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Abstract: Forest fires are a major source of ecosystem disturbance. Vegetation reacts to meteorological
factors contributing to fire danger by reducing stomatal conductance, thus leading to an increase
of canopy temperature. The latter can be detected by remote sensing measurements in the thermal
infrared as a deviation of observed land surface temperature (LST) from climatological values, that
is as an LST anomaly. A relationship is thus expected between LST anomalies and forest fires
burned area and duration. These two characteristics are indeed controlled by a large variety of
both static and dynamic factors related to topography, land cover, climate, weather (including those
affecting LST) and anthropic activity. To investigate the predicting capability of remote sensing
measurements, rather than constructing a comprehensive model, it would be relevant to determine
whether anomalies of LST affect the probability distributions of burned area and fire duration. This
research approached the outlined knowledge gap through the analysis of a dataset of forest fires in
Campania (Italy) covering years 2003–2011 against estimates of LST anomaly. An LST climatology
was first computed from time series of daily Aqua-MODIS LST data (product MYD11A1, collection 6)
over the longest available sequence of complete annual datasets (2003–2017), through the Harmonic
Analysis of Time Series (HANTS) algorithm. HANTS was also used to create individual annual
models of LST data, to minimize the effect of varying observation geometry and cloud contamination
on LST estimates while retaining its seasonal variation. LST anomalies where thus quantified as
the difference between LST annual models and LST climatology. Fire data were intersected with
LST anomaly maps to associate each fire with the LST anomaly value observed at its position on
the day previous to the event. Further to this step, the closest probability distribution function
describing burned area and fire duration were identified against a selection of parametric models
through the maximization of the Anderson-Darling goodness-of-fit. Parameters of the identified
distributions conditional to LST anomaly where then determined along their confidence intervals.
Results show that in the study area log-transformed burned area is described by a normal distribution,
whereas log-transformed fire duration is closer to a generalized extreme value (GEV) distribution.
The parameters of these distributions conditional to LST anomaly show clear trends with increasing
LST anomaly; significance of this observation was verified through a likelihood ratio test. This
confirmed that LST anomaly is a covariate of both burned area and fire duration. As a consequence,
it was observed that conditional probabilities of extreme events appear to increase with increasing
positive deviations of LST from its climatology values. This confirms the stated hypothesis that LST
anomalies affect forest fires burned area and duration and highlights the informative content of time
series of LST with respect to fire danger.
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1. Introduction

Forest fires are a source of significant ecosystem damage at global scale, as they affect the
biogeochemical cycle, are a source of atmospheric emissions, alter the net carbon balance, disturb forest
structure and cause long-term changes in soil properties [1–5]. Fires also condition anthropic activities
as they threaten human lives, have a negative effect on quality of life and cause economic losses [6–8].
Increasing concern derives from the observation that climate change is negatively affecting spatial and
temporal patterns of fire disturbance [9–12].

In Mediterranean ecosystems, prolonged droughts and heat waves create the preconditions
for increases in frequency and intensity of forest fires [13,14], the underlying mechanism being the
reduction of live and dead fuels moisture content as a response of the soil-plant system to increased
vapor-pressure deficit [11,15,16]. Vegetation response varies with species as well as with forest structure
and soil/terrain characteristics and it is determined by evapotranspiration [17–19]. The moisture of
dead fuels, which include the organic elements of forest litter such as senescent grasses, dry leaves,
small twigs and compacted organic material in the topsoil, is affected by weather variations as well
and it is regulated through evaporation [20–22]. The moisture content of both alive and dead fuels are
thus affected by weather forcing and indeed vegetation stress status has been found to be related to
some meteorological drought indexes, which in turn are related to moisture content of the largest size
classes of dead fuels [14,23–27].

The vegetation transpiration regulation mechanism reacts to water stress conditions by reducing
stomatal conductance, thus leading to an increase of canopy temperature [28–30]. This phenomenon
can be detected by satellite measurements in the thermal infrared and has been widely used in the
development of methodologies based on the satellite retrieval of land surface temperature (LST) to
map vegetation stress conditions [31–35]. As moisture content has a direct relationship with live
fuels ignitability and flames propagation [36–39], a relationship between LST and forest fires may be
expected [40–42]. Indeed, several approaches use LST in association with optical spectral indexes of
vegetation greenness or moisture content to construct physically based or empirical fire danger rating
systems [43–48]. Some researchers used LST to model energy budgets [40,49,50] or to estimate heat
energy of pre-ignition [51] and predict fire occurrence.

