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Abstract: The Geostationary Ocean Color Imager (GOCI) of the Communication, Ocean,
and Meteorological Satellite (COMS) increases the chance of acquiring images with greater clarity
eight times a day and is equipped with spectral bands suitable for monitoring crop yield in the
national scale with a spatial resolution of 500 m. The objectives of this study were to classify
nationwide paddy fields and to project rice (Oryza sativa) yield and production using the grid-based
GRAMI-rice model and GOCI satellite products over South Korea from 2011 to 2014. Solar insolation
and temperatures were obtained from COMS and the Korea local analysis and prediction systems
for model inputs, respectively. The paddy fields and transplanting dates were estimated by using
Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products. The
crop model was calibrated using observed yield data in 11 counties and was applied to 62 counties
in South Korea. The overall accuracies of the estimated paddy fields using MODIS data ranged
from 89.5% to 90.2%. The simulated rice yields statistically agreed with the observed yields with
mean errors of —0.07 to +0.10 ton ha~}!, root-mean-square errors of 0.219 to 0.451 ton ha~!, and
Nash-Sutcliffe efficiencies of 0.241 to 0.733 in four years, respectively. According to paired t-tests
(x = 0.05), the simulated and observed rice yields were not significantly different. These results
demonstrate the possible development of a crop information delivery system that can classify land
cover, simulate crop yield, and monitor regional crop production on a national scale.

Keywords: GRAMI model; remote sensing; rice yield; satellite imagery; vegetation index

1. Introduction

Satellite-based remote sensing techniques have been applied for estimating crop yield throughout
the world [1-3]. Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite imagery have been used most widely to estimate crop
yield from a regional to a global scale [3-5]. These satellite sensors have advantages of high temporal
resolution, broad coverage, and suitable multi-spectral bands to acquire crop formation. However,
it is challenging to obtain invariably high-quality imagery data particularly in monsoon climate areas
because of many inadequate or missing pixels caused by frequent cloud coverage during a crop
growing season. For this reason, an image processing technique that retrieves the pixels contaminated
by clouds is an important issue for obtaining reliable spectral information on crop conditions.

Various approaches have been applied to minimize such contaminated pixels based on image
processing methods. The linear interpolation method using vegetation indices (VIs) is a traditional and
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straightforward technique used to retrieve the contaminated pixels by utilizing the characteristic that
VI values linearly increase or decrease according to crop growth [6-8]. A temporal image composite
method is an adequate way to reduce the cloud effects. This method selects the best possible pixels
during a specific period considering atmospheric conditions and combines them into one image [3,9].
Smoothing or curve fitting methods have been applied by using various statistical algorithms based
on spectral information [10-12]. Although all of these approaches have been proven to be practically
applicable, it is difficult to ensure reliable imagery data in the case of prolonged cloudy days [13,14].

Geostationary orbit satellite sensors are primarily designed for observation and forecasting of
weather conditions. These have a higher temporal resolution than Earth orbit satellite sensors such
as MODIS and AVHRR due to their continuous observation characteristic in specified regions [15,16].
This characteristic can increase the chances for obtaining clear satellite imagery by acquiring many
images in a single day than polar orbit satellites [14,17]. However, the imageries from these types
of satellite sensors have rarely been used to estimate crop yield due to a low spatial resolution
and insufficient spectral bands for monitoring crop spectral information. On the other hand,
the Communication, Ocean, and Meteorological Satellite (COMS), which is one of the geostationary
orbit satellites that observe the sea around the Korean Peninsula, is equipped with multi-spectral
sensors that can monitor spectral crop information with a moderate spatial resolution of 500 m.
The previous study compared Geostationary Ocean Color Imager (GOCI) products from COMS with
MODIS images [14]. They showed that the COMS data had a more stable seasonal variation and
recurrent image acquisition with less cloud cover than the MODIS data during a paddy growing
season. Therefore, the high temporal resolution of GOCI satellite imageries can be used for reliable
and stable estimation of potential crop yields.

For satellite-based monitoring of crop yield, an empirical approach using VIs from satellite data
has often been used because VIs have shown a strong correlation with crop yield [18-20]. The empirical
approach is widely applicable to various crops depending on the availability of observed crop yield in
the ground. The accuracy would be increased depending on the observed data. However, this method
tends to be applicable in regions where observed data is available because the accuracy in determining
yield relies on the observed data without crop biophysical parameters. Moreover, it is effective for
use in regions with the same weather conditions as those used for model validation [1]. Another
satellite-based approach is to use a light use efficiency (LUE) model that generally estimates the
fraction of photosynthetically active radiation (fPAR) from solar radiation and satellite-based VIs and
converts the fPAR into crop biomass or directly into crop yield [4,21,22]. Similar to the empirical
method, this approach may have inconsistent results in various weather conditions because only
one physiological process involved in solar radiation is reflected [23]. Recently, abnormal weather
conditions have increased due to climate change [24,25]. Thus, a more promising approach for
estimating crop yield is needed.

Conventional process-based (mechanistic) crop models such as the Decision Support System for
Agrotechnology Transfer (DSSAT) and the Cropping Systems Simulator (CROPSYST) simulate time
profiles of various crop growth conditions and yield as well as atmosphere—plant—soil relationship
factors considering biophysical parameters [26,27]. The disadvantage of these models is that it is
difficult to obtain the required various physiological crop parameters and a complete input dataset
spatially [28]. A modification effort using the Crop Environment Resource Synthesis (CERES-Wheat)
cereal crop simulation model was implemented to allow the model to accept observed leaf area
index (LAI) values and to adjust related parameters in the model as a function of LAI [29,30].
Similar approaches followed using the World Food Studies (WOFOST) model and the Simple and
Universal Crop Growth Simulator (SUCROS) model to improve the overall model performance [31-34].
Huang et al. [31] and Zhao et al. [33] reported an integration method of satellite-based remote sensing
information with the WOFORST crop model to improve regional wheat yield estimation. Launay and
Guerif [32] also reported an assimilation method of remote sensing images into the SUCROS model
to improve its performance for spatial application in terms of projecting the sugar beet production.
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Even though these procedures objectively calibrate the model to the actual field conditions for each
application, they still require the acquisition of the same inputs needed for the crop models. For this
reason, simple approaches based on a crop model incorporated with remote sensing data have been
suggested [1,35-37]. GRAMI, which is one such crop model, was designed to simulate gramineous
crop growth and yield based on canopy development and senescence determined from remote sensing
data [38]. This model has been used to simulate crop growth and yield by using remote sensing
imagery from satellites such as Landsat and RapidEye or an unmanned aerial system [39—42].

