which is dominated by the
surface dielectric constant and roughness on the scale of the radar wavelength [12–14]. It has been
documented that temporal coherence can be influenced by temporal variations of surface backscattering
due to changes in soil moisture, snow depth, surface roughness, and vegetation biomass [12–22].
Simard et al. [12] found precipitation events to be the main cause of temporal decorrelation using
fully-polarimetric airborne L-band acquisitions over forested landscapes with up to nine-day temporal
baselines. Additionally, they argued that correlation decreases with increasing canopy height regardless
of forest type and polarization. Zwieback et al. [15] evaluated soil moisture effects on L-band InSAR
and revealed that the phase difference between two SAR images increased with increasing soil moisture
difference, whereas the coherence decreased at the same time. Zhang et al. [20], in a case study using
C-band ERS SAR data, assessed the relationship between InSAR coherence and soil moisture and
inferred that the relation between the two may satisfy an exponential distribution.

Although the effect of the changes in surface backscattering on InSAR coherence has been
documented (e.g., [12,16,18]), it has been largely neglected in the coherence models introduced
so far. Temporal coherence, in general, is modeled as a univariate exponential function of the
temporal baseline [10] with the assumption that the change in the position of scatterers, i.e., mutual
displacements of scatterers, is the source of decorrelation [23]. However, we argue that other variables,
in addition to the temporal baseline, should be added to the coherence function to compensate for the
effect of the temporal variation of surface backscattering on InSAR coherence. In this paper, using
ALOS-2 PALSAR-2 images, we analyzed the temporal decorrelation of forested and shrub landscapes
in Delta Junction, Alaska, and introduced a new InSAR coherence model, which takes into account the
effects of the temporal variations of surface backscattering on InSAR coherence. The model considers
the changes in the geometry and dielectric constant of scatterers to be the main sources of decorrelations.
The effect of the gradual and natural change in scatterers’ geometry has been modeled as a decaying
exponential function, which is equivalent to the exponential function of temporal coherence found in
the literature [10,13]. The effect of the change in the surface backscattering, mainly due to the change
in the dielectric constant of scatterers on InSAR coherence, has been modeled by utilizing the change
in InSAR intensity as a proxy for it. The model also takes into account the decorrelation due to the
change in snow depth between two images, which induces reversible and seasonal decorrelations.
The model, in general, and with different constants, is applicable to model L-band InSAR coherence in
other environments and may not be expanded to X-band or C-band SAR observations.

The importance of temporal decorrelation models and their practical use can be better understood
by considering the following reasons. Basically, temporal changes of surface parameters describe
processes occurring on time scales of the orbit repeat time. In other words, modeling temporal
decorrelations provides a means to understand and remotely estimate a wide variety of surficial
processes, such as vegetation growth, permafrost freezing and thawing, and soil moisture and
vegetation layer induced effects [12].

For instance, it has been shown that both phase and coherence can be used to retrieve soil moisture
(e.g., [15]). The coherence, being generally independent of deformation, provides a better means to
estimate soil moisture. However, to retrieve soil moisture using temporal coherence, a decorrelation
model should be implemented to separate the soil moisture-induced decorrelation, i.e., the change in
the dielectric constant, from other decorrelation contributions, such as the decorrelation due to the
change in the geometry of scatterers.

The second area of interest is in the design of orbit repeat for new satellite missions, which is
driven by considering some important factors, such as tolerable error levels, the attainable baseline,
and the expected decorrelation with the time of signals from the regions of interest to be mapped [12].
In this case, temporal decorrelation models can facilitate a priori assessment of the expected coherence
levels of interferograms for a new satellite mission designed for a specific application.
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Finally, temporal decorrelation models can help better estimate vegetation layer parameters.
The total InSAR coherence is the product of spatial, temporal, thermal, volume, and processing
coherences (e.g., [23]). Most models used to invert vegetation layer parameters (in PolInSAR studies)
only consider the volume decorrelation contribution of the interferometric coherence and ignore other
decorrelation contributions. However, leaving non-volumetric decorrelations uncompensated leads to
a less accurate parameter estimation. In repeat-pass InSAR systems, the most critical non-volumetric
decorrelation contribution is the temporal decorrelation caused by the change of the geometric and/or
dielectric properties of the scatterers [23] and its contribution to decorrelation can be quantified using
temporal decorrelation models.