Little research was conducted to relate LST to fire characteristics. Post-fire LST was used to
quantify burnt severity either alone [52–54] or in conjunction with optical data [55,56]. Pre-event LST
was used, along with other factors, to model burned area but results were ambiguous [57]. While
evidence supports the hypothesis that higher surface temperature is associated with an increased
fire occurrence [58–60], no such relationship was previously investigated against burned area or
fire duration.

Burned area is indeed controlled by a large variety of both static and dynamic factors, essentially
falling into five groups: topography, such as elevation, slope, south-westness (in the northern
hemisphere) or north-westness (in the southern hemisphere); land cover, including vegetation
type, composition, connectivity, fuel load, pyrodiversity; climate, for example annual average daily
maximum and minimum temperature; weather (including active drivers of fuel moisture) such as
cumulative antecedent precipitation, wind speed, relative humidity; anthropic activity, including land
development, road density, distance to settlements, fire prevention and contrasting strategies [61–67].
While less studied, fire duration appears to be related to similar factors [68–71]. Among these factors,
only those affecting vegetation moisture are actually related to LST. To investigate the predicting
capability of remote sensing measurements, rather than constructing a comprehensive model, it would
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be relevant to determine whether an increase in LST affects the probability distributions of burned
area and fire duration. Since an increase of LST would be evaluated against an LST climatology, thus
implicitly implying the evaluation of a delta or anomaly, the objective would in other terms be to
assess if such an anomaly is a covariate of the two named fire characteristics.

The research described in this document follows from this line of reasoning and tried to verify
if a relationship linking anomalies of LST to burned area and fire duration exists, thus exploring
the identified knowledge gap. The analyses were performed on the study area of Campania, Italy,
for which a dataset comprising more than 8800 fire events recorded between 2003 and 2011 was made
available by local authorities.

The accomplishment of the stated objective first required the definition of a method for the
quantification of LST anomalies. Crucial to this step was the prior modelling of an LST climatology.
Indeed, multitemporal analysis was suggested as a mean to determine seasonal minima against which
to assess LST values triggering fire occurrence [58,72–74]. To this purpose, the longest available time
series of daily Aqua-MODIS LST data was processed with the Harmonic Analysis of Time Series
(HANTS) algorithm [75,76] to construct a daily pixel-wise climatology of LST. HANTS was also used
to process annual time series of LST and create cloud- and noise-free annual models of daily LST.
LST anomalies were finally evaluated as the difference between the LST annual models and the
LST climatology.

Further steps required the analysis of the fire data towards the identification of the closest fitting
probability density function describing burned area and fire duration. The fire database was then
intersected with daily maps of LST anomalies and each fire was associated with the corresponding
LST anomaly value occurring at the same location on the day previous to the event. Parameters of the
identified distributions conditional to LST anomaly values were determined along their confidence
intervals and trends were identified [77]. Finally, probability of extreme events conditional to LST
anomaly were evaluated.

2. Materials and Methods

2.1. Study Area

The research focused on Campania, Italy (40◦83′N, 14◦13′E, 13,595 km2, Figure 1). The interest
in this region is given by its position in the middle of the Mediterranean and by the diversity of its
landscape. The land cover is characterized by agricultural areas prevailing in plains and semi-natural
forest-dominated areas covering hills and mountains [78]. Campania is among the most densely
populated regions of Mediterranean Europe, almost all fires are triggered by human activities and fire
incidence is considered high [79,80].
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2.2. Data

2.2.1. MODIS LST Data

A dataset of daily gridded Aqua-MODIS LST data (product MYD11A1, collection 6) from 2003
to 2017 retrieved from the Land Processes Distributed Active Archive Centre (LP DAAC, https://
e4ftl01.cr.usgs.gov/) was used for this research. MYD11 products are generated by an angle-dependent
split-window algorithm exploiting the differential atmospheric absorption in MODIS bands 31 (11 µm)
and 32 (12 µm) to determine LST values from radiance measurements of clear-sky pixels. The achieved
mean LST error is typically within ±0.6 K and the standard deviation of validation errors is typically
less than 0.5 K [81].