Although the GRAMI model has been proven to be reliable in previous studies, it has not been
systematically applied to broader regions such as an entire nation or a continental zone. Simulation for
a larger region using GRAMI is challenging because the model needs to use low or medium spatial
resolution satellite imagery for projecting practical crop yield in such a sector. This could produce
errors due to subpixel heterogeneity. Moreover, although the input requirement of the model is less
than that for other conventional processed-based crop models, it is difficult to construct grid-based
inputs such as planting date, solar insolation, and air temperature.

In this study, the GRAMI-rice model and GOCI satellite products that can steadily obtain crop
spectral information are used to simulate rice yield and production in South Korea. COMS-based solar
insolation and numerical forecast system-based reanalysis temperature data are used as weather inputs
of the model. The sub-objectives of the study are to (1) detect a spatial distribution of paddy fields
and transplanting dates based on satellite data, (2) calibrate the GRAMI-rice crop model incorporated
with the GOCI satellite imagery by using observed yields in counties of South Korea, and (3) apply the
calibrated crop model to the detected paddy fields to evaluate the simulated rice yield and production.

2. Materials and Methods

2.1. Study Area

The study region of interest includes all paddy fields of South Korea where rice is the most
important crop and is consumed as a staple, which produces ~397 MT per year, according to the Korea
Statistical Information Service (KOSIS) report (http:/ /kosis.kr/eng/). The average annual temperature
of the study area is 10 to 15 °C and the hottest month is August, which shows temperatures from 23
to 26 °C. The annual precipitation is 1200 to 1500 mm in the central region and 1000 to 1800 mm in
the southern region. In addition, 50% to 60% of the annual precipitation falls in the summer season.
The weather during the summer crop growing season is hot, humid, and cloudy due to high pressure
in the North Pacific Ocean. The overall weather conditions are suitable for cultivating paddy rice.

The Korea Ministry of Environment (KME) land cover data for 2013 (http://www.me.go.kr/
eng/web/main.do) shows that the main land cover classes in the study area are composed of ~64%
forests, 7.7% dry fields, 11.6% paddy fields, and 16.7% other land types (Figure 1). The paddy fields are
distributed mainly in the plains and are spread along the western and southern coastal areas. The entire
study region has highly complicated land cover properties including paddy fields, forests, dry lands,
and urban areas. According to the reported land cover data (https://egis.me.go.kr), only about 3% of
the unmixed paddy pixels occur within a 500 m grid or in more than 90% of the total paddy pixels.
The grid size is the spatial resolution of the GOCI imagery used in this study.

Of the total 97 counties with reported rice data from KOSIS, the data consisting of 73 counties
with more than 5000 ha of paddy areas were used for the evaluation of the model performance from
2011 to 2014. The other counties where the paddy areas are less than 5000 ha were excluded to
minimize potential errors considering the 500 m resolution of the satellite image. For calibration of the
crop model, 11 counties were selected considering the location and size of the paddy area (Figure 1).
The calibrated model was applied and evaluated for 62 counties. The rice production was simulated
and evaluated for the 73 counties.


http://kosis.kr/eng/
http://www.me.go.kr/eng/web/main.do
http://www.me.go.kr/eng/web/main.do
https://egis.me.go.kr

Remote Sens. 2018, 10, 1665 4 of 27

126°E 128°E 130° E
® Counties for the crop model calibration &
Z, Z
%] %
A N
Z, Z
o 4 Fo
O O
A A
Vg i
KME land covers
¢ I Forests

Z . I Crops Z,
o 4 * - [ [ Paddy Fo
g * [ Other E

126° E 128° E
Figure 1. Korea Ministry of Environment (KME) land cover map of South Korea with 5 m spatial
resolution (http://www.me.go.kr/eng/web/main.do). The red circles indicate counties with more

than 5000 ha of paddy areas, according to data obtained from the Korean Statistical Information Service
(KOSIS) for the calibration of the crop model.

2.2. Data Collection and Manipulation

2.2.1. KME Land Cover and SRTM DEM Data

In this study, the KME land cover data and the digital elevation map (DEM) from the Shuttle
Radar Topography Mission (SRTM) of United States National Aeronautics and Space Administration
(NASA) were used as ancillary data to detect paddy fields. The KME land cover data were produced
with a spatial resolution of ~5 m by using satellite imagery, which is a digital topographical map, and a
cadastral map. The data consisted of 22 land cover classes. Classification for the entire country of
South Korea was completed in 2007 and the data were continuously revised for some counties until
2013 (Figure 1). In the KME land cover data, only paddies were extracted and were resampled into
500 m spatial resolution by using the nearest neighbor resampling method.

NASA, the German Aerospace Center (DLR), and the Italian Space Agency (ASI) jointly conducted
the SRTM project. Its mission was to provide world DEM with a 90-m spatial resolution based on the
Interferometric Synthetic Aperture Radar (InSAR) data in which the raw data have a 30 m ground
resolution. However, the product was available only in the United States [43]. The SRTM DEM data
with 90 m spatial resolution were also resampled into 500 m resolution from which the surface slope was
calculated. The results were used to determine the threshold values for cultivatable surface conditions.

2.2.2. MODIS Surface Reflectance and Land Cover Products

For satellite-based detection of a spatial distribution of arable paddy fields, this study used MODIS
8-day composite surface reflectance (MYD09A1/Aqua satellite) and annual land cover products
(MCD12Q1/Terra and Aqua satellites; Table 1). The MYD09A1 product contains reflectance values
from bands 1 to 7. The selected data considered the effects of atmospheric water vapor and clouds
during the eight-day period with a 500-m spatial resolution. The product provides quality assessment
(QA) information of each band. In this study, the enhanced vegetation index (EVI) and the land surface
water index (LSWI) were calculated by using the MODIS reflectance data, as shown below [44,45].
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EVI = 2'5'(pNIR - Pred)/<pnir + 6'pred - 7'5'phlue + 1)/ (1)
LSWI = (Pm’r - Pswir) /(Pnir + Pswir>i (2)

where 0,04, Pvlues Prir, ANA Psyir are MODIS band 1 (red, 620-670 nm), band 2 (near infrared, NIR,
841-879 nm), band 3 (blue, 459-479 nm), and band 6 (short-wave infrared, SWIR, 1628-1652 nm)
reflectances, respectively. Although the MODIS 8-day composite data can reduce the effect of clouds
to some extent, abundant contaminated data can be present because the study area is usually cloudy
during the crop growing season. Simple linear interpolation was performed to average the indices
before and after the target indices. The insertion was conducted by using the QA cloud information
and the blue band reflectance defined as having a value higher than 0.2 in the cloud-contaminated
pixels (Figure 2a) [8,46].
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Figure 2. Seasonal variations in enhanced vegetation index (EVI) and land surface water index (LSWI)
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery at a paddy field in
South Korea: (a) comparisons between raw and interpolated indices (EVI and LSWI) and (b) conditions
for the detection of paddy fields and transplanting date. T is the threshold value of the LSWI.