The rest of this paper is organized as follows: in Section 2, InSAR coherence estimates are presented
over the study area, Delta Junction, Alaska, the temporal decorrelation model and evaluation with real
data are described in Section 3, followed by discussions and conclusions in Sections 4 and 5, respectively.

2. Study Area and Data

Our test site, illustrated in Figure 1, is located in Delta Junction, interior Alaska. The area is
mostly covered by forest and shrub landscapes [24] and underlain by dis-continuous permafrost.
The Alaskan interior between the Alaska and Brooks Mountain Ranges has a strong continental climate
with moderate temperatures and precipitation in summer and exceedingly cold and dry weather in
winter [25]. The average minimum and maximum annual temperatures in Big Delta station (1937–2005),
which is located in the study area, are −6.9 ◦C and −2.7 ◦C, respectively. The lowest and highest
temperatures occur in January (−23.7 ◦C) and July (20.8 ◦C). Average total precipitation, average total
snow-fall, and average snow depth are, respectively, about 29, 111.25, and 10.2 centimeters (National
Weather Service (http://www.wrcc.dri.edu)).
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To study the temporal evolution of InSAR coherence, 32 single look complex (SLC) SAR images 
of L-band ALOS-2 (23.6 cm wavelength) from three ascending and three descending orbital paths in 
the fine beam and horizontal-horizontal (HH) polarization mode have been used. The data span from 

Figure 1. Land cover map of the study area (National Land Cover Database 2011 (NLCD 2011)) [24].
The orbit- frames covering the study area are shown with different colors (explained in Table 1).
The black rectangle box shows the overlapping area. The forested and shrub patches are boxed in red
and blue, respectively. The location of Snow Telemetry (SNOTEL) site, Granite Creek (963) (Natural
Water and Climate Center (https://wcc.sc.egov.usda.gov)), is shown by a white star.

To study the temporal evolution of InSAR coherence, 32 single look complex (SLC) SAR images
of L-band ALOS-2 (23.6 cm wavelength) from three ascending and three descending orbital paths in
the fine beam and horizontal-horizontal (HH) polarization mode have been used. The data span from
August 2014 to March 2017. Each group of the SLC SAR images have been co-registered based on a
single master image, which optimizes the geometric and temporal coherence of the interferogram stack.

http://www.wrcc.dri.edu
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The SLC images were then used to generate interferograms with a pixel size of about 30 m × 30 m.
After removing topographic phase, simulated using the National Elevation Dataset (NED) DEM,
and applying range spectral shift and azimuth common band filters, and a linear weighting window
size of 5 × 5 (in pixels) was used to estimate correlation. Then, interferograms affected by ionospheric
artifacts were excluded and a total number of 75 interferograms with no or very limited effects of
ionospheric artifacts have been selected to analyze temporal coherence. Table 1 gives the information
of the data and interferograms used in this study.

Table 1. Data used in this study. The letters A and D denote ascending and descending, respectively.

Path-Frame Orbit Direction Number of Interferograms Color of Frame on Figure 1

0040-2330 D 4 Yellow
0041-2330 D 16 Blue
0042-2320 D 10 Green
0137-1280 A 10 Magenta
0138-1280 A 29 Red
0139-1270 A 6 Cyan

For each of the two major land cover types in the study area, forest and shrub, three patches
within flat areas with a total number of 1963 and 1729 pixels, respectively, on geo-referenced coherence
images that are fully overlapped with all ALOS-2 observations have been selected. Figure 1 shows
the selected patches in red (forest) and blue (shrub) boxes. For each of the interferograms, average
coherence values of the selected pixels of each of the land cover types have been calculated. Therefore,
each interferogram has two coherence values, one for each of the land cover types, evergreen forest
and shrub. Figure 2 illustrates the scatter plot of the average coherence versus temporal baseline for
the selected patches.
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3. Methods

3.1. InSAR Coherence

An InSAR coherence estimation image is a cross-correlation product of two co-registered
complex-valued SAR images (e.g., [10,26,27]) which quantifies radar wavelength-scale changes
in backscattering characteristics. Decorrelation, i.e., loss of coherence, is generally increased by
increasing spatial and temporal baselines between two image acquisitions [10,27,28]. InSAR coherence
assesses the accuracy of the estimated deformation and depends on the amount of phase error in an
interferogram [28–30]. Over a small window of pixels, InSAR coherence is estimated by:

γ =

∣∣∣∣∣∣ ∑ C1 C∗2 e−j∅√
∑|C1|2 ∑|C2|2

∣∣∣∣∣∣ (1)

where C1 and C2 are complex-valued backscattering coefficients, C2* is the complex conjugate of
C2, Ø is the deterministic phase due to baseline error, topography, or large deformation in the
correlation window.