Product MYD11A1 contains both diurnal (13:30) and nocturnal (1:30) LST measurements, along
with corresponding quality assurance information. Preference was given to diurnal rather than
nocturnal data and to Aqua-MODIS rather than Terra-MODIS, to capture canopy temperature
variations due to water stress occurring at the hour of the day when maximum air temperature is
approximatively achieved. Retrieved LST estimates were further masked against MYD11A1 pixel-wise
quality assurance (QA) metadata and only data marked as good quality (QA bits 1,0 = 00), that
is retrieved at nominal radiometric and clear-sky conditions, were retained [82,83]. However, this
approach does not ensure that all cloud contaminated pixels are excluded from further processing [84].

2.2.2. Fire Data

A dataset of about 8800 fires officially recorded in Campania between 2003 and 2011 was
provided by the Natural Resources Unit of Carabinieri, a law enforcement agency in charge of forest
fires prevention, firefighting, arson investigations and prosecution and burned area inventorying.
The database details the presumed date and time of fire ignition, recorded date and time of fire
extinction, geographic coordinates of burned area centroid, total burned area and presumed causes.
While Carabinieri actually record burnt scar perimeters on a fire-by-fire basis, according to conventional
practices of field surveying with GPS receivers and desk digital cartography, these were not provided
for this research. However, for the purpose of this study, this is not a source of concern on the positional
accuracy of the provided centroids, as only 53 fires (0.87% of the fires in the dataset) are larger than
1 km2, that is of a MODIS pixel in the thermal bands.

The dataset covered a range of fire seasons that were considered safe to critical in both number
of fires and total burnt area. Most fires (84%) occur in the summer season, that is June to September.
About 99.8% of fires are of human origin (negligent or arson). On average, 980 fires are recorded each
year, leading to the loss of more than 6160 hectares of natural areas, including 4190 ha of forests.

Fires in the database were overlaid on the CORINE Land Cover (CLC) map [85] to select those
occurred in vegetated and recently burned areas only. CLC maps are produced at a nominal scale of
1:100.000, with a minimum mapping unit of 25 ha and minimum width of linear elements of 100 m and
are updated every six years. Fires occurred between 2003 and 2008 were intersected with CLC 2006,
while fires between 2009 and 2011 were intersected with CLC 2012. A total of more than 6100 events
occurred in land cover classes reported in Table 1 were used in this research, thus excluding events
recorded on agricultural land.

Observed burned area encompasses five orders of magnitude, while its average is 7.1 ha. The
95th percentile of burned area is 27.8 ha; this quantity was used as a reference for extreme events in the
region. Analogously, mean fire duration is 9.4 h and the 95th percentile is 27.5 h.

https://e4ftl01.cr.usgs.gov/
https://e4ftl01.cr.usgs.gov/
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Table 1. CORINE Land Cover (CLC) classes used to select fires used in subsequent analyses.

CLC Code Description

231 Pastures
243 Land principally occupied by agriculture, with significant areas of natural vegetation
244 Agro-forestry areas
311 Broad-leaved forest
312 Coniferous forest
313 Mixed forest
321 Natural grassland
322 Moors and heathland
323 Sclerophyllous vegetation
324 Transitional woodland shrub
333 Sparsely vegetated areas
334 Burnt areas

2.3. Modelling Temporal Patterns of LST

The modelling of the LST climatology and of LST annual models was performed by means of the
Harmonic Analysis of Time Series (HANTS) algorithm [75,76]. This method was initially proposed to
fill in missing or cloudy observations and to remove outliers in time series of NDVI data by exploiting
its periodic behaviour [86,87] and later used also with LST series, for example [83,88,89].

A temporal sequence of N images I(x, y, ti), i = 1, 2, . . . , N, can be described as a Fourier series:

I(x, y, ti) = a0(x, y) +
M

∑
j=1

aj(x, y)× cos
(
ωjti − ϕj(x, y)

)
(1)

where I(x, y, ti) is the LST retrieved from MODIS measurements at pixel longitude x, pixel latitude y,
day ti when the ith image was taken, ωj is the frequency of the jth harmonic term in the Fourier series,
M is the number of frequencies of the Fourier series, aj(x, y) and ϕj(x, y) are the amplitude and the
phase of the jth harmonic term. The harmonic frequencies are integer multiples of the base frequency,
that is,

ωj = (2π/L)× j (2)

where L is the length of the base period. Because the zero frequency has no phase, the amplitude
related to the zero frequency a0(x, y) is equal to the average of all N observations of I(x, y, ti) [89].