Table 1. Collected and manipulated geospatial data information for the detection of the spatial
distribution of paddy fields and transplanting dates and for the simulation of rice yield and production
in South Korea from 2011 to 2014.

Purpose Data Type Produced Data Spatial Resolution
MODIS land cover Crop fields 500 m
Detection of paddies and MODIS reflectance Vegetation and water indices 500 m
transplanting dates SRTM DEM Elevation and slope 90 m
KME Paddy fields 5m
COMS GOCI Vegetation indices 500 m

Simulation of rice yields

. COMS MI Solar radiation 1000 m
and production

KLAPS Temperatures 1500 m
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The MCD12Q1 yearly product contains five land cover types characterizing different global land
cover classification schemes. The primary land cover type is composed of 17 land cover classes that
describe 11 natural vegetation classes, 3 developed and mosaicked land classes, and 3 non-vegetated
land classes using the International Geosphere Biosphere Program (IGBP) scheme. The other four
land cover classification schemes included the University of Maryland (UMD), MODIS-derived
LAI/fPAR, MODIS-derived net primary production (NPP), and plant functional type (PFT). These
MODIS products can be downloaded free of charge through the Level-1 and Atmosphere Archive and
Distribution System (LDDAS) of the Distributed Active Archive Center (DAAC).

2.2.3. KLAPS Temperatures

Temperatures used as input biophysical parameters of the GRAMI-rice model were acquired
from the Korea Local Analysis and Prediction System (KLAPS) provided by the Korea Meteorological
Administration (KMA). The KLAPS is a numerical forecasting system including a real-time operating
scheme to analyze and forecast weather conditions around the Korean Peninsula. The temperature
data were reproduced by reanalysis weather data with 1.5 km spatial resolution and 70 levels from
the ground surface up to the altitude where the atmospheric pressure reaches a 50 mbar (~40 km) in
the vertical direction. In this study, we used temperature data at the height of 2 m above the ground.
The weather data used include ground observation data from 470 Automated Weather Systems (AWS)
and layered atmospheric weather data from Aircraft Communications Addressing and Reporting
System (ACARS) [47]. Detailed information for the KLAPS procedure is given in Albers et al. [48] and
McGinley et al. [49].

2.2.4. COMS Reflectance and Solar Insolation

COMS, which is the first geostationary orbit satellite of South Korea, was developed by the Korea
Aerospace Research Institute (KARI) and launched on 27 June 2010. It is located at 36,000 km above the
ground surface and along the longitude of 128.2°E. The COMS has four distinctive payloads: the GOCI
for monitoring the ocean environment and short-term biological phenomena, the meteorological imager
(MI) for monitoring weather phenomena and sea surface temperature (SST), S- and L-transponders
for meteorology data dissemination, and the Ka-band transponder for communications. In this study,
the reflectance and solar insolation data used as input parameters for simulation of rice yields and
production were obtained from the GOCI and MI of COMS, respectively (Table 2).

Table 2. Information on the wavebands and the spatial resolutions of the Geostationary Ocean
Color Imager (GOCI) and Meteorological Imager (MI) sensors aboard the Communication, Ocean,
and Meteorological Satellite (COMS).

COMS Sensor Wavelength (um) Spatial Resolution

B1: 0.40-0.42, B2: 0.43-0.45
B3: 0.48-0.50, B4: 0.55-0.57

Goca B5: 0.65-0.67, B6: 0.68-0.69 500 m
B7: 0.74-0.76, B8: 0.85-0.89
B1: 0.55-0.80 1km
MI

B2: 3.50—4.00, B3: 6.50-7.00
B4: 10.30-11.30, B5:
11.50-12.50

4 km

GOCI reflectance data are provided as eight multi-spectral bands from visible to NIR with a
500 m spatial resolution every hour from 09:00 to 16:00 (local time). In this study, the GOCI reflectance
was corrected for atmospheric effects by using the second simulation of the satellite signal in the
solar spectrum (6S) model. The atmospheric inputs used in the 65 model were aerosol optical depth
(AOD), water vapor, and the total ozone from MODIS products such as MOD04, MODO05, and MODO7.
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In addition, the semi-empirical bidirectional reflectance distribution function (BRDF) was applied to
the GOCI reflectance data to correct the surface anisotropy effects. Among the eight-times hourly
reflectance data obtained during the day, the values least affected by the aerosol and cloud were
synthesized and reproduced as daily data. Further details of 6S and BRDF processing methods used
for GOCI reflectance data are described in Yeom et al. [50]. Four VIs were calculated from the corrected
GOClI reflectance to use as inputs of the crop model: normalized difference vegetation index (NDVI,
Rouse, 1974), renormalized difference vegetation index (RDVI), optimized soil-adjusted vegetation
index (OSAVI), and modified triangular vegetation index (MTVI). The equations for the four VIs are
shown below [51-54].

NDVI = (0uir = prea) / (Pnir + Pred), ®)

RDVI = (0pir — Pred)/\/ (Pnir + Pred), @)
OSAVI = (oNIR = Pred)/ (Pnir + Pred + 0.16), )
MTVI = 1.2:[1.2-(0pir — Pgreen) — 2.5 (Prea — Pgreen)], (6)

where pgreen, Ored, and py; are GOCI band 4 (green, 433-453 nm), band 5 (red, 650-670 nm), and band 8
(NIR, 845-885 nm) reflectances, respectively.

The COMS MI data were used to estimate daily solar insolation with a spatial resolution of 1 km
using the Kawamura [55] physical model modified by Yemo et al. [56]. The model uses an improved
cloud factor by using the visible reflectance and the solar zenith angle rather than the brightness
temperature. The model also estimates a more accurate solar insolation considering the surface slope
and elevation by using the DEM data. In the previous study, the estimated solar insolation data were
validated by using 37 ground station pyranometers and the results showed reliability for both clear
and cloudy sky conditions [56]. Details of the physical model and validation results are described in
Yeom et al. [56].

2.3. Detection of Paddy Fields and Transplanting Dates

For the detection of paddy fields, MODIS reflectance, and land cover products were used. MODIS
land cover data have been constructed and used worldwide and their reliability has been verified
through various studies [57,58]. In this study, croplands were extracted from the MODIS land cover
classes to detect the paddy fields among them. Croplands from the IGBP scheme that are primary
land cover of MODIS were evaluated to have 83.3% of the producer’s accuracy and 92.8% of the
user’s accuracy [57]. To ensure that the MODIS croplands include as many paddy fields as possible,
all croplands for the five land cover types for three years from 2011 to 2013 were composited into
one image. As shown in Table 3, the MODIS-based croplands included ~93% of all paddy fields.
This study focuses on detecting the transplanted paddy fields and removing the non-paddy fields
from the MODIS-based croplands.

