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Abstract: This work presents quantitative prediction of severity of the disease caused by Phytophthora
infestans in potato crops using machine learning algorithms such as multilayer perceptron,
deep learning convolutional neural networks, support vector regression, and random forests.
The machine learning algorithms are trained using datasets extracted from multispectral data
captured at the canopy level with an unmanned aerial vehicle, carrying an inexpensive digital
camera. The results indicate that deep learning convolutional neural networks, random forests and
multilayer perceptron using band differences can predict the level of Phytophthora infestans affectation
on potato crops with acceptable accuracy.

Keywords: UAV; remote sensing; Phytophthora infestans; multispectral; neural networks;
deep learning

1. Introduction

Late Blight is historically and economically the most important disease affecting potato (Solanum
tuberosum L.) crops worldwide [1]. Late Blight is caused by the Phytophthora infestans oomycete.
Most cultivated potato genotypes in Colombia are susceptible to Late Blight [2], and controlling
the disease requires a high input of pesticides. In countries where the occurrence of late blight is
persistent, as is the case of Colombia, growers assume that the pathogen is present and apply pesticides
prophylactically [3]. Phytophthora infestans (P. infestans, from now on) population diversity and disease
incidence has increased through the development of systemic fungicide resistance [1]. Hence, it is
important to perform a timely and reliable evaluation of P. infestans incidence in the crop to rationally
apply fungicide and to study Late Blight resistance of diverse potato genotypes. The evaluation of
severity of late blight disease is usually performed visually, by estimating the percentage of affected
foliage in the crop [4–6]. Visual evaluation of disease severity is expensive (requires an expert in the
field), time-consuming and lacks reproducibility (subjective).

Recently, a hyperspectral spectroradiometer was used to identify wavelengths most sensitive
to late blight infection, as well as to study four spectral plant indexes: Normalized Difference
Vegetation Index (NDVI), spectral ratios (SRs), Soil Adjusted Vegetation Index (SAVI), and red edge) [7].
The spectral signature of potato leaves was acquired under a controlled laboratory experiment. It was
found that in the visible region (400–500 and 520–590 nm), spectral differences between healthy and
diseased plants are small and do not follow any specific pattern [7]. Significant differences between
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healthy and diseased potato plants are noticeable in the near infrared (NIR) and 920–1050 nm spectral
bands [7]. The different vegetation indices studied show statistically significant differences at several
levels of late blight infection, red edge being the most sensitive vegetation index to late blight severity
of infection [7].

More recently, an unmanned aerial vehicle (UAV) carrying a hyperspectral camera (450–915 nm)
was used to evaluate 5 vegetation indexes (combinations of two and three wavelengths), as they
relate to late blight affectation [8]. The spectral signatures were acquired on the field, at the canopy
level. The best vegetation indexes using two spectral bands were ratio indexes (RI) and normalized
difference indexes (NDI), with one band centered at 530–570 nm (green) and the other at 670 nm
(red) [8]. Vegetation indices based on three spectral bands provide better discriminative potential
than those formulated using two bands. The best vegetation indexes using three bands were ratio of
difference indexes (RDI), with bands near 490 nm (cyan), 530 nm (green), and 670 nm (red) [8].

Besides cited previous work using hyperspectral images to detect late blight severity of affectation,
UAVs carrying an inexpensive RGB camera have been also employed to measure late blight severity of
affectation in potato crops [9,10].

Machine learning has emerged with big data technologies and high-performance computing
to create new opportunities for data-intensive science in the multidisciplinary agritechnologies
domain [11]. Machine learning is defined as the scientific field that gives machines the ability to
learn without being strictly programmed [11]. Recently, some review articles have been published
on machine learning and their applications on the agricultural sector, particularly pest and disease
control in arable farming [11–13]. State-of-the-art supervised machine learning algorithms have been
used in the past to detect diseases on crops [14–16]. Supervised methods allow learning models for
regression and classification using examples, i.e., images of healthy and diseased plants. In particular,
artificial neural networks (ANNs) have been recently used to predict the Area Under the Disease
Progress Curve (AUDPC) of tomato late blight infection [17]. ANNs have also been used in the past
to automatically detect disease from spectral images of plants [18,19]. ANNs can go beyond human
capacity to evaluate large data banks and relate them to specific desirable characteristics [17].