HANTS handles the Fourier analysis as a least squares curve fitting problem within an iterative
approach. In the first step, the least squares curve fitting is performed using all valid data in the series.
In the second step, observations that deviate from the curve determined in the first iteration more than
a pre-defined threshold (the fit error tolerance, FET) in the specified direction of rejection (lower values
or higher values) are removed and the remaining data are used to compute the least square curve
fitting again. The iterations are repeated until either all the remaining observations are within the FET
or the number of remaining data points becomes less than the specified degree of over determinedness
(DOD) [90].

2.4. Evaluation of Land Surface Temperature Anomaly

HANTS was used to decompose the time series of MODIS LST retrievals into their descriptive
significant periodic components. Series comprising the first three harmonics were fit to the data with
two different methods:

• HANTS was executed on yearly sequences 2003–2011 of daily LST data individually to construct
annual models of daily LST [82]. The objective of this approach was the removal of LST variability
due to undetected cloud contamination and varying observation geometry while modelling LST
annual variation. The result was a collection of new annual series of daily LST maps, one for each
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year being considered, computed from the identified harmonic components. These were used as
representative of actual measurements.

• The algorithm was executed on the whole 2003–2017 data set, with a base period of one year,
to construct a pixel-wise daily climatology of LST [88]. The need of using this climatology as a
basis for the calculation of thermal anomalies suggested its evaluation from the longest available
sequence of complete annual datasets of daily MODIS LST data. The output of this process is a
new series of daily LST maps computed from the identified harmonic components, representative
of daily climatological values of LST.

A synthesis of the HANTS parameters adopted in the two approaches is reported in Table 2.
In both, the base period is one year and the number of frequencies is set to three. The direction of
outliers rejection was set as “Lo”, thus leading to the removal of all data points that are more than
FET lower than the fitted harmonics, according to the fact that cloud contamination in pixels causes
an underestimation of LST. The development of the LST climatology is based on a more relaxed FET
value, as opposed to annual models, to compensate for its inter-annual variability. The degree of over
determinedness was dynamically adjusted on a per-pixel basis as the half of LST estimates marked as
good quality in the QA of MYD11A1 product.

Table 2. Parameters used in HANTS algorithm to pre-process LST data.

HANTS Parameters LST Annual Models LST Climatology

Length of the base period (L) 1 year 1 year
Number of frequencies (M) 3 3

Direction of outliers rejection Lo Lo
Fit error tolerance (FET) 4 K 6 K

Degree of over-determinedness (DOD) Half of valid points Half of valid points

Figure 2 depicts one year of clear-sky Aqua-MODIS LST retrievals in a sample pixel within
the study area, along with the corresponding LST annual model and the LST climatology. It can
be observed that the annual model captures LST variation throughout the year, while filtering its
variability. LST climatology, derived from the 2003–2017 series of daily LST data, shows a distinct
pattern. In this example, the annual model of LST is higher than the LST climatology for most of
the year.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 20 

 

 
Figure 2. Aqua-MODIS LST data, LST annual model and LST climatology observed in year 2007 in 
pixel 40°50′40″N, 14°8′56″E. 

In this study, both fire size and fire duration datasets were tested against the following 
parametric models: 

• Normal | , = 1√2 exp − −2  (3) 

• Log-normal | , = 1√2 exp − ln −2  (4) 

• Exponential | = exp −  (5) 

• Gamma | , = 1Γ exp − ⁄  (6) 

• Generalized extreme value (GEV) 

| , , = 1 1 + − exp − 1 + −
 (7) 

• Weibull | , = exp −   
 

(8) 

These models were fitted to burned area and fire duration data by minimizing the Anderson-Darling 
distance [102]: = −1 −   

 

 
 

(9) 

where F(x) is the model cumulative distribution function and Fn(x) is the empirical cumulative 
distribution of the sample. The maximum goodness-of-fit criterion with Anderson-Darling distance 
gives more weight to the tails of the distribution. The closest fitting model for each of the two 
variables was identified as the one providing the minimum Anderson-Darlin distance. 
  

280

290

300

310

320

0 100 200 300
Day of year

L
S

T
 (

K
)

Annual model Climatology MODIS LST

Figure 2. Aqua-MODIS LST data, LST annual model and LST climatology observed in year 2007 in
pixel 40◦50′40′ ′N, 14◦8′56′ ′E.

