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Abstract: Knowledge of forest productivity status is an important indicator of the amount of biomass
accumulated and the role of terrestrial ecosystems in the carbon cycle. However, accurate and
up-to-date information on forest biomass and forest succession remain rudimentary within natural
forests. This study sought to understand and establish the potential of a new-generation sensor
in estimating aboveground biomass (AGB) stored in the natural forest, also known as ‘community
forest” or buffer zone community forest (BZCF), in the Parsa National Park, Nepal. The utility of
the 30-m resolution Landsat 8 Operational Land Imager (OLI) and in situ data was tested using two
statistical approaches, namely multiple linear regression (MLR) and random forest (RF). The analysis
was done based on four computational procedures. These included spectral bands, vegetation indices
and pooled dataset (spectral bands + vegetation indices), and model selected important variables.
AGB estimation based on pooled data showed that the RF algorithm produced better results when
compared to the use of the MLR model. For instance, the RF model estimated AGB with an R? value
of 0.87 and a root mean square error of 20.50 t ha~!, as well as an R? value of 0.95 and a RMSE of
13.3 t ha~! when using selected important variables. Comparatively, the MLR using pooled data
produced an R? value of 0.56 and RMSE value of 37.01 t ha~!. The RF model selected Optimized Soil
Adjusted Vegetation index (OSAVI), Simple ratio (SR), Modified simple ratio (MSR), and Normalized
difference Vegetation index (NDVI) as the most important variables for estimating AGB, whereas
MLR selected band 5 and SR. These findings demonstrate the relevance of the relatively new Landsat
8 sensor in the estimation of AGB in community buffer zones.

Keywords: biomass; buffer zones; linear model; medium-resolution; machine-learning algorithms

1. Introduction

The concept of buffer zones was introduced to concurrently alleviate human development pressure
in conservation areas and address the socioeconomic requirements of affected populations without
jeopardizing natural ecosystems [1]. The initiative was also introduced to help resolve potential
conflicts over the usage of forest and forest products [2]. Irrespective of these efforts, challenges still
remain as the use of forest resources has drastically increased over the years, rendering the whole
process unsustainable [2]. There is, therefore, an urgent need to routinely and accurately assess the
impacts of human activities on the productivity of these protected ecosystems. This information is
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critical in determining and providing baseline insights into the productivity of these forests and to
develop well-informed management practices.

The lack of spatially explicit methods or frameworks for assessing productivity in community
buffer zones has hampered knowledge on the productivity of these ecosystems and their role in the
carbon cycle. Available information has been gathered through the use of traditional monitoring
techniques, which include routine surveys and point-based AGB estimates. These methods, although
accurate, have not produced the intended outcomes as they are spatially restricted and labor-intensive,
especially when it comes to regional-scale monitoring [3]. For instance, traditional field-based biomass
estimation methods are no doubt more accurate [4], but the major challenge with them is that they
are time-consuming, laborious, and difficult to implement in inaccessible areas, besides being very
destructive. Remote sensing is hypothetically a cost-effective technique, which provides the most
accessible alternative as it offers spatially explicit data and enables repeated monitoring, even in
remote locations [5]. For instance, Clark et al. [6], Chen et al. [7], Dube et al. [8], Mutanga et al. [9],
and Rana et al. [10] satisfactorily predicted AGB based on hyperspectral, LIDAR (Light detection and
ranging), and medium-resolution sensors together with field data. Of all the sensors, hyperspectral
sensors have been found to provide some of the best datasets in biomass estimation.