The total InSAR coherence is the product of spatial (γspatial), temporal (γtemporal), thermal (γthermal),
volume (γvolume), and processing (γprocessing) coherences [4,10,28]:

γ = γspatial × γvolume × γtemporal × γthermal × γprocessing. (2)

The spatial (perpendicular) baselines of our dataset, except for two interferograms with spatial
baselines of 308 and 347 m, are smaller than 284 m with a mean of ~108 m, whereas the critical baseline
of the data is about 11 km. Therefore, a perpendicular baseline of 108 m, i.e., the mean value of the
perpendicular baselines, will decrease the coherence by the value of ~0.01 which is negligible. In long
wavelength (L-band) SAR sensors, such as ALOS-2 PALSAR-2, the small perpendicular baseline
will not affect the variation of spatial decorrelation much. Therefore, we assumed that the spatial
decorrelation from the small range of change in the perpendicular baseline is constant. Additionally,
with such small perpendicular baselines, the volumetric decorrelation is negligible (e.g., [12]). Here, we
focus only on temporal decorrelation by assuming that other decorrelation terms are constant or
relatively not significant.

3.2. Temporal Coherence Modeling

The temporal coherence is usually considered as a univariate exponential function of time
(e.g., [13,31]) by taking the random motion of scatterers in the resolution cell to be the main source of
decorrelation:

γA = γ0e−
t
τ (3)

where subscript A denotes model A, γ0 is initial coherence, t is the time separation between two SAR
images, and 1/τ is its decorrelation rate and is mainly dependent on the wavelength of the radar.
Based on model A, the exponential decay of coherence values is expected in general by increasing the
temporal baselines. However, the scatter plots of the observed coherence versus temporal baseline and
the scatter plots of the residual coherence, i.e., observation—model A, versus the temporal baseline,
illustrated in Figure 2, feature strong undulation with local peaks at temporal baselines around one
and two years. Model A takes into account decorrelations due to long-term variations of the scatterers’
geometry. In the real world, however, in addition to the natural and gradual long-term changes in the
scatterers’ geometry, seasonal and/or sudden changes in surface backscattering parameters may also
contribute to temporal decorrelation. Generally, backscattering is dominated by the surface dielectric
constant and roughness among other surface characteristics. Surface parameters, such as soil moisture,
vegetation, and temperature alter dielectric constant and roughness and, consequently, backscattering
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coefficients (e.g., [17,22,32]). Therefore, other term(s) should be added to the temporal coherence
function to compensate the effects of changes in surface backscattering between two image acquisitions.

In this paper, we have modified the coherence model to accommodate decorrelations due to the
change in surface backscattering parameters. Since the SAR backscatter coefficient and, consequently,
SAR intensity, varies as a function of the changes in surface parameters (e.g., [19,33]), here, we use
the change in SAR intensity as a proxy for the changes in surface backscattering. Figure 3 shows a
semi-logarithmic scatter plot of the coherence ratio, i.e., observation/model A, versus the relative
intensity change between two images. Relative intensity is calculated by r = |10 log(i2/i1)|, which
i2 and i1 are SAR intensities of the first and second images, respectively. Considering the linear
trend fitted to the semi-logarithmic scatter plots (note R2 value and very small p-value of the linear
regressions), model B is postulated to be:

γB = γ0 e−(
t
τ +

r
ρ ) (4)

where r is the relative change in SAR intensity, i.e., the backscattering baseline, and 1/ρ is its
decorrelation rate. For each of the fitted linear trend, R2 and p-value of the regression are calculated
and shown on the plots. Note that if the p-value of a t-test is smaller than the common alpha values of
0.1, 0.05, and 0.01 (the confidence level of 90, 95, and 99%, respectively), the null-hypothesis is rejected.
This means that the additional term related to the relative change in SAR intensity is likely correlated
with temporal correlation.
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intensity changes for forested (a) and shrub (b) land cover types.