A land surface temperature anomaly is hereby defined as the difference between LST annual
models and the LST climatology. At a given day ti the anomaly is positive when the LST annual model
is higher that the LST climatology. In this sense, LST anomalies quantify the deviation of LST from



Remote Sens. 2018, 10, 1777 7 of 20

the climatology value expected in that pixel (Figure 2). The approach of using the LST annual model
rather than the actual measurements of LST hinders the detection of LST variations occurring over
a short period of time. Nevertheless, it quantifies the build-up of the LST anomaly throughout the
dry season while filtering the variability in LST estimates due to observation geometry, residual cloud
contamination and retrieval accuracy. This in turns allows the appreciation of LST anomalies with
values below the accuracies provided by the MYD11A1 algorithm and provides measurements in
dates when complete cloud cover is present [88].

Daily maps of LST anomaly were produced for the entire observation period between 2003 and
2011. These maps were intersected with fire data, so that each fire was associated with the value of the
LST anomaly in the same location on the day previous to the event.

2.5. Parametric Distributions of Burned Area and Fire Duration

Burned area and fire duration relate to the difficulty of control of fires and to the damage they
cause and thus to fire danger [91,92]. Prior to any investigation on the relationship between these fire
characteristics and LST anomalies, their probability distributions were identified.

Several parametric distributions are reported in literature to fit burned area, including normal [93],
log-normal [94,95], exponential [93,96,97], gamma [97], generalized extreme value [98] and Weibull [99].
A limited number of papers report on parametric distributions of fire duration for example [100].
The diversity of these results highlights that no one single model can be identified to describe fire
size distribution globally, due to the diversity of encompassed terrain, climate, ecology, forest and
fire management practices [99,101] and that the closest fitting model needs to be identified on a
regional basis.

In this study, both fire size and fire duration datasets were tested against the following
parametric models:

• Normal

f (x|µ, σ) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
(3)

• Log-normal

f (x|µ, σ) =
1√

2πσx
exp

[
− (ln x− µ)2

2σ2

]
(4)

• Exponential
f (x|λ) = λ exp(−λx) (5)

• Gamma

f (x|a, s) =
1

saΓ(a)
xa−1 exp(−x/s) (6)

• Generalized extreme value (GEV)

f (x|a, b, s) =
1
b

[
1 + s

(
x− a

b

)]− 1
s−1

exp

{
−
[

1 + s
(

x− a
b

)]− 1
s
}

(7)

• Weibull

f (x|a, b) =
a
b

( x
b

)a−1
exp

[
−
( x

b

)−a
]

(8)
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These models were fitted to burned area and fire duration data by minimizing the Anderson-
Darling distance [102]:

AD = n
∫ +∞

−∞

[Fn(x)− F(x)]2

F(x)[1− F(x)]
dF(x) (9)

where F(x) is the model cumulative distribution function and Fn(x) is the empirical cumulative
distribution of the sample. The maximum goodness-of-fit criterion with Anderson-Darling distance
gives more weight to the tails of the distribution. The closest fitting model for each of the two variables
was identified as the one providing the minimum Anderson-Darlin distance.

2.6. Conditional Distribution of Fire Characteristics

The parameters of the closest fitting distributions identified for burned area and fire duration
conditional to LST anomaly were evaluated by dividing the values attained by this covariate at fire
locations the day previous to the event into ten bins each corresponding to a decile, following the
approach proposed in Reference [77]. In accordance with the analyses performed under the previous
section, conditional parameters were determined with the maximum goodness-of-fit criterion, while
their corresponding 95% confidence intervals were determined by means of 1000 bootstrap parameter
estimations. Significance of the variation of observed distribution parameters across the decile bins of
LST anomaly were finally verified through a likelihood ratio test where the likelihood of the model
describing the entire dataset was compared against the sum of the likelihoods of the ten models in
each bin.

3. Results

3.1. Evaluation of Land Surface Temperature Anomaly

LST in the study area exhibits significant inter-annual variability, as demonstrated by the two
sample maps extracted from LST annual models of years 2007 and 2011 on the same date (Figure 3).
However, absolute LST values are not indicative of deviations from a climatology. Indeed maps
of LST anomaly on the same dates show significantly different spatial patterns as opposed to the
corresponding maps of LST (Figure 4).
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and recently burned areas (land cover classes in Table 1): 16 August 2007 (a); 16 August 2011 (b).