Table 3. Information on cropland from five land cover classification schemes of the Moderate Resolution
Imaging Spectroradiometer (MODIS) MCD12Q1 product.

Type Number Land Classification Scheme Cropland Class Name from MODIS MCD12Q1 Product

1 IGBP glob.a.l Vegetatlon Cropland Croplan.ds/ natur.al
classification vegetation mosaic
University of Maryland
2 (UMD) Cropland
MODIS-derived LAI/fPAR Grasses/Cereal crops Broadleaf crops
4 MODIS-derived NPP Broadleaf crops Annual grass vegetation

5 Plant Functional type (PFT)  Annual broadleaf vegetation Broad-leaf crops
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Paddy rice has a unique style of growth in irrigated fields, which significantly differs from other
staple crops. On the basis of this feature, Xiao et al. [46] proposed a threshold method for detecting
paddy fields and transplanting dates using the interrelationships of EVI (or NDVI), LSWI, and the
threshold (T) of the LSWI, i.e., the condition of LSWI + T > EVI (Figure 2). EVI generally shows higher
values than LSWI in dryland crop fields. Moreover, the irrigated or transplanting period in paddy
fields temporally shows a reversal of the relationship between these indices because the short-wave
infrared (SWIR) used in LSWI (Equation (2)) is highly sensitive to surface water. The T value applied
to LSWI considers the mixed pixel effects of other land cover. The advantage of this approach is that
detecting both paddy fields and transplanting dates of rice can be obtained by using the simple relation.

In this approach, the T value is an essential factor in determining the accuracy of the detected
paddies, e.g., when the T value is too high, the detected paddy fields could be overestimated because
the detection condition can be met even at lower EVL. Xiao et al. [46] suggested 0.05 as a global T value.
However, other studies have reported that the T value should be changed, according to local land
cover characteristics or cropping systems [7,59,60]. Sun et al. [59] proposed 0.17 as the T value for
late transplanted rice and Peng et al. [7] used 0.21 for double-cropping fields. A method for applying
different T values to each pixel according to land cover heterogeneity has also been reported [60]. In the
current study, to determine the appropriate T value for the paddy fields in South Korea, the paddy
fields were detected by using the threshold method while increasing the T value by 0.01 (Figure 3a).
The value was determined to be the appropriate T value when the detected paddy field rates exceeded
90%, according to the KME-based paddy fields. MODIS-based reflectance values in 2013 were used to
determine the T values and those in 2011, 2012, and 2014 were used to evaluate the detected paddy
fields. The T value of this study area was determined as 0.16. Additionally, the transplanting dates
of rice were estimated as those in which the EVI had the lowest values within the period satisfying
the condition for detecting paddy fields (Figure 2b). Overall, the simulated transplanting dates in the
southern sectors were later than those in the northern sectors (Figure 4). The transplanting times in the
southern parts where temperatures are relatively high tended to be delayed because late-maturing
varieties of rice are grown in those regions. These rice varieties are suitable in the southern sectors due
to less sensitivity for the accumulation in growing degree days.

In the paddy fields detected using only the MODIS-based threshold method, misinterpretation
of paddy patches can occur due to the effects of mixed land cover or poor pixels caused by clouds.
The surface altitude and slope data from SRTM DEM were used to remove the erroneous paddy fields.
In high-altitude regions in the study area, it is difficult to cultivate rice because of the low temperatures.
Severe surface slopes also cause challenges in rice growth. Therefore, the threshold values of <90 m in
surface altitude and <3° in slope were considered by using the same method as the one employed to
select the T values (Figure 3b,c).
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Figure 3. Determination of the thresholds as functions of (a) land surface water index (LSWI), (b) surface
altitude, and (c) surface slope used to detect paddy fields. The red dotted lines show the determined
threshold values when the detected paddy rates exceed 90% while increasing the threshold values at
regular intervals.
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Figure 4. Detected spatial distributions of transplanting dates (day of year, DOY) for paddy fields
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images in South Korea in
(a) 2011, (b) 2012, (c) 2013, and (d) 2014.
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2.4. GRMAI-Rice Model for Simulation of Rice Yield and Production

The grid-based GRAMI-rice model was used with GOCI satellite imagery to simulate rice yield
and production for South Korea (Figure 5). The model was a modified and extended version to
spatially simulate rice growth conditions and yield based on the GRAMI crop model [61]. The GRAMI
model has three characteristics. First, the model can simulate crop yield by using only weather
and remote sensing data as input variables and simple crop parameters unlike other process-based
models that require many input variables and parameters. Second, it directly uses remote sensing
data to simulate crop state variables such as LAI and yield. This feature makes the model highly
dependent on remote sensing data. Therefore, reliable data acquisition is essential. Third, it employs
a “within-season” calibration procedure that performs re-initialization to adjust the initial LAI of a
crop and re-parameterization to modify the model parameters to determine an LAI seasonal curve
by minimizing the difference between observed and simulated values [62,63]. This procedure can
simulate daily LAI by using only several remotely spectral data for specific days during the crop
growth season [41,62,63]. Further details are described in Maas [62,63] and Ko et al. [41].

Rice field of interest
( Initialize state variables D\
] \
\ Climate
Accumulated growing- \ / data / / RS data /
degree-days \
\ v

I N —
\ Climate data VI data
‘ \ for each pixel for each pixel

Next \
p I
G : \
Compute daily increase in ‘\‘
above-ground dry-mass
Model
v > Sim.LAI [¢

Parameters

| Determine PAR absorption

Calculate daily change in LAI [a,b. ¢, Ly]
appearance and/or senescence
i el Re-parameterization
- if simulation and

( Simulated outputs >' measurement disagree

(a) (b)

Figure 5. Schematic diagrams of (a) the daily crop growth simulation process of the GRAMI model

and (b) the integrated crop modeling system used to project spatiotemporal crop productions based on
the model and remote sensing (RS) data. (LAI: leaf area index, PAR: photosynthetic active radiation,
and VI: vegetation index).

The GRAMI-rice model was formulated to reproduce and monitor potential crop production
information based on mathematical integration of remotely sensed information [41]. The crop model
can receive remote sensing data as an input to execute the within-season calibration procedure. In this
process, simulated crop canopy growth (LAI) is compared with the corresponding measured values to
enable agreement with the measurement of a minimal error based on the parameterization of specified
parameters. Four different coefficients (Lg, 4, b, and c) are employed in the model to describe the
growth processes of rice. The parameter values were obtained through a parameterization process
using the Bayesian method with a prior distribution chosen according to the estimates from previous
reports. The relationships between five VIs and LAI were framed by using the log-log linear regression
models as described later in this section.

The GRAMI-rice model includes four main processes for simulating rice growth and yield
(Figure 5a). The first formulation is to calculate the growing degree days (GDD) of rice by using
daily mean temperatures and a base temperature of rice. The second is to compute new dry mass
produced by the rice canopy. The third is to determine the absorption of daily incident radiation energy
by leaves using simulated LAI Lastly, the fourth is to determine LAI partitioning from a new dry mass.
The specific formulas are shown below. The accumulation of GDD was calculated by Equation (7) below.
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AD = Max[T — T}, 0], @)

where AD is the daily increase in GDD (°C), T is the daily mean temperature (°C), and Tj, is the base
temperature (°C) for rice, which was previously determined as 12 °C by Ko et al. [41]. The daily
increase in the above ground dry mass (AM, g) was calculated by using the equation below.

AM = ¢-Q, )

where ¢ is the radiation use efficiency (RUE) of rice and Q is the daily total photosynthetically active
radiation (PAR, MJ m~2). The rice ¢ was determined as 3.49 g MJ~! [41]. Q was calculated by
Equation (9) below.

Q=pBR (1 _ e—k~LAI>, )

where B is the fraction of total solar irradiance (or fPAR), R is the incident daily total solar irradiance
(MJ m~2), and k is the light extinction coefficient of rice. 8 and k were determined to be 0.45 by
Monteith and Unsworth [64] and 0.6 by Charles-Edwards et al. [65], respectively. The daily LAI
increase from new leaf growth (AL) was calculated by the equation below.

AL = AM-P; S, (10)

where P is the fraction of AM assigned to new leaves and S is the specific leaf area (m? g~ !). S was
determined as 0.016 m? g~ ! [41]. P; was calculated by the equation below.

P, = Max [1 -~ a-eb'D,o}, 11)

where a2 and b are parameters that control the magnitude and shape of the function and D is the
cumulative GDD (°C).
Rice yield (ton ha~!) was calculated by using the method below.

AG = P,-AM, (12)

where AG is the daily increase in grain, P; is the fraction of AM partitioned to grains, and AM is the
daily increase in AGDW from Equation (8).

P, = Max|1 — P,-ePvfGa 0], (13)

where P, is the dimensionless grain-partitioning parameter, p, and p;, are parameters that control the
magnitude and shape of the function, and fGp, is the grain partitioning factor based on the cumulative
GDD. The county rice productions (kt) were calculated by multiplying simulated rice yields by the
detected paddy areas (ha) in each county.

LAI is a three-dimensional concept while the reflectance of plants to solar radiation is a
two-dimensional concept because the canopies of crops are the top surface of the plants. In the
within-season calibration using the Bayesian method of parameter estimation, it was assumed that a
log-log regression model with a slope of approximately 2/3 could describe the relationship between
the reflectance and LAI On the basis of this concept, the correlations between LAI and four VIs such as
MTVI, NDVI, RDVI, and OSAVI were formulated by using log—log linear regression models. For each
VI, labeled ¢ =1, 2, 3, 4, and 5, respectively, an empirical model was formulated, which is shown below.

log(VI) = ayr + Bvrlog(LAL) + €4, (14)

where ayj, By, and € (~ N(0,0%,) represent intercept, slope, and error of the linear regression model,
respectively.
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The evolution of the LAI for each pixel was explained by the GRAMI-rice model using four
parameters 6 = (Ly, a, b, and c). These parameters were assumed to be generated from the prior
distribution ¢} ~ N(u, D), where the following transformations were used to guarantee that all four
parameters (L, 4, b, and c) ranged between 0 and 1.

B - a b c Lo
V= (V1,9 03, 04) = (log 1108 7 log 7 log 7— Lo)' (15)

(16)

elpl gle elp3 64’4 >

0=06(¥) = <1+e¢1’1+e¢z’1+e¢3’1+e¢4

Both the regression coefficients (Dég, Be, Uf), ¢ =1, 2, 3, 4, and 5 and the hyper-parameters (., D)
were obtained from the data collected in previous studies [40,41]. These include both the VIs and the
measured LAI values. The parameter p was specified by using the before-calibration values (Lg = 0.2,
a=325x10"1, b =1.25 x 1073, and ¢ = 1.25 x 1073). Parameter D is a diagonal matrix with all
diagonal elements equivalent to 0.5.

The following numerical procedure was adopted to obtain 8 for each pixel.

Step 1:  For each pixel, set i1 to serve as the initial estimation of 1.
Step2: Define LAIL; = G(t; 1) = G(t;6(¢)) and consider the objective function.

5 n _
2{12 Y~ (log VI — a; — Brlog G(; w>)2} +(@—p'D Y —p), (17)

(=1 % t=1

Step 3: Generate the simulated curve for each pixel from the estimated ¢ in Step 2.
Step4: Update y, D as the sample means and sample variances of the estimates in Step 2.

In this procedure, the parameter 1) was estimated by minimizing the above function and the
optimization was performed by using the POWELL optimization routine for one-point simulation
cases and the Quasi-Newton minimizer for two-dimensional simulation cases [66,67].

The GRAMI model is designed to assimilate remote sensing data based on the mathematical
procedures described above. The parameters of Ly, a, and b control growth and development of crop
canopies or LAI attributing to variation in crop yield and productivity (Figure 6). These parameters
are reparametrized to make agreement between simulation and observation by using the minimization
and optimization procedures.

The Crop Information Delivery System (CIDS) was previously designed as an extended version
of the GRAMI-rice model to project pixel-based geospatial crop growth and yield based on integration
with remote sensing images (Figure 5b). CIDS employs pixel-based remote sensing data and climate
data as system inputs and takes climate data either from a single weather station or multiple weather
stations (pixels) depending on the situation. The GRAMI-rice model is then implemented to simulate
crop growth in each pixel by using both types of input data. In CIDS, the GRAMI model simulates a
crop in each pixel by using both remote sensing data and climate data as inputs [41].

2.5. Statistical Analysis

Statistical evaluations of the detected paddy areas and the simulated rice yield and production
were performed by using two statistical indices called Nash-Sutcliffe efficiency (NSE) and the
root-mean-square error (RMSE), which is shown below.