The unknown parameters in models A and B, i.e., γ0, τ, and ρ, can be estimated by solving the
equations using known variables, i.e., γ, t, and r. The coherence, γ, is estimated using Equation (1).
The temporal baseline of the interferograms, t, ranges between 14 and 840 days. Figure 4 illustrates the
scatter plots of model B, observed coherence, and residual coherence values (observation—model B)
for the two landscapes. For comparison, the scatter plot of water body’s coherence is also shown in the
figure. Additionally, Table 2 exhibits the model parameters and RMS error for each model. The RMS
error values of model B for the both land cover types are smaller than those of model A, indicating
that model B estimates more accurate coherence values. A detailed discussion of how significant the
improvement is has been provided in Section 4.

Different snow depths between two images of an interferometric pair is one of the factors that
can induce variations in surface scattering behavior, which, in turn, leads to decorrelation. Basically,
between two winter images in stable frozen conditions with no change in soil moisture, the change
in the dielectric constant is negligible and high coherence values can be expected for open areas [34].
However, the change in snow depth between the two images may change the surface scattering
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behavior, which, in turn, causes decorrelation. Here, we intend to modify our coherence model by
adding the decorrelation term of snow depth changes. The basic assumption here is that the intensity
and snow depth changes are independent parameters, i.e., a systematic snow depth change does not
produce a systematic intensity change. Figure 5, illustrating the scatter plot of the intensity change
versus snow depth changes, shows no trend and indicates that the two parameters are independent.
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Table 2. Model parameters of the two land cover types. Cf is the critical f -value.

Model Land Cover γ0 τ (Day) ρ σ RMS f -Test Cf (α = 0.01)

A
Forest 0.37824 616.49 - - 0.180 - -
Shrub 0.444 629.53 - - 0.186 - -

B
Forest 0.68885 861.07 2.5406 - 0.092 205.84 6.99
Shrub 0.74482 879.27 2.5467 - 0.121 102.38 6.99

C
Forest 0.73842 903.7 3.3464 0.62062 0.083 16.23 7.00
Shrub 0.79153 913.47 5.6462 0.37348 0.101 29.64 7.00
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Figure 6 shows semi-logarithmic scatter plot of coherence ratio, i.e., observation/model B, versus
the snow depth change between two images. Considering the linear trend fitted to the semi-logarithmic
scatter plots, model C is postulated to be:

γC = γ0 e−(
t
τ +

r
ρ +

s
σ ) (5)

where s is the snow depth change between images and 1/σ is its decorrelation rate. The unknown
parameters in model C is estimated by solving the equations using known variables. The snow depth
values are acquired from SMAP level 4 data (National Snow and Ice Data Center (http://nsidc.org))
and the measurements at the SNOTEL Site Granite Creek (963) (Natural Water and Climate
Center (https://wcc.sc.egov.usda.gov)), which is located in our study area (white star in Figure 1).
Figure 7 illustrates the scatter plots of model C, observed coherence, and residual coherence values
(observation—model C) for the two landscapes. For comparison, the scatter plot of a water body’s
coherence is also shown. Additionally, Table 2 exhibits the model parameters and RMS error for
each model. The RMS error values of model C for the two land cover types are smaller than those of
model B. This means that the change in snow depth leads to decorrelation and, taking into account its
effect on InSAR coherence improves the model’s performance. A statistical analysis of how significant
the improvement is has been provided in the next section.Remote Sens. 2018, 10, 150  9 of 15 
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Scatter plots of residual coherences (observation—model C) for forested (b) and shrub (d) land cover
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4. Discussion

4.1. Scatterers’ Type and Decorrelation Sources

Model C has three terms. The first term, exp (−t/τ), is the long-term irreversible decorrelation due
to the temporal change in scatterers’ geometry. The second term, exp (−r/ρ), is the decorrelation due
to the changes in backscattering between two images. As stated earlier, the change in SAR intensity
was used as a proxy for the change in the surface backscattering. Figure 8 shows the plot of SAR
intensity (dB) over forest and shrub landscapes versus the soil moisture measured at the SNOTEL
Site Granite Creek (963) (Natural Water and Climate Center (https://wcc.sc.egov.usda.gov)) which
is located in our study area and is 12 km away on average from the patches (see Figure 1). The plots
demonstrate a general correlation between soil moisture and SAR intensity, indicating that the change
in backscattering and SAR intensity is most likely dominated by the change in dielectric constant of
scatterers induced by the change in soil and biomass water content.