Hyperspectral cameras are very expensive and constitute a heavy payload to UAVs. Here, a
UAV carrying an inexpensive, lightweight RGB camera with a filter to capture the red edge and
part of the NIR band (680–800 nm) was used, based on the results indicated in [7] and the fact
that it might correlate better with early signs of late blight infection. In addition, state-of-the-art
machine learning regression algorithms was used to predict percentage of late blight affectation, from
multispectral images of potato crops, acquired at the canopy level. In particular, two types of artificial
neural networks were used: Multilayer Perceptron (MLP) [20] and novel deep learning convolutional
neural networks (CNNs) [21–23], as well as support vector regression (SVR) [24] and Random Forests
(RFs) [25]. Most machine learning algorithms tend to struggle with the high dimensionality and
computational complexity required to process natural images. CNNs are tailored to exploit specific
features found on images and scale better to cope with an image’s high dimensionality [26]. To our
knowledge, this is the first study aimed to predict severity of late blight affectation on potato crops
using multispectral remotely sensed images and state-of-the-art machine learning algorithms.

2. Materials and Methods

2.1. Experimental Design

In this study, 14 different potato (commercial and experimental) genotypes were planted on a
farm in Ventaquemada, Boyacá-Colombia, located at 5◦35′09”N, 73◦52′49”W and 2780 m.a.s.l. This is a
region with a high inoculum pressure of P. infestans. Three different treatments were applied to each
genotype: no fungicide application, calendar fungicide application and fungicide application through
integrated management (efficient, targeted application of fungicide and other preventive measures).
The experiment consisted of a split-plot design with three replications, for a total of 14 × 3 × 3 = 126
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different rectangular plots corresponding to 14 genotypes, 3 treatments, and 3 replications. Potato
plots were spaced 1 m on each spatial direction. On each plot, 10 potato seeds were planted spaced
0.4 m. Visual evaluation of percentage of P. infestans affectation was done 40, 55, 70, and 85 days after
planting, based on the disease progression [5,6].

2.2. Image Acquisition and Processing

Multispectral images of the potato crop were also taken 40, 55, 70, and 85 days after planting using
a low-cost 3DR IRIS+ quadcopter UAV with a Pixhawk autopilot and equipped with a GPS, flying
30 m above ground level. The IRIS+ drone was loaded with a modified Canon S110 digital camera
using a blue-green-NIR filter (Figure 1) and an angle of view of 00. This kind of UAV and digital
camera has been recently used for high-throughput plant phenotyping [27]. As in [27], the Canon
S100 settings were TV mode, which allowed setting of a constant shutter speed. The aperture was set
to be autocontrolled by the camera to maintain a good exposure level. Cannon CHDK software kit
(www.chdk.wkia.com) was used to automate Canon S100’s functionality. The CHDK script allowed
the UAV autopilot system to send electronic pulses to trigger the camera shutter. Spatial resolution
of the images taken is 0.8 cm [27]. The raw images of Canon S100 were pre-processed using Digital
Photo Professional (DPP) software developed by Canon (http://www.canon.co.uk/support/camera_
software/). This software also includes lens distortion correction, chromatic aberration, and gamma
correction [27].
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Figure 1. Transmission bands of the camera filter.

Geometric correction of each image is performed using ground control points (GCPs) with GPS
coordinates and the QGIS software (https://www.qgis.org/en/site/). Radiometric correction of
each image to reflectance values is performed using the empirical line method [28] and four colored
reference tarpaulins (with nominal reflectance values of 4%, 16%, 32%, and 48%), which reflectance
is measured on the ground using a PS-100 apogee spectroradiometer. Before radiometric correction,
dark pixel correction is performed by subtracting an image taken by the UAV with the camera
shutter closed, at the end of the flight. The geometrically and radiometrically corrected images are
combined to form an orthophotomosaic of the potato crop (Figure 2) using Agisoft Photoscan software
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(http://www.agisoft.com/). From the orthophotomosaic, rectangular images of each plot are extracted
manually and saved as TIF images (see Figure 2).
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Figure 2. Image acquisition methodology. (Left): drone, Center: orthophotomosaic, (Right):
plot images.

2.3. Ground Truth

Expert visual evaluation of severity of P. infestans under field conditions was done at the plot level
and for each of the four image acquisition campaigns. Disease severity was estimated by sampling at
random four plants on each plot and computing the average percentage of the disease-infected foliar
area [5,6]. Even though visual evaluation of the severity of P. infestans is susceptible to several error
sources such as diseased tissue presenting no visual symptoms or the presence of other diseases also
affecting foliar tissue [5], it will be considered here expert visual evaluation of late blight severity as
the ground truth against which prediction performance is evaluated.