1 (S — M)

NSE - 1 - P 27
21‘:1 (Mi - Mmean)

(18)
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P— 1 - PR . 2
RMSE = 1/El;(s, M;)?, (19)

where S;, M;, Mmean, and n denote the ith simulated value, the ith measured value, the mean value,
and the total number of values, respectively. The NSE ranges from —oo to 1 in which the accuracy of
the model performance is higher when the value is closer to 1. NSE values between 0 and 1 indicate
that the simulated results are acceptable while values less than 0 mean that measured values are more
dependable [68]. RMSE is a widely used measure of the difference between observed and simulated
(or predicted) values. Values closer to 0 indicate closer agreement between the simulated and observed
values. The two-paired t-test, which is a statistical analysis technique that compares the mean of two
paired groups, was also performed. The observed rice dataset for the evaluation of the results was
collected from KOSIS.
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Figure 6. GRAMI model sensitivities: responses of Leaf Area Index, LAI (a) and yield (b) to three
parameters to control leaf growth and development, i.e., initial LAI (Lg), a, and b.

3. Results

3.1. Estimated Spatial Distribution of Paddy Fields and Transplanting Dates

Paddy fields and transplanting dates of rice were estimated by using the approach proposed by
Xiao et al. [46] prior to simulation of the rice yield and production using the GRAMI-rice model and the
GOCI imagery. The threshold values of LSWI T, surface altitude, and surface slope were determined
by using the KME-based paddy fields and MODIS-based spectral indices in 2013. In comparison
with the KME-based land cover data, the overall accuracy for paddy and non-paddy fields was
90.2% in 2013. The overall accuracies when applying the determined thresholds in 2011, 2012, and
2014 were 89.5%, 90.1%, and 89.5%, respectively. In comparison with spatial distribution patterns
between the KME-based and detected paddy fields, the broadly distributed paddy fields were in close
agreement (Figure 7). However, scattered small paddy fields especially those situated near forests
were poorly matched.
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(b)

Figure 7. Comparison of spatial distributions of paddy fields between (a) the Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery-based detection map in 2013 and (b) the Korea Ministry
of Environment (KME) land cover classification map in South Korea.

Additionally, the detected paddy areas were evaluated by using the observed paddy areas of
more than 5000 ha in 73 counties obtained from KOSIS (Figure 8). The results showed that RMSE
and NSE were 0.3982 x 10 ha and 0.154 in 2011, 0.4266 x 10* ha and 0.057 in 2012, 0.4755 x 10* ha
and —0.251 in 2013, and 0.4592 x 10* ha and —0.198 in 2014, respectively (Table 4). Although the
results in 2013 and 2014 disagreed somewhat, the paired ¢-tests revealed no significant differences
between the observed and MODIS-derived paddy areas in which the p-values ranged from 0.331 to
0.980 in four years. Moreover, the observed and detected paddy areas showed high linearity in all
four years in which the coefficient of determination (1?) ranged from 0.752 to 0.773 (Figure 8). In the
comparison of anomalies in the paddy areas, there were larger anomalies in the estimation than those
in the observation (Figure 9). While some yearly variations exist in the anomalies of the estimated
paddy areas, the mean and median values of the anomalies did not deviate from the yearly mean and
median values of the estimated paddy areas.
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Figure 8. Cont.
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Figure 8. Comparisons of estimated paddy areas derived from Moderate Resolution Imaging

Spectroradiometer (MODIS) images and the observed paddy areas from the Korean Statistical
Information Service (KOSIS) data in South Korea in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.
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Anomalies in the paddy areas estimated from Moderate Resolution Imaging

Spectroradiometer (MODIS) images and observed from the Korean Statistical Information Service
(KOSIS) data in South Korea in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.

Table 4. Error statistics of root mean square error (RMSE), Nash—Sutcliffe efficiency (NSE), and paired

t-test between observed and estimated paddy areas in 73 counties of South Korea with more than

5000 ha of paddy areas from 2011 to 2014.

Year Observation Estimation RMSE NSE t-Test

- x10* ha - - p-----
2011 0.931 0.934 0.3982 0.154 0.980
2012 0.932 0.959 0.4266 0.057 0.790
2013 0.917 0.982 0.4755 —0.251 0.538
2014 0.900 1.001 0.4592 —0.198 0.331
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3.2. Evaluation of Simulated Rice Yields

The GRAMI-rice model was calibrated using observed rice yields in 11 counties and was
evaluated using those in 62 counties with more than 5000 ha of paddy areas in South Korea (Figure 1).
The simulated rice yields were statistically in good agreement with the observed yields in the 11
counties (Figure 10). The RMSE and NSE values were 0.284 ton ha—! and 0.627 in 2011, 0.324 ton ha~!
and 0.389 in 2012, 0.219 ton ha~! and 0.733 in 2013, and 0.622 ton ha~! and 0.692 in 2014, respectively
(Table 5). According to the paired t-tests, the observed and simulated rice yields showed no significant
differences with p-values of 0.732, 0.628, 0.545, and 0.692 in 2011, 2012, 2013, and 2014, respectively
(Table 4).

10

Simulated yield (ton ha-!)

0 t t t t
0 2 4 6 8 10
Observed yield (ton ha'!)

Figure 10. Comparison of observed and calibrated rice yields in 11 counties of South Korea with more
than 5000 ha of the paddy areas from 2011 to 2014. The dashed lines represent linear regression fitting
lines between the observed and simulated yields.

Table 5. Error statistics of root mean square error (RMSE), Nash—Sutcliffe efficiency (NSE), and a
paired t-test between observed and simulated rice yields in 11 counties of South Korea with more than
5000 ha of paddy areas from 2011 to 2014.

Year Observation Simulation RMSE NSE t-Test

- ton ha™1 - e p -
2011 6.64 6.71 0.284 0.627 0.732
2012 6.52 6.43 0.324 0.389 0.628
2013 6.75 6.63 0.219 0.733 0.545
2014 7.00 7.11 0.306 0.622 0.692

The calibrated GRAMI-rice model was applied to the paddy fields detected by using the
MODIS-based threshold method to project the spatial distribution of rice yield from 2011 to 2014
(Figure 11). Simulated yields were higher in the counties distributed in the central western region.
In the northern and northeastern areas, simulated yields were relatively lower. A comparison of the
observed and simulated rice yields for the 62 counties (Figure 12) revealed RMSE and NSE values
of 0.374 ton ha~! and 0.356 in 2011, 0.451 ton ha~! and 0.486 in 2012, 0.326 ton ha~! and 0.389 in
2013, and 0.441 ton ha~! and 0.241 in 2014, respectively (Table 6). According to the paired t-tests,
the simulated rice yields did not differ significantly from the observed yields with p-values of 0.404,
0.296, 0.815, and 0.392 in 2011, 2012, 2013, and 2014, respectively (Table 6).
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Figure 11. Spatial distributions of simulated rice yield using the GRAMI-rice model and geostationary

ocean color imager (GOCI) products in South Korea in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.
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Figure 12. Comparison of observed and simulated rice yield in 62 counties of South Korea with more

than 5000 ha of the paddy areas from 2011 to 2014. The dashed lines represent linear regression fitting

lines between the observed and simulated yields.