https://wcc.sc.egov.usda.gov
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Figure 8. Plot of the change in SAR intensity for forested (a) and shrub (b) land cover types versus the
change in soil moisture measured at the SNOTEL Site Granite Creek (963) (Natural Water and Climate
Center (https://wcc.sc.egov.usda.gov)). Data under frozen and unfrozen conditions are included.

The third term, exp (−s/σ), is the decorrelation due to the change in snow depth between two
images. The scatterplot of InSAR intensity change (dB) versus snow depth change for soil moisture-free,
i.e., winter-winter, interferograms (Figure 5) show no correlation between the SAR intensity change and
the snow depth change over forested and shrub landscapes, indicating that snow depth change-induced
decorrelation is most likely dominated by the change in the scatterers’ geometry. In Section 4.3, we will
perform a statistical assessment to show that the improvement made by considering the snow depth
change in the model is statistically significant.

In the case where the temporal evolution of surface parameters such as soil moisture, vegetation
layer parameters, and snow depth are known, the general coherence is postulated to be:

γ = γ0 e−(
t
τ +∑n

i=1
pi
µi
) (6)

where 1/µi is the decorrelation rate of the parameter pi, which is the change in the surface parameters
between two images.

In general, shrub landscape is more stable as changes happen in the scatterers’ geometry and
dielectric constant. Except the decorrelation rate of the change in snow depth, which is lower for forest,
the decorrelation rates of long-term and backscattering are lower, i.e., higher τ and ρ values, for shrub
landscape compared to the forested landscape (Table 2). The scatterers within a resolution cell are of
two types: scatterers associated with the ground surface and scatterers associated with the vegetation
layer. Forested landscape (coniferous in this research) possess more backscattering contribution from
the vegetation layer compared to the shrub landscape. Since the mutual position of scatterers within a
vegetation layer, i.e., the geometry of scatterers, is more likely subject to change than the geometry of
the scatterers within a non-vegetated surface, forested areas in the long-term decorrelate faster than
non-forested areas as time lapses. Therefore, shrubland is expected to have a lower decorrelation
rate associated with the long-term change in the scatterer’s mutual position (Table 2). Additionally,
the observed higher backscattering decorrelation rate of the forested area is associated, in part, with
dielectric variation within the vegetation layer due to, for example, changing water content within the
trees. Similarly, the observed higher snow depth decorrelation rate in shrubland is associated with the
type of scatterers within each landscape. The lower proportion of snow-covered scatterers within the
vegetation layer causes the forested landscape to lose coherence with a lower rate compared to the
non-forested landscape as the change in snow depth increases.

The long-term decorrelation rate of the forest is slightly higher than the one of the shrub landscape,
whereas the backscattering decorrelation rate of the forest is almost two times greater than that of the
shrub landscape. This infers that, with short-baseline datasets, the difference between the temporal

https://wcc.sc.egov.usda.gov
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decorrelation of snow-free forested and non-forested areas is dominated by the decorrelation induced
by the change in the dielectric constant of scatterers within the vegetation layer and not by the change
in the geometry of scatterers within the vegetation layer.

4.2. The Effect of Seasonality on Temporal Coherence

Figure 9 depicts coherence as a 3D surface and provides a visual comparison of coherence
evolutions of the two land cover types: forested and shrub. The x-axis of the plot is the relative
change in SAR intensity and ranges between 0 and 0.65, i.e., the maximum measured relative intensity
change, whereas the y-axis is the change in snow depth and ranges between 0 and 0.65 m. It is
shown that both land cover types, even with the short temporal baselines, can lose coherence due to
the changes in the dielectric constant and snow depth. Additionally, it is illustrated that the forest
loses coherence with a higher rate than the shrub landscape with changing backscattering (dielectric
constant), whereas the shrub landscape is more prone to decorrelation as the change in snow depth
between two images increases.