In the proposed sample dates, Figure 4 also reports fires occurred in the following day, represented
with circles proportional to burned area. Fires occurring where a higher LST anomaly is reported result
in a larger burned area, albeit such qualitative observations may vary with the chosen dates. Similar
observations could be drawn for fire duration, but for the sake of brevity these are not reported herein.
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Maps of LST anomaly were sampled at each fire location on the day previous to the event.
Observed average LST anomaly is 1.3 K. 77% of fires occur when a positive LST anomaly is observed.
On a monthly basis, this percentage varies between 69% and 88%, the only exception being December
with 57%. A partial dependence of LST anomaly values from CLC classes is observed, with coniferous
forest and sclerophyllous vegetation showing a wider proportion of fires occurring when a negative
LST anomaly is recorded (Figure 5).
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3.2. Statistical Models of Burned Area and Fire Duration

Burned area and fire duration range over several orders of magnitude and are strongly positively
skewed. For this reason, they were preliminary scaled and converted to their base 10 logarithm, so as
to have log-transformed positive values only. An initial investigation highlighted that log-transformed
burned area and log-transformed fire duration show a linear correlation with a Pearson’s correlation
coefficient of 0.57 (Figure 6). While clearly related, the relative weakness of this correlation confirms
that the two quantities are not redundant.

Figure 7 reports scatterplots of log-transformed burned area and log-transformed fire duration
against corresponding LST anomaly. Pearson’s correlation coefficients are 0.15 and 0.16 respectively,
confirming that the observed large variability in these fire characteristics cannot be explained by
the sole LST anomaly and indeed no trends can be clearly identified. To facilitate interpretation,
data were subdivided in ten decile bins of LST anomaly and mean log-transformed burned area and
log-transformed fire duration were calculated in each bin. Results plotted in Figure 8 show clearer
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trends, with mean log-transformed burned area increasing with increasing LST anomaly, confirming
that the latter might be a covariate of this fire characteristic. A similar consideration may be drawn for
log-transformed fire duration.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 20 
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The parametric probability distributions identified in Section 2.4 were fitted to log-transformed
burned area and log-transformed fire duration using the maximum goodness-of-fit method. The
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corresponding Anderson-Darling distance reported in Table 3 show that log-transformed burned area
is more closely described by a normal distribution, whereas log-transformed fire duration is closer to a
GEV distribution. The corresponding Q-Q plots are reported in Figure 9.

Table 3. Anderson-Darling distance values for all tested distributions.

Model Log-Transformed
Burned Area

Log-Transformed
Fire Duration

Normal 9.2 69.5
Log-normal 20.2 28.8
Exponential 1662 1711

Gamma 13.5 39.7
Generalized extreme value 13.5 15.1

Weibull 32.6 245
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Figure 9. Q-Q plots of the normal distribution of log-transformed burned area (a) and of the generalized
extreme value distribution of log-transformed fire duration (b). Red circles highlight the deciles of
the distributions.

3.3. Conditional Distribution of Burned Area and Fire Duration

Parameters of the normal distribution of log-transformed burned area show a clear trend against
LST anomaly (Figure 10). The sum of the likelihoods of the ten models fitted to burned area data in
each bin was compared against the likelihood of the model describing the entire dataset by means of a
likelihood ratio test. The null hypothesis in which the ten distributions are identical to the distribution
describing all burned area data collectively was rejected at a significance level of p < 0.05. A similar
result was observed with the GEV distribution of log-transformed fire duration, where the location
a, scale b and shape s exhibit a clear trend with LST anomaly (Figure 11) and the null hypothesis is
rejected with p < 0.05.
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Figure 10. Plots of µ (a) and σ (b) parameters of normal distribution of log-transformed burned area
and their 95% confidence intervals, conditional to land surface temperature anomaly in 10 decile bins.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 20 
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Figure 11. Plot of location a (a), scale b (b) and shape s (c) parameters of generalized extreme value
distribution of log-transformed fire duration and their 95% confidence intervals, conditional to LST
anomaly in 10 decile bins.

The retrieved conditional distributions (ten for each of the two fire characteristics, one in each
of LST anomaly decile bins) were used to calculate the probability of fires larger than 27.8 ha (95th
percentile of burned area) and the probability of fires lasting more than 27.5 hours (95th percentile of
fire duration). Resulting plots (Figure 12) show that probability of large fires ranges from 1.8% in the
first LST anomaly decile to 9.9% in the tenth decile, that is when LST anomaly increases from −1.6 to
3.9 K. Analogously, probability of fires lasting more than 27.5 h ranges from 0.4% to 8.9%.
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Figure 12. Estimated probability of burned area exceeding 27.8 ha, conditional to LST anomaly values
in 10 decile bins (a); estimated probability of fire duration exceeding 27.5 h, conditional to LST anomaly
values in 10 decile bins (b).