2.4. Machine Learning Algorithms

Multilayer perceptron (MLP) and convolutional neural networks (CNNs) were implemented
in Python using Keras (https://keras.io/) deep learning library with Tensorflow (https://www.
tensorflow.org/tutorials/) backend. Keras allows easy and fast prototyping of deep learning neural
networks in Python. Support Vector Regression (SVR) and Random Forests (RFs) were implemented
in Python using the Scikit-learn machine learning library (http://scikit-learn.org).

The multispectral image dataset consists of 126 images (one for each plot, see Section 2.1) acquired
on each of the four image acquisition campaigns (Section 2.2) for a total of 126 × 4 = 504 rectangular
multispectral images (Figure 2). Since the number of pixels of each multispectral image is relatively
large (~104) and there are only 504 images, machine learning algorithms cannot be trained using
the whole plot images. Instead, a sliding window of size 50 × 40 pixels is used on each plot image,
moving with a step of 5 pixels along the shortest image dimension and 10 pixels along the longest
image dimension. This way, a dataset consisting of 748,071 multispectral overlapping patches of
size 50 × 40 pixels is obtained, thus reducing the number of multispectral pixels to be fed to the
machine learning algorithms, while significantly increasing the multispectral dataset. The size of
the sliding window and the steps along each axis were found as a tradeoff between increasing the
image size (which allows a more complete view of the plot) and increasing the ratio of number of
training images (samples)/number of features (pixels) per image, a required condition of machine
learning algorithms to avoid overfitting [29]. Given that each plot was visually evaluated for late blight
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percentage of affectation, all the overlapping patches on each plot get assigned this ground truth, for
training purposes.

The dataset is further divided into training, validation, and testing samples. The training samples
are the only samples used to train the machine learning algorithms. The training and validation samples
are used to select the so-called hyperparameters of the machine learning algorithms. The testing
samples are used to evaluate the performance of the machine learning algorithms. Since the testing
samples are not used to train or select the hyperparameters of the machine learning algorithm,
they provide an estimation of how the regression algorithms would perform on unseen data. Since there
are three replications of the experiment, each replication can be selected as testing dataset (~33.33%
of the data) and the other two replications (~66.66% of the data) are used to extract training and
validation datasets. Thirty percent of the 50 × 40 (patch) images were selected at random in two of
the replications as validation samples and the remaining 70% as training samples. Since there are
three replications, regression performance can be computed on each one of the replications, by using
the other two replications for training and validation, as explained before, which gives us a threefold
cross-validation of the performance of the machine learning algorithms used. We choose here stratified
cross-validation rather than bootstrapping to evaluate performance of the machine learning algorithms
implemented due to the fact that cross-validation tends to give conservative estimates of performance
(upper bounds) and it is computationally much cheaper than bootstrap, which tends to give overly
optimistic predictions on performance, due to the fact that in bootstrap there is a large overlap (63%)
between the training and testing samples [30].

The multispectral image dataset can be better exploited by considering also spectral differences,
band ratios, and dimension reduction methods such as principal components analysis (PCA). Hence,
besides the multispectral dataset of (patch) images of size 50× 40× 3, the following additional datasets
were created:

• The spectral differences between green and blue bands and between NIR and green bands. Hence,
we obtain a dataset of samples of size 50 × 40 × 2.

• A normalized difference vegetation index (NDVI) to obtain a dataset of samples of size 50 × 40.
Since we do not have separated red and NIR bands, we must use the NIR band together with
either the green or blue bands to compute the NDVI. Experimentally, we found better regression
performance using NDVI = (NIR − blue)/(NIR + blue).

• The two principal components of each original multispectral plot images were extracted, and the
windowing technique explained before can be used to obtain a new dataset consisting of samples
of size 50 × 40 × 2. More specifically, if a plot image is of size H × W × 3, where H is the
height in pixels, W the width in pixels and we have three channels, the image can be reshaped
as a matrix of size P × 3 (P = H × W). Choosing the first 2 principal components, the P × 3
dataset is dimension-reduced to a P × 2 matrix, which can be reshaped as an H ×W × 2 dataset,
from which overlapping patches of size 50 × 40 × 2 can be extracted.