Table 6. Error statistics of root mean square error (RMSE), Nash—Sutcliffe efficiency (NSE), and paired

t-test between observed and simulated rice yields in 62 counties of South Korea with more than 5000 ha

of paddy areas from 2011 to 2014.

Year Observation Simulation RMSE NSE t-Test

- ton ha—! - el e
2011 6.58 6.65 0.374 0.356 0.404
2012 6.36 6.26 0.451 0.468 0.296
2013 6.77 6.75 0.326 0.389 0.815
2014 6.86 6.77 0.441 0.241 0.392

3.3. Evaluation of Simulated Rice Production

The simulated rice production in 73 counties with more than 5000 ha from 2011 to 2014 was
calculated by using the simulated rice yield for each county and the estimated spatial distribution of
the paddy fields (Figure 13). Overall, the simulated rice production in the western counties was higher
than that in all other counties especially in the mid-western counties where the simulated rice yield
was also higher. The paddy patches in the entire nation were distributed mainly in the plains and were
stretched along the western and southern coastal regions. The spatial distribution of the simulated rice
production effectively reflected the spatial characteristics of the plains in the entire study area.
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Figure 13. Spatial distributions of simulated rice production using the GRAMI-rice model and the
geostationary ocean color imager (GOCI) products in 73 counties of South Korea with more than 5000
ha of paddy areas in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.

A comparison of the observed and simulated rice production in 73 counties with more than
5000 ha in the study area (Figure 14) revealed RMSE and NSE values of 27.98 kt and 0.151 in 2011, 25.23
kt and 0.167 in 2012, 30.71 kt and —0.002 in 2013, and 33.00 kt and —0.123 in 2014, respectively (Table 7).
In 2013 and 2014, the simulated rice production did not closely correspond to the measurements,
which shows negative NSE values. However, according to the paired ¢-tests, no significant differences
were noted between the observed and simulated rice productions with p-values of 0.893, 0.908, 0.579,
and 0.337 in 2011, 2012, 2013, and 2104, respectively. Anomalies were larger in the estimation than the
observation (Figure 15). The mean and median values of the anomalies did not deviate from the yearly
mean in both the estimation and observation data while some yearly variations exist.
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Figure 14. Comparison of observed and simulated rice production in 73 counties of South Korea with
more than 5000 ha of the paddy areas in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.
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Figure 15. Anomalies in the simulated and observed production in 73 counties of South Korea with
more than 5000 ha of the paddy areas in (a) 2011, (b) 2012, (c) 2013, and (d) 2014.
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Table 7. Error statistics of root mean square error (RMSE), Nash—Sutcliffe efficiency (NSE), and paired
t-test between observed and simulated rice productions in 73 counties of South Korea with more than
5000 ha of paddy areas from 2011 to 2014.

Year Observation Simulation RMSE NSE t-Test

- kt - m—— p —
2011 61.84 62.77 27.981 0.151 0.829
2012 59.37 60.10 25.227 0.167 0.908
2013 62.52 66.59 30.712 —0.002 0.579
2014 62.58 69.92 33.003 —0.123 0.337

4. Discussion

The current study on the paddy area, the rice yield, and rice production focused on 73 counties
in South Korea while KOSIS provided all of the data for a total of 97 counties. The other 24 counties
were purposely excluded in this study because they contain many relatively small paddy fields. It is
assumed that this issue could have resulted in undetected paddy fields, which might have affected
the overall evaluation results. According to the analyses of RMSE and NSE, the paddy fields and
production typically were not effectively reproduced in 2013 and 2014 (Tables 3 and 6). Since the rice
production was based on classified paddy pixels and simulated yield, the production accuracy was
dependent on that of the estimated paddy fields and the simulated yield. The MODIS-derived paddy
areas did not thoroughly agree with the observed paddy areas. Thus, the comparison results between
the simulated and observed productions were similar to the evaluation results for the paddy areas
(Figures 7 and 12). Therefore, the simulated production errors can be explained by the disagreement of
the MODIS image-based paddy fields with the actual paddy fields. The leading cause of the undetected
paddy fields is attributable to the complicated land cover characteristics of the study area and the
limitation of the satellite imagery with a coarse spatial resolution of 500 m. If a KME land cover map
with a fine spatial resolution of 5 m is used, the rice yield and production could be simulated for most
of the counties. Nevertheless, there are two reasons for detecting paddy fields using satellite imageries.
The first is because the KME land cover data used in this study are updated at a quite slow cycle
because they are obtained through direct supervised classification using various data points with high
spatial resolution from aircraft or satellite platforms. Therefore, it is difficult to reflect seasonal changes
in the spatial distribution of paddy patches. The second is attributed to a possible mismatch between
the KME land cover map and the spectral information from satellite imagery. Paddy fields of the
KME land cover data may not represent typical seasonal patterns of satellite-based VIs due to mixed
pixel effects by various land cover types in the satellite images. Even if a reasonable number of paddy
patches is shown within a 500 m pixel of a set of satellite images used for simulation, the simulated rice
yield may not represent an actual value when the seasonal characteristics of rice cannot be expressed
by using the same satellite data. If the seasonal patterns deviate from the distinctive patterns, errors
can be severe because the GRAMI-rice model is highly dependent on remote sensing data [41,42].
Therefore, direct estimation of paddy fields in the area of interest using satellite imagery with the same
spatial resolution would contain fewer errors for simulated yield using the crop model.

Despite the fact that using GOCI data can provide a more stable seasonal pattern and was used as
the primary input variable for the GRAMI-rice model, the current study used MODIS data to detect
the distribution of paddy fields. The reason is that paddy field has a unique characteristic of irrigation
and MODIS LSWI is a very useful index to catch the irrigation. Besides detection of irrigation can
be used to estimate the timing of the rice transplanting (beginning of the rice growth), which is an
essential input of the crop model for the simulation of the yield. Another reason is that the irrigation
period is not a monsoon season (from the middle of June to the end of August) so the MODIS data
can provide relatively cloud-less VIs. There have been many studies using only a time series pattern
of VIs without the LSWI to detect the paddy fields [5,69-71]. These features include maximum VIs
values in the heading period, crop growth rates, or the growing period based on the seasonal patterns
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of the VIs. However, these approaches are not suitable for regions with many mixed pixels such as the
current study area because the spectral characteristics of crops can be lost. However, the LSWI-based
approach used in this study is highly sensitive to irrigation water, which makes it relatively accurate
for paddy detection in mixed land cover regions [60,72]. An additional approach is available for
using GOCl-based EVI (or NDVI) and MODIS-based LSWI. However, it requires further verification
because the spectral response characteristics of the GOCI data are somewhat different from those of the
MODIS data [14,50]. In addition, this approach may contain errors caused by a projection difference
between both imagery types. Despite these reasons, using MODIS and GOCI imagery together might
increase the accuracy of paddy detection in future research because GOCI images can provide stable
seasonal VIs.