However, hyperspectral datasets are often associated with limited spatial coverage, due to their
acquisition cost, limited availability, and huge data volumes, as well as large data preprocessing
costs [11]. The limitations of using hyperspectral remote sensing technologies have also been cited
by Mathieu et al. [12]. Thus, the free Landsat program remains one of the most important primary data
sources, due to the presence of archival data (dating back to 1972) and the rich spectral information,
with relatively moderate spatial resolution (30 m) for forest biophysical investigation. Additionally, it is
freely accessible data, with a global footprint (185-km swath width) and good monitoring in developing
countries, where the cost of hyperspectral data remains a problem. The latest research portrays Landsat 8
products as being more reliable in AGB estimation and monitoring [11]. For example, Karlson et al. [13]
successfully evaluated the utility of Landsat 8 data for mapping tree canopy cover and aboveground
biomass in the woodland landscape in Burkina Faso. Similarly, findings by Dube and Mutanga [11]
concluded that Landsat 8 OLI bands can improve AGB accuracies when compared to its predecessors.

Despite these rapid advancements in remote sensing and their strong potential for use in
investigating forest biophysical attributes, only a few AGB estimation studies have been conducted
in tropical and subtropical forests and, ultimately, carbon estimates in Nepal. For example,
Karna et al. [14] used WorldView-2 satellite images with small-footprint airborne LiDAR data to
estimate tree carbon stocks in a tropical forest in Nepal. Similarly, Baral [3] integrated GeoEye and
WorldView-2 to estimate carbon stocks in subtropical forests in central Nepal with high accuracy. Most
of the studies in Nepal focused on tropical and subtropical forests, mainly because of the diversity
of flora and fauna in these ecosystems [15], but with few detailed ground-based quantifications of
biomass [3]. Likewise, Murthy et al. [16] used LiDAR and field data to create a national forest inventory
(for the period 2010-2014) for Nepal. These studies, however, created good baseline data that could
be used for both future applications and REDD+ (Reducing Emissions from Deforestation and Forest
Degradation, plus other conservation activities) monitoring, reporting, and verification. Some attempts
have also been made to explore the potential of medium-resolution imagery for forest interpretation,
as well as for mapping forest cover and volume. For instance, Muinonen et al. [17] used Landsat TM
(Thematic Mapper) and MODIS (Moderate Resolution Imaging Spectroradiometer) data to map forest
cover and total stand volume in western and eastern Nepal. Nevertheless, prior Landsat products
have since developed scan line problems, complicating forestry and biomass estimation endeavors, as
well as the REDD+ annual reporting at the national level [18]. Although not yet sufficiently tested, the
contemporary Landsat 8 thus remains the most accessible remote sensing product readily available for
biomass and forest monitoring at a national or regional scale.

The existing Landsat 8 OLI sensor has several improvements over its predecessors, the TM and
ETM+ (Enhanced Thematic Mapper Plus). These enhancements include an increased number of



Remote Sens. 2018, 10, 1848 30f18

spectral bands, improved radiometric resolution from 8 bits to 12 bits [19], and a refined spectral
range for certain bands, which is likely to improve the vegetation spectral response across the
near-infrared and panchromatic bands, as well as an improved signal-to-noise ratio using two
push-broom sensors [20] that are almost twice as good as those in the Landsat 7 ETM+. The enhanced
radiometric resolution improves the spectral record precision and avoids the spectral saturation seen
in previous studies using Landsat data [11,21]. One of the major forest AGB estimation challenges in
Nepal is the lack of baseline data on forest resources from the local to the regional level. This remains
one of the prominent issues where the capacity of the forest staff in the field to carry out inventory is
very limited. The reason may be due to the absence of technical support and overdependence mostly
on traditional methods of field data collection. The objective of the study was, therefore, to test the
utility of relatively new Landsat 8 OLI data in estimating above-ground biomass in natural forest in
the Parsa National Park, Nepal, based on two robust statistical approaches: multiple linear regression

(MLR) and random forest (RF). This research constitutes a concerted effort to fill the gaps in AGB data
in Nepalese forestry.