Table 3 shows statistical properties of the observed coherence values of the two land cover types.
The interferograms of each land cover type are subdivided into three sub-groups: summer, winter, and
cross-season interferogram categories. It is shown that the shrub landscape has a higher coherence
value than forest. Additionally, winter and cross-season interferogram categories possess the highest
and lowest coherence values in general.
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Table 3. Statistical properties, i.e., mean and standard deviation (SD), of interferogram categories.
The letters S, W, and C denote summer-summer, winter-winter, and cross-season interferogram groups.

Land Cover Group Mean SD SD/Mean

Forest
S 0.3433 0.0711 0.2070
W 0.3703 0.0680 0.1835
C 0.0896 0.0407 0.4546

Shrub
S 0.3905 0.0974 0.2495
W 0.4074 0.0836 0.2052
C 0.1522 0.0566 0.3720

Basically, the different scatterers’ type and structure within the forested and non-forested
resolution cells may result in different decorrelation processes when seasonal or sudden variations
in surface parameters and meteorological conditions occur. During a frozen season, a decreased
dielectric constant leads to reduced attenuation and a deeper penetration of electromagnetic waves
into the forest canopy [34–36]. Consequently, this will cause a decrease in backscatter and influence the
polarimetric signature and InSAR coherence [34–38]. In terms of coherence, between two winter images
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under stable frozen conditions, water content (soil moisture) changes do not occur, leading to low
temporal decorrelation for open areas [34]. This means that higher InSAR coherence is expected for
winter interferograms. Basically, over frozen forests, compared to the unfrozen condition, more
volumetric decorrelation is expected to occur as the perpendicular baseline increases, owing to
deeper penetration of electromagnetic waves into the frozen forest canopy [34]. However, with
the short-baseline interferograms of L-band ALOS-2 and future datasets with narrower orbital tubes,
the volumetric decorrelation induced by the deeper penetration of electromagnetic waves into the
frozen soil and the frozen forest canopy become low, resulting in higher winter coherences.

During the unfrozen condition, changing soil moisture, variable water content within the trees,
growth-related changes, and wind are among the major sources of temporal decorrelation [39,40].
The variation of the aforementioned surface parameters and meteorological conditions, in turn, results
in decreased temporal coherence of the unfrozen condition compared to the frozen condition [34].

4.3. Statistical Assessment on Models’ Performance

To statistically assess the improvements of models B and C, which have, respectively, one and two
more parameters compared to model A, we used F-test (explained, for example, in Davis, 2002 [41]):

F =
SSR1 − SSR2

SSR2

n− P2

P2 − P1
(7)

where SSR is the sum of squared residuals of the model, P is the number of free model parameters,
and n is the number of observations. If the calculated F-test value is greater than the upper-tailed
critical value of the F-distribution, FP2−P1,n-P2,α, then, with a 1 − α percentage confidence, the null
hypothesis is rejected, i.e., the improvement is statistically significant. The calculated F-test values and
critical F-distribution values with 99% confidence level (probability level of 0.01) have been presented
in Table 2. All the calculated F-test values are greater than the critical values at a 99% confidence level,
indicating that the improvements made by the new models are statistically significant.

5. Conclusions

Model C takes into account the long-term irreversible/long-term changes in scatterers’ geometry,
reversible/seasonal changes in scatterers’ dielectric constant, induced mainly by the change in soil
and biomass water content, and reversible/seasonal changes in scatterers’ geometry, i.e., the third
term, due to the change in snow depth. Shrub, in general is more stable than forest, as time lapses
and variations happen in the surface backscattering properties. Additionally, the results show high
coherence values for winter interferograms compared to summer ones owing to the stable condition
of the frozen season. Our model illustrates that snow depth difference between interferogram pairs
causes decorrelation, which is shown to mainly result from the change in the scatterers’ geometry.

This paper argues that with short-baseline interferograms of L-band ALOS-2 and future data
sets with narrower orbital tubes, the differences between temporal decorrelation rates of forest and
non-forested areas, in snow-free condition, is dominated by the change in the dielectric constant of
scatterers and not by the change in their geometry. It should be noted that the model introduced here is
based on L-band data and, therefore, might not be expanded to C-band or X-band InSAR observations.
The model provides accurate estimation of InSAR coherence for coniferous forested and shrub land
cover types. However, its accuracy over other terrain types should be assessed.
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