Scattered paddy patches with a small scale were not detected well in the MODIS-based paddy
tields mainly because of the coarse spatial resolution of MODIS images. Although the KME land cover
data were resampled into a spatial resolution of 500 m, they still reflected small-scale paddy fields
because they are based on a spatial resolution of 5 m. It might be unreasonable to compare the two
dissimilar data points with such variance in spatial resolution. In previous studies, evaluation was
performed mainly by comparing the paddy area rather than spatial distribution [8,46,73,74]. However,
because evaluation of spatial distribution accuracy is apparently a necessary factor, development
of a statistical evaluation technique for comparing data with different spatial resolutions is needed.
Another reason is that the scattered paddy fields are distributed near forests with a small scale, which
can be removed together in the process of eliminating non-paddy fields by using the thresholds for
surface altitude and slope. In this study, the thresholds were defined as paddy fields exceeding 90% of
the total paddy fields because non-paddy fields increase inversely if the threshold criterion is higher.
The most challenging aspect of the approach using thresholds is how to determine an appropriate
threshold value that can vary depending on land cover composition or land surface characteristics of
the study area [7,60]. This study used thresholds that can ignore small paddy fields in consideration
of the coarse spatial resolution of MODIS images. However, when using satellite images of a higher
spatial resolution or those applied to other regions, the thresholds can be different. In addition, the
KME-based paddy fields include fallow land while MODIS-based paddy fields can detect only arable
land, which also results in an error.

The simulated rice yields were in statistically acceptable agreement with the observed yields
in most counties of South Korea from 2011 to 2014. Some error was caused apparently by subpixel
heterogeneity. However, the simulated rice yields were similar to the corresponding observed values,
which demonstrates relatively high reliability. The results of the current study are comparable
with those of earlier studies using the GRAMI model [39-42]. Although the previous evaluated
the performance of the GRAMI model in farm fields or small-region to mid-region scales, the current
study focuses on the application at the scale of an entire nation. Therefore, the simulation outcomes
using the GRAMI model and satellite imagery would be potentially applicable for crop management as
a decision support system in various fields and regions and can provide crop productivity information
for an entire nation.

According to the statistical analyses for the simulated rice yield by year, RMSE was the highest
in 2012 at 0.451 ton ha—! and NSE was the lowest in 2014 at 0.241. The simulation errors in 2012
were higher in southern counties while those in 2014 were higher in the northern counties (Figure 14).
Drought was severe in 2012 and 2014 (data not shown), according to a report by the National Drought
Information Analysis Center (NDIAC) of South Korea. In 2012, the drought occurred throughout the
country from May to June. As a result, the observed rice yield in the southern region was affected
severely, which resulted in a yield lower than that in other years. In 2014, the drought had a severe
influence in the northern sectors. It was assumed that the model could not effectively simulate
conditions when the rice yield was lower than average or when the values deviated from the yields
used in calibration.
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The input parameters used in the model can result in potential error factors. Among them,
the parameters for the relationships between specific VIs and LAI are crucial factors that can have an
essential impact on the simulation results. Doraiswamy et al. [1] reported that the relationship between
canopy NDVI and LAI used in the calibration procedure might not be consistent in all applied research
areas due to differences in soil characteristics, plant populations, and other factors. Ko et al. [41]
and Moulin et al. [36] reported that the error can be severe if the collected relationships between LAI
and VIs exceed the range. To minimize this issue, log—log linear regression models were introduced
to formulate the correlations between LAI and four VIs such as MTVI, NDVI, RDVI, and OSAVI
collectively. It was presumed that a log-log regression model with a slope of approximately 2/3 could
describe the relationship between reflectance (VI) and LAI The GRAMI-rice model is theoretically
incorporated with a Bayesian method for parameter estimation to facilitate an agreement between
simulations and observations based on the Quasi-Newton optimization procedure for two-dimensional
simulation cases [67]. The current parameter estimation method was considered to be favorable for
integrating various remote sensing data into crop models that have a strong dependence on input LAI
from remotely sensed information. The solid assimilation of the current GRAMI model with remote
sensing data can offer distinct benefits in several ways. First, the current approach allows a simple
input condition, which employs only the existing observations that characterize the environmental
conditions. Second, the optimization method enables the GRAMI model to improve the simulation
performance. Third, the GRAMI model can be combined with remotely sensed information from
various platforms such as an unmanned aerial system (UAS) and operational optical satellites including
sensors of various spatial resolution [14,40,42]. Lastly, the model is applicable for any region of interest
on the Earth’s surface depending on the availability of satellite imagery. However, limitations include
inadequate representation of remotely sensed information as well as restricted observations available
during the crop growing season. These limits can eventually cause some level of disagreement between
simulations and observations. Although some limitations in the GRAMI model exist including
a steady dependence on the remote sensing data needed to accomplish the modeling mentioned
above, the requisite of input parameters and variables has significant implications especially for
inaccessible and data-sparse regions. In such regions, this type of crop model is particularly significant
because it is almost impossible to monitor or project the crop productivity without using operational
satellite imagery.

5. Conclusions

In this study, regional rice productions were estimated from detected paddy fields and simulation
of rice yield for 73 counties of South Korea from 2011 to 2014. The paddy fields were classified
using MODIS imagery and the rice yield was simulated by using the GRAMI-rice model combined
with GOCI imagery. Despite the subpixel heterogeneity of satellite images because of coarse spatial
resolution, the overall accuracy analysis results were statistically acceptable and reasonable considering
the national scale of the study. Therefore, this study may help manage staple food production in
the country by providing an accurate understanding of the current circumstances for the regional
crop productivity based on the crop model integrated with GOCI images. The GOCI satellite can
continuously and reliably obtain surface reflectance in the Northeast Asia region near the Korean
Peninsula. It is believed that the combination of the crop model and GOCI imagery could help
implement diagnostic information monitoring and can offer a delivery system that can project crop
growth conditions and monitor regional crop yield and production in Northeast Asia.
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