Notice that previous three datasets are not images per se. Hence, these datasets were only used to
train MLP neural networks, SVR and RFs, but not to train deep learning convolutional neural networks,
since convolutional neural networks use specialized filters tailored to work with images [21,26]. We use
SVR and RFs only on the dataset that provided the best regression performance using MLP. Notice that
all the patch images can be directly fed to the CNNs since they directly ingest images. The multiband
images and datasets explained before must be reshaped as single-row vectors to be fed to the MLP,
SVR, and RFs algorithms.

As mentioned before, each machine learning algorithm has several hyperparameters that need to
be tuned to improve its performance, based on the training and validation datasets. In the case of MLP,
the hyperparameters are: learning rate, optimization algorithm, number of epochs, number of hidden
layers, and nodes on each layer. The last layer contains a single node that outputs a prediction of late
blight severity, learned from the training dataset.
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Good performance of MLP neural networks was found using two hidden layers containing half
the nodes of the previous layer. The best learning rate found was 0.01 using Adamax optimizer,
which is a variant of Adam optimizer using the infinite norm [31]. Ten epochs were enough to obtain
the best validation performance (after several epochs, validation performance starts to diverge while
training accuracy continues to improve, due to overfitting). Keras allows saving the best model
found by checking validation performance at the end of each epoch; hence, the validation dataset was
critical to avoid overfitting. Batch normalization layers [32] were added to each hidden layer. Batch
normalization allows faster training (using larger learning rates), makes the network less sensitive to
initialization and reduces overfitting. Dropout layers [33] were also added, with dropout probability
of 0.2, to further reduce overfitting. Figure 3 summarizes the MLP architecture. Default rectified linear
unit (RELU) activation layers were used, which are known to reduce training time of deep learning
neural networks [21], except on the last layer, where a linear activation layer was used; in order to
preserve the numerical learned output.
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The same hyperparameters used on MLP were used to train convolutional neural networks,
except the number of hidden layers. Since convolutional neural networks are a kind of deep learning
neural network, the number of hidden layers is relatively large compared to MLP. Figure 4 shows the
architecture of the convolutional neural network used. Notice that on Figure 4, 3D-like representation
of CNNs layers is used, since those layers are dealing with tensor data (multispectral images and
features), while MLP-like layers deal with vector data. Therefore, there is a flatten layer in CNNs that
transforms tensor-valued data to vector-valued data to be processed by the fully connected MLP layers.
Convolutional layers filter imaging data using feature detection kernels. Feature detection kernels of
size 3 × 3 were used on the first two convolutional layers, a size typically used on the first layers to
detect small features such as edges. Feature detection kernels of size 5 × 5 were used on the next two
convolutional layers to detect features of larger size.

Convolutional layers also use a certain number of filters. Twenty filters were used for the first
two convolutional layers and 40 filters for the last two convolutional layers. This number of filters was
found using the validation dataset. The max pooling layer down samples the image features to reduce
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dimensionality, while summarizing information on a small window. Typical max pooling layers [26]
with a window of size 2 × 2 were used.

Default hyperparameters on the support vector regression algorithm were used, except for the
kernel. Best results for SVR were found using a linear kernel. Default hyperparameters for the RFs
regression algorithm worked very well.
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3. Results

The mean absolute error (MAE) of the predicted percentage of late blight severity was optimized
for all datasets. The MAE rather than the root mean squared error (RMSE) was optimized, since it has
been argued that the MAE is more adequate to evaluate mean model performance than RMSE [34,35].
Even though machine learning algorithms are trained using 50 × 40 overlapping patches, extracted
from the corresponding plot images, predicting the percentage of P. infestans affectation at the plot
level is the required output to be able to compare to field visual assessment. Hence, the predicted
percentage of late blight severity on each testing plot (corresponding to one of the replications, not
used for training or validation) is obtained by averaging the predicted percentage of affectation on
all 50 × 40 overlapping patches extracted from each testing plot. The performance of MLP, SVR, RFs,
and CNNs was evaluated on the four datasets mentioned before (Section 2.4), in terms of the mean
absolute error (MAE), the root mean squared error (RMSE) and R-squared (R2) statistic. As indicated
before, the ground truth is the percentage of P. infestans of affectation, visually estimated in the field
following guidelines given by the International Potato Center (IPC) [5,6]. From now on, the ground
truth will be referred to as % affectation IPC.

Figures 5–8 compare the % affectation IPC against the % affectation predicted by MLP on the
multispectral dataset with bands NIR-green-blue, the dataset using NDVI, the dataset using band
differences, and the dataset using PCA decomposition; for each one of the replications.