2. Materials and Methods

2.1. Study Area

The study area, the Parsa National Park (PNP), is located within the central lowlands of Nepal
between latitude 27°28'0"'N and longitude 84°20’0"’E. Six buffer zone community forests were selected
for the establishment of sample plots (Figure 1). All the forests are managed by Buffer Zone community
forest user groups. The vegetation is tropical to subtropical forest (mainly deciduous), and the selected
forests were dominated by sal (Shorea robusta) followed by red berry (Mallotus philippensis), duabanga
(Duabanga grandiflora), axlewood (Anogeissus latifolia), and jamun (Syzygium cumini). The topography is
generally flat, with minor variations in elevation (100 to 807 m above sea level), and the soil is primarily
alluvial in the lower belt, but gravel and conglomerates are found with increasing elevation. As the
altitude increases in the north along the Churia Hills, Shorea robusta is gradually replaced by Pinus
roxburghii. The area is characterized by subtropical climatic conditions, with mean annual precipitation
of 1908 mm and a mean annual temperature of 24.5 °C recorded during 1981-2010. Winters are cold,
with morning fog lasting until noon and sometimes longer.
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Figure 1. Study area map showing the Parsa National Park (PNP) with buffer zone community forests
(BZCFs) and sample plots.
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2.2. Field Measurements

Field surveys were conducted from 24 February to 12 March 2016. A circular plot size of 500 m?
was used during data collection. In total, 173 plots were gathered, of which 113 plots” data were
collected during the field survey. The remaining 60 plots’ data were provided by the Parsa National
Park authorities. These plots were generated in ArcGIS version 10.3 (ESRI, Redlands, CA, USA) using
a systematic random sampling technique. The reason for adopting this methodology was to ensure
uniformity in the sampling, and it is in line with the PNP sampling procedure. The PNP is largely
characterized by almost uniform forest types and species distribution; thus, we chose to vary the
species samples between plots considering the size of the forest in order to minimize the required time
and labor. The forest area varied between 66 and 650 ha. Within plots, structural variables, namely
diameter at breast height (DBH) >5 cm (1.3 m above the ground) and tree height (H), were measured
using a DBH measuring tape (Yamayo measuring tools Co. Ltd., Tokyo, Japan) and a Hypsometer
vertex laser (Laser Technology, Inc., Colorado, USA) instrument, respectively.

2.3. Field-Based AGB

Tree-level AGB was derived using the species-specific allometry developed by Chave et al. [22].
The models were developed specifically for tree species occurring within a specified climate zone;
thus, forest types and climatic characteristics in the PNP were similar to those used in developing a
tree-specific model. The guidelines published by ANSAB (Asia Network for Sustainable Agriculture
and Bioresources) [23] suggest that the model (Equation 1) is appropriate for moist forest stands, with
annual precipitation of 1500 to 4000 mm. These were similar to the climatic conditions prevailing in
the study area. This method is also recommended by the Ministry of Forest and Soil Conservation,
Nepal. Specific gravity values suggested by Chaturvedi and Khanna [24] were used for individual tree
species; particularly, for those species without such values, a general tropical species value (p = 0.674)
was used. Individual biomass for all trees within the plot was calculated using Equation 1 and then
aggregated to obtain plot-level AGB. The biomass resulting from the model was standardized by
converting the value into tonnes per hectare (t ha™1).

AGB = 0.0509 x pD*H (1)

where AGB is aboveground biomass (kg); p is specific gravity (g cm~3); D is diameter at breast height
(cm), H is tree height (m), and the constant 0.0509 was obtained from the work by Chave et al. [22].

2.4. Image Acquisition and Data Processing

Landsat 8 OLI imagery was chosen as the primary spatial data source to estimate AGB in the
PNP community forest. This data was chosen because of its convenient procurability and the suitable
spectral and spatial resolutions. The image was acquired on a sunny, clear day with 0.24% cloud cover.
The satellite image was obtained from the freely accessible United States Geological Survey EROS
(Earth Resources Observation and Science) Center Archive. The Landsat 8 OLI sensor was launched
on 11 February 2013 and has a 16-day temporal resolution. Onboard, there are two push-broom
instruments: (i) the OLI, consisting of nine spectral bands, and (ii) the Thermal Infrared Sensor, which
encompasses thermal bands 10 and 11 at a 100-m spatial resolution. These improvements may enable
greater accuracy in mapping the AGB of BZCFs. The study area was covered by only one Landsat
scene (path/row: 141/41). The applied Landsat 8 OLI imagery, with the L1T (systematic precision and
terrain-corrected) product, was acquired on 7 October 2015. The downloaded image was georeferenced
using the WGS84, UTM Zone 45N coordinate system.