4. Discussion

A clear relationship exists in several ecosystems between forest fire activity and meteorological
forcing [11–16]. Prolonged absence of rainfall and increased air temperatures, while creating the
preconditions for forest fires, push vegetation towards water stress conditions to which it responds by
reducing transpiration. This leads in turn to an increase of vegetation temperature, a phenomenon
that can be detected by remote sensing measurements in the thermal infrared [28–35]. Rather than
modelling a direct dependence, this study hypothesized that remote observations of LST and more
specifically deviations of LST values from a climatology, could be a covariate of burned area and
fire duration of individual fires. Intuitively, prolonged events could eventually lead to larger burnt
scars. Indeed, a correlation was found between log-transformed burned area and log-transformed fire
duration (Figure 6), albeit its relative weakness supports the idea that these two quantities could be
studied separately.

This research faced two substantial challenges. The first one was the identification of a suitable
probability distribution model describing burned area and fire duration data in the study area. Several
models are reported in cited literature [93–100] and indeed the diversity of these results highlights that
no one single model can be identified to describe fire size distribution globally and that a model should
be adopted on a per-study basis [99,101]. Among those tested herein, normal appears to be the closest
fitting model for log-transformed burned area and GEV for log-transformed fire duration. In both
circumstances, the fitting was not perfect towards the tails, as demonstrated by the relatively high
Anderson-Darling distance (Table 3) and by the Q-Q plots (Figure 9). Indeed, the final extent of a fire
and its duration are contributed by a large number of factors related to topography, land cover, climate,
weather and anthropic action. The complex and varied landscape in the study area, with significant
variations of population density, topography, land use/land cover and land management practices
across its extent, created a unique combination of factors shaping the probability distributions of fire
characteristics that is not properly captured by the tested models.

The second challenge was the construction of a climatology of LST to use as a basis for the
evaluation of the LST anomaly. The phenomenon to be indirectly detected as a deviation from the
LST climatology is the reduction in stomatal conductance due to plant water stress. The need to
acknowledge for its intra-annual variability excluded the opportunity to identify a seasonal mean on
any base that is not over short periods of time. Indeed, the availability of daily diurnal Aqua-MODIS
measurements over fifteen years allowed the calculation of an LST climatology on a daily basis. Rather
than a daily average, the latter was the result of the modelling of the time series by means of the
HANTS algorithm. This approach has the advantage to retain seasonal variability while filtering out
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disturbance sources such as undetected cloud contamination, which induce a bias by reducing the
detected temperature and the varying observation geometry [89].

HANTS algorithm was also used to model annual LST series individually. This led to the
definition of the LST anomaly as a deviation of the LST annual model from the LST climatology. While
the use of the LST annual model instead of current measurements might hinder the detection of LST
variations occurring over a short period of time, this approach has the advantage of still detecting
the build-up of the LST anomaly throughout the dry season while leveraging the named effects of
observation geometry and residual cloud contamination [88].

The LST climatology and the LST annual models were constructed using the same HANTS
parameters, with the only exception of FET (Table 2). The need for a more relaxed FET in the LST
climatology was justified by the need to account for the inter-annual variability of LST. While affecting
the shape of the modelled curve, a lower FET would clearly determine a climatology characterized by
generally higher LST values. The value of FET = 6 K was identified as a compromise between the need
of constructing an LST climatology of general validity while still rejecting cloud-contaminated data in
both cooler and hotter years.

Fire data were intersected with maps of LST anomaly and each fire was associated with the LST
anomaly value recorded at fire location on the day previous to the event. The underlying idea is
that LST data is produced in near-real-time by ground receiving stations, allowing the mapping of
fire danger forecast for the following day. The way LST anomaly was defined in this paper, that is
as a deviation of LST annual model from LST climatology as opposed to the deviation of the actual
MYD11A1 estimate, implies a slow day-to-day variation of LST anomaly. This in turn increases the
temporal validity of produced LST anomaly maps up to a certain extent. Checking the effect of
sampling in time at more days before the event was beyond the objectives of this research. However it
is here anticipated that tests performed on LST anomalies recorded five days before the event led to
results similar to those reported herein.

Observed average LST anomaly is 1.3 K, while 23% of fires occur with a negative LST anomaly.
The distribution of LST anomaly appears to be partially dependent on land cover class as reported in
Figure 5. Negative values are proportionally more prevalent in coniferous forest and sclerophyllous
vegetation than in other land cover classes. The observation of this dependence was expected from
literature review (e.g., [63,65]) and does not affect the quality of further findings. Indeed, evaluations
of burned area and fire duration were performed conditional to LST anomaly, that is leveraging out
all other parameters. In effect, other factors such as accessibility of the zone, availability and efficacy
of the fire extinguishing means and the winds can heavily influence the occurrence of fires, the final
burned area and event duration regardless of the previous LST anomaly, either positive or negative

This study demonstrated the informative content of time series of LST through the observation
that LST anomaly is a covariate of burned area and fire duration. Fire data were grouped in ten decile
bins of the associated LST anomaly values and the parameters of the identified distributions along
with their 95% confidence interval were evaluated in each of them. The choice of the number of bins
was initially tested with a trial and error approach, towards the identification of a compromise between
the clarity of observed trends and the amplitude of the distribution parameters confidence interval.
As similar results were observed across a range from five to twenty bins, for the sake of objectiveness
in the approach the number of ten was chosen as the most appropriate.

Mean and variance of the normal distribution describing log-transformed burned area both tend
to increase with increasing LST anomaly values (Figure 10), likewise the location, scale and shape
parameters of the GEV distribution describing log-transformed fire duration (Figure 11). A likelihood
ratio test confirmed that probability distribution models of burned area and fire duration conditional
to LST anomaly are collectively significantly different than the models describing the entire dataset.
Along with the observed trends in parameters values, this result confirms the stated hypothesis that
LST anomaly as defined in this paper is a meaningful variable contributing to fire danger, that is that
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this quantity, along with its time-dependent nature, may be used pairwise other relevant parameters
towards the statistical modelling of burned area and fire duration.

As a consequence of the variation of burned area and fire duration probability distributions
conditional to LST anomaly, it is possible to plot and interpret how the probability of extreme
events evolves with increasing LST anomaly values. Indeed, end users such as forest managers and
civil protection agencies are particularly interested in these probabilities to drive their preparedness
activities [103]. The models constructed in the ten decile bins of LST anomaly demonstrate that the
probability of a forest fire to result in a total burned area exceeding a given threshold (in our example,
the 95th percentile of the dataset) significantly increases with increasing LST values (Figure 12a).
A similar result was found for fire duration (Figure 12b), supporting the idea that maps of LST anomaly
such as those in Figure 4 are useful to depict the contribution of LST to fire danger.

5. Conclusions

Vegetation response to meteorological factors contributing to fire danger—prolonged absence
of rainfall and high air temperature—results in an increase of LST that can be detected by remote
sensing measurements in the thermal infrared as a deviation from climatological values. This paper
demonstrates that such LST anomalies are a covariate of forest fires burned area and duration. While
several studies demonstrated how a wide number of both static and dynamic factors related to
topography, land cover, climate, weather and anthropic activity affect the probability distribution of
these two fire characteristics, to the best of authors’ knowledge no previous research was conducted to
investigate the role of satellite measurements of LST.

The initial hypothesis was addressed by first identifying probability distributions functions
describing available fire data. Among those tested, log-transformed burned area is closer to a normal
distribution, while log-transformed fire duration is closer to a generalized extreme value distribution.
The HANTS algorithm was then used to process time series of diurnal Aqua-MODIS LST measurements
and construct a climatology against which anomalies of LST were quantified. Finally, parameters of
the identified distributions conditional to LST anomaly where then evaluated, showing clear trends.

The observed variation of burned area and fire duration distributions conditional to LST anomaly
demonstrate that increasing positive deviations of LST from the expected seasonal value correspond
to an increasing probability of extreme events, that is, of the final fire extent and duration exceeding
a given threshold. This observation clearly identifies a practical mean to interpret maps of LST
anomaly. As opposed to typical fire danger rating systems based on meteorological data, this remote
sensing quantity has the advantage of claiming a higher spatial resolution. It is here highlighted that
the identified relationships are preconditioning in nature and do not predict actual fire occurrence.
The latter is related to a different array of determinants relating to probability of a heat source leading
to an ignition.

This analysis was performed ex post trough the evaluation of LST annual models against an LST
climatology. This approach is observational in nature and not predictive. While the achievement of
more generality of the proposed research would require investigations in a wider and diverse array of
regions, the predictive capability of the developed approach still needs to be demonstrated. This was
beyond the objectives of this research and will be the subject of further investigations.
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