The results shown on Figures 5–8 indicate that the best prediction performance of MLP was
achieved using band differences and the worst performance was obtained using NDVI. This could
be because the NDVI relates to foliar coverage, but there is not a direct relationship between foliar
coverage and the disease at early stages. Despite the best performance of MLP using band derivatives,
it can be noticed that the regression line between % IPC affectation and % affectation predicted, on the
second and third replications, has a large slope and intercept, resulting in higher % affectation predicted
when % IPC affectation is low and lower % affectation predicted when % IPC affectation is large.

Figure 9 shows the prediction result using SVR on the band differences dataset. From these results,
SVR performance in terms of MAE, RMSE, and R2 statistic is worse than the performance of MLP,
especially for the second and third replications.
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Figure 9. Percentage of P. infestans affectation using IPC methodology vs. estimated percentage of
affectation using SVR on the band differences dataset for (a) first replication, MAE: 13.84, RMSE: 17.12,
R2: 0.6651; (b) second replication, MAE: 22.45, RMSE: 27.16, R2: 0.1226; (c) third replication, MAE:
15.75, RMSE: 18.91, R2: 0.568. SVR: support vector regression.

Figure 10 shows the performance of RFs on the band difference dataset. Notice that RFs perform
better than MLP on the same dataset, for all three replications; although the slope of the regression line
is relatively large.
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Figure 11 shows the performance of CNNs on the NIR-G-B multispectral dataset. CNNs achieve
a significant reduction in the MAE, RMSE, and R2 statistic for all three replications compared to MLP
on the same data set (Figure 5). CNNs have also a low regression slope and intercept between the %
affectation IPC and % affectation predicted for all three replicates. Table 1 summarizes the results of
all methods in terms of cross-validation mean MAE, RMSE, and R2 statistic as well as its estimated
standard error, in parenthesis. From Table 1, the best results were obtained using Random Forests and
CNNs. Random Forests have the advantage of being the most stable (lower standard error) estimator,
but CNNs have the lowest slope and intercept regression estimator and achieves the lowest mean
MAE and RMSE, even though they did not do so well on the first replication. From these results
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it can be said that CNNs are better than RFs and MLP using band differences, roughly 66% of the
times given the fact that it was much better than RFs and MLP using band differences for two of the
three replications.
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Figure 11. Percentage of P. infestans affectation using IPC methodology vs. estimated percentage of
affectation using CNNs on the NIR-G-B multispectral dataset, for (a) first replication, MAE: 13.56, RMSE:
17.10, R2: 0.6114; (b) second replication, MAE: 10.83, RMSE: 13.93, R2: 0.8260; (c) third replication,
MAE: 10.83, RMSE: 13.93, R2: 0.8260. CNN: convolutional neural networks.
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Table 1. Summary of Regression Results.

Regression Method MAE RMSE R2

MLP (NIR-G-B) 16.37 (1.55) 23.25 (2.90) 0.47 (0.17)
MLP (NDVI) 18.71 (0.11) 21.98 (0.20) 0.44 (0.02)

MLP (band differences) 13.23 (0.70) 16.28 (0.70) 0.75 (0.02)
MLP (PCA) 16.60 (0.81) 21.87 (1.44) 0.48 (0.08)

SVR (band differences) 17.34 (2.61) 21.06 (3.09) 0.45 (0.17)
RFs (band differences) 12.96 (0.07) 16.15 (0.07) 0.75 (0.02)

CNNs (NIR-G-B) 11.72 (0.92) 15.09 (1.01) 0.74 (0.07)

4. Discussion

In Colombia, during last year a total of 132,708 ha of potatoes were planted; late blight is currently
a disease of major significance throughout the country. In the states with high potato crop production
such as Cundinamarca and Boyacá, growers report 22 to 26 fungicide applications per crop season
to control P. infestans, the maximum recommended by commercial brands is between 12 and 16
applications depending of the genotype and environmental conditions. On the other hand, part of
the diversity of potato genetic resources (2069 accessions) are maintained in the Potato Germplasm
Bank (PGB) located at the Colombian agricultural research corporation (AGROSAVIA), most of this
PGB has not yet been characterized for their resistance/susceptibility to P. infestans. In this context,
the development and optimization of a method for high-throughput screening of genotypes against
potato late blight under field conditions is essential to identify resistant genotypes of interest for plant
breeding, and to provide early warning tools for potato infected crops, supplying images that enable
precise and reliable statistics.