The Landsat image scene was obtained in digital numbers, and was therefore converted to
reflectance values. First, the Landsat OLI image spectral bands were converted to top-of-atmosphere
spectral radiances and then to sensor reflectance in ENVI classic version 5.3 (Harris Corporation,
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Blvd. Melbourne, USA). We performed atmospheric correction using a FLAASH (Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercube) radiative transfer model [25].

2.5. Deriving Spectral Data and Vegetation Indices

Field survey points were overlaid on the corrected image to generate regions of interest, using the
central (X, y) coordinates obtained by using a Garmin 62s global positioning system for all 173 plots.
The same image pixel size (30 x 30) was considered to extract vegetation spectral values for each band
(bands 1 to 7). The spectra were extracted using the ENVI software, and these were then averaged for
each plot. The extracted values were then used to calculate vegetation indices, which were further
used together with spectral bands to estimate AGB. Detailed information on the spectral bands and
vegetation indices (VIs) considered in this study is summarized in Table 1. The applied vegetation
indices were chosen based on recommendations from previous forest biomass research conducted
across the world [26]. In addition, variable selection was implemented to select key AGB variables
from all the variables used (spectral bands and VIs). The important VIs selected for the final RF model
are given in Table 2.

Table 1. Examined variables for the multiple linear regression (MLR) and random forest (RF) models.

Data Type Model Input Variables
. . band 2 (BLUE), band 3 (GREEN), band 4 (RED), band 5
Image spectral information (ISI) MLR (NIR), band 6 (SWIR1), band 7 (SWIR?)
e DVI, GEMI, GNDVI, MSAVI2, MSI, NDII, NDVI, OSAV],
Vegetation indices (V1s) MLR RDVI, MSR, SAVI, SR, TVI, and IPVI
ISI + DVI, GEMI, GNDVI, MSAVI2, MSI, NDII, NDVI,
ST+ Vis MLR/RF OSAVI, RDVI, MSR, SAV], SR, TVI, and IPVI
Most important variabl RE OSAVI, NDVI, SR, MSR, band 6, MSI, NDII, MSAVI12,
OSt tmportant variables RDVI, GEMI, band 7, SAVI, band 2, band 4, and band 1
Most importantvariables MLR band 5 and SR (pooled data), SR and MSI (VIs), and

band 1, band 5, and band 7

NIR: near-infrared; SWIR1: short-wave infrared 1; SWIR2: short-wave infrared 2; DVI: difference vegetation index;
GEMI: global environmental monitoring index; GNDVI: green normalized difference vegetation index; MSAVI2:
second modified soil-adjusted vegetation index; MSI: moisture stress index; NDII: normalized difference infrared
index; NDVI: normalized difference vegetation index; OSAVI: optimized soil-adjusted vegetation index; RDVI:
renormalized difference vegetation index; MSR: modified simple ratio; SAVI: soil-adjusted vegetation index; SR:
simple ratio; TVI: triangular vegetation index; IPVI: infrared percentage vegetation index.

Table 2. Important image spectral information and vegetation indices selected for the RF model.

Band reflectance used Blue, Red, SWIR1, SWIR2
Vegetation indices Formula References
Optimized soil-adjusted vegetation [(NIR — RED) / (NIR + RED + L)] x (1 + L), where L =0.16 [27]
index (OSAVI) and is the soil brightness correction factor
Normalized difference vegetation
index (NDVI) (NIR — RED) / (NIR + RED) [28]
Simple ratio (SR) NIR/RED [29]
Modified simple ratio (MSR) (NIR / RED) — 1/ \/((NIR / RED)) + 1 [30]
. . $1599 pum / 819 pum, where f = wavelength, Band 5 = 819 um,
Moisture stress index (MSI) Band 6 yum = 1599 [31]
Normalized difference infrared (£819 um — £1649 pum) / (£819 um + 1649 um), where Band 5 (32]
index (NDII) =819 um, Band 6 = 1599 um
Global environmental monitoring n X (1 —0.25n) — [(RED — 0.125) / (1 — RED), wheren = [2 x [33]
index (GEMI) (NIRZ — RED?) + 1.5 x NIR + 0.5 x RED] / (NIR + RED + 0.5) o
Second modified soil-adjusted 5
vegetation index (MSAVI2) 1/2 x (NIR + 1) — sqrt (2 x NIR+ 1) — 8(NIR — RED))) [30]
Renormalized difference vegetation (NDVI x DVI)’5 [34]

index (RDVI)
Soil-adjusted vegetation index (SAVI) (NIR — RED) / (NIR + RED + L) x (1 + L), where L=0.5 [27]




Remote Sens. 2018, 10, 1848 6 of 18

2.6. Modeling Methods and Model Precision Assessment

To establish a relationship between the field-measured biomass and remote-sensing variables, the
field-measured AGB was considered as a dependent variable, whereas spectrally derived variables
were treated as the response variables. Two modeling approaches were used: MLR and RE. Ten-fold
cross-validation was used in both models. This was informed by the limited number of sample
plots used in AGB estimation. The regression was performed in R software (R Development Core
Team) [35], using a “boot” package [36] for linear modeling, a “faraway” package [37] for the variance
inflation factor, and “caret” [38] for cross-validation, and the “randomForests” package [39] for random
forest modeling.

2.6.1. Multiple Linear Regression

Multiple linear regression is a parametric algorithm that has been commonly used in biomass
estimation [40]. Because the MLR has the ability to deal with dependencies on or correlations with the
predictors very well, we therefore chose to explore its strength for complex forest biomass estimation.
One of the advantages of this model is that it can select the suitable variables for the regression model
when many explanatory variables are employed. The basic idea of this algorithm is that it can introduce
all the explanatory variables into the regression in backward mode, that is, when multiple variables are
being regressed. In addition, the method simultaneously removes unimportant variables in explaining
the variation in the dependent variable. The model with the lower AIC (Akaike information criterion)
was considered. Finally, in the regression method, independent variables were also analyzed for
multicollinearity using the variance inflation factor (VIF). To determine multicollinearity problems,
a VIF value less than 10 was considered [41]. Variables with the largest VIF were then removed;
thus, the final model was run using noncollinear variables. Our main assumption for choosing the
MLR was that the dependent variable consisted of numerical data and was normally distributed. To
check the normality of the data, we applied the Shapiro-Wilk test [42] and the Anderson-Darling
test [43] (W =0.99, p = 0.54; A = 0.187, P = 0.90, respectively). Lastly, the error term was homoscedastic
(Breuch-Pagan test and White test). For AGB estimation, statistical analysis was implemented based
on three analysis sets: (i) spectral bands only, (ii) vegetation indices only, and (iii) pooled data (spectral
bands and vegetation indices).

2.6.2. Random Forest

The RF model is a type of ensemble machine-learning algorithm called bootstrap aggregation or
bagging, where a number of trees (ntree) is constructed on the basis of a random subset of samples
drawn from the training data [26]. The RF regression algorithm utilizes bootstrap samples from the
training data without pruning to grow a large number of decision trees [44-46]. These trees assign each
predictor variable (ISI or VIs) to a response variable (in this case, AGB) using the average estimate that
the value receives from the collection of all trees [46]. Furthermore, at each node of the decision tree,
selection of the features for modeling is also stochastic, making the approach immune to the problem
of overfitting [47]. Therefore, there are two important parameters, namely mtry, which is denoted as
the number of variables available for splitting at each node of the tree, and ntree, termed as the “tuning
parameters”. The RF algorithm is easy to implement, as only two parameters (mtry and ntree) need to
be optimized to achieve the desirable prediction (selecting the least RMSE) [47-49]. The tuning of the
parameters depends on the user, and the tuning can vary from using a too-high value to a too-low
value [50]. The default value for the ntree parameter is 500 trees, and that for mtry is 1/3 of the total
number of variables used in the model. Also, another important parameter is nodesize, as mentioned
by Scornet et al. [51], which was set to the default value of 1, as suggested in the literature.
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2.6.3. Variable Selection using Random Forest

One advantage of using the RF algorithm over other machine-learning algorithms is that it
accomplishes excellent feature selection by automatically ranking the relative importance of the
variables. The ranking is generated from out-of-bag (OOB) sample data. There are two mechanisms
used in this algorithm to evaluate the importance of input variables (relevance of the predictor
variables), assigning a score that depends on changes in the error when a particular variable is varied
(%IncMSE refers to the effect of the variable when it is removed from the model, and IncNodePurity
describes how pure the node is when that variable is in the model) [52]. Taking this into account,
it was a challenging task to select the smallest number of predictor variables that could produce a
good predictive power and thus helped to generate the final model. RF model using all independent
variables was obtained by tuning ntree to 2000, whereas mtry was kept at 20. From a variable importance
graph generated from the OOB data, we used a backward feature elimination method; this process
uses the total variables used in the model (n = 21) and then progressively eliminates the least promising
variables from the model. The permuted OOB data (nPerm) was iterated to assess the variable
importance. For each iteration, the model is optimized (tuned) by selecting the best mtry and ntree
and eliminating the variable that is the least important. The RMSE is then calculated. The tuning of
ntree was set from 500 to 2000 with increments of 100, whereas mtry was tested in increments of 1 to
21. The subset of variables with the smallest RMSE values was used to predict the AGB of the selected
community forest.

2.6.4. The Effectiveness of MLR and RF in Predicting the AGB of BZCFs

To evaluate the effectiveness of the MLR, the adjusted R? value was considered as well as the
cross-validation of the error terms. The pseudo R? generated by the RF algorithm was not considered,
thus the same cross-validation approach was used to examine the model performances. In this study,
we used the 10-fold cross-validation method mainly because the original data is randomly divided into
k equally sized (10) subsamples. A single subsample was retained as the validation data for testing
the model, and the remaining k — 1 subsamples were then used in model training. This process is
repeated for k times. One advantage of this method is that all the observations or assumptions are used
for both training and validation. In addition, validation measures (Equations 2—4), namely R2, RMSE,
relative RMSE (relRMSE), and coefficient of variance of the root mean square error (RMSE-CV) between
the simulated AGB and the field-measured AGB, were calculated to assess the model’s estimation
performance. The method measures the percentage variation explained by the regression model [4].

n A \2
RMSE = w )

where y; is the field-measured biomass at plot i, §; is the predicted biomass value, and n is the number

of the plots.

relRMSE = 100 x (RI\/IYSE> 3)

where Y represents the mean AGB value from the field measurements.

RMSE-CV = (M\/;SE> 4)

where RMSE-CV is the coefficient of variance of the root mean square error; RMSE is the root mean
square error, and Y is the mean of the observed values.
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3. Results

3.1. Field-Based AGB Estimates

Forest stand variables (DBH and H) measured for each sampled tree and aggregated for every
sampling plot were used to generate the biomass of each community forest (Table 3). Descriptive
statistics show that the minimum AGB was 30.34 t ha~! and the maximum AGB was 304.19 t ha~! for
the Shrijana and Jyamire BZCFs, respectively. The average