Our results indicate that visual estimation of late blight percentage of affectation can be replaced
by state-of-the-art machine learning algorithms such as CNNs, RFs, and MLP on band differences.
CNNs obtained a MAE of 11.72% with a relatively small variance; which seems acceptable given
the cost reduction in terms of avoiding an expert on the field going through the whole crop and the
repeatability of the method. Previous work [10] reports an R2 statistic of 0.73, low errors of 4–5% and
high errors of 20% for a mean RMSE of 17.1%. Hence, this work presents an improvement in terms
of the R2 statistic and improvement in terms of a smaller error variance. It should be pointed out
here that in this and previous work it has been assumed that the only plant stress is due to P. infestans.
Hence, further work is needed to discriminate other plant stressors (biotic and abiotic) that also may
affect the plant’s spectral signature and thus be confused with P. infestans.

One of the most important characteristics of late blight is that lesions and disease symptom
appear quickly. Typically, green brown or yellow spots which become necrotic regions may appear in
two or three days after infection with P. infestans depending on environmental conditions and potato
genotype susceptibility [36]. For this reason, applicability of late blight detection using remote sensing
coupled to machine learning algorithms in early warning and opportune control will depend on the
capacity of this method to detect late blight symptoms at early stages. As shown in Figure 11 and
Table 1, CNNs are better than RFs and MLP using band differences even when % IPC affectation
is low, resulting in a higher percentage of affectation predicted, this condition could be particularly
useful for an early warning system. On the other hand, at the beginning of the infection process
(i.e., first 48 h) there are no visual disease symptoms; however, changes in abundance of 17,000
transcripts and 1000 secreted proteins during first hours of P. infestans infection have been reported [37].
These transcriptomic, proteomic, and metabolomic alterations can result in changes of transpiration
rate, morphology, and leaf color, affecting the optical properties of the leaves. Our future research seeks
to exploit the potentiality of pre-symptomatic detection. Hence, hyperspectral imaging combined
with machine learning algorithms have a potential as a fast and non-invasive method to identify
asymptomatic infected plants [38].



Remote Sens. 2018, 10, 1513 15 of 17

A high diversity of protectant and systemic fungicides are used by farmers to control potato late
blight. In general, protectant fungicides application on potato foliage are made after 30 days of planting
with additional successive applications every 7–10 days. Applications of systemic fungicides are made
beginning 60 days after planting with up to 3 applications at 10 day intervals [39]. Nevertheless,
it is also important to consider that late blight control should be based on an Integrated Disease
Management (IDM) strategy, which in many opportunities is not the case for potato Colombian
farmers. IDM is a set of strategies based on monitoring, economic thresholds, and preventive tactics
to determine when disease treatment is needed [13]. Our study demonstrates the usefulness of
multispectral remote sensing images to monitor late blight; multispectral imagery taken with UAVs
could start after 30–40 days of planting with successive aerial images captured at 55, 70, and 85 days
after planting. Remote sensing monitoring could help to optimize IDM strategy and late blight disease
management decisions. Additionally, determination of percentage of P. infestans affectation using
images would allow study of genotype resistance with recommendations on the use fungicides on
focal points of the infection or the destruction of plots where the infection is advanced. Recently, crop
protection strategies based on machine learning have been used to generate recommendations and
integrated disease solutions [40]. This would avoid the indiscriminate use of fungicides and thus
development of pathogen resistance.

The method presented here requires the user to manually cut images from each plot to be fed to
the algorithms, this is clearly tedious and error prone. Further improvement of this technique would
include a preprocessing stage where the plots are extracted from the orthophotomosaic automatically.
This is not a trivial task, but CNNs have been successfully used in the past to extract objects from
images [41].

Even though we have presented here state-of-the-art machine learning algorithms trained to
identify percentage of P. infestans affectation, these algorithms can also be used to detect other diseases
or biotic stressors. These machine learning algorithms add to the knowledge base of machine learning
algorithms used for supervised crop disease detection [14–16].

5. Conclusions

Deep learning convolutional neural networks outperformed multilayer perceptron and support
vector regression in predicting severity of P. infestans affectation on potato crops, Random Forests
also performed remarkably well, followed by MLP using band differences. These results show the
possibility to reliably replace visual estimation of late blight severity on potato crops using multispectral
imagery taken with unmanned aerial vehicles and inexpensive digital cameras. This work also suggests
the use of deep learning convolutional neural networks, Random Forests, or MLP (band differences) to
detect and/or predict severity of disease in agriculture using remotely sensed multispectral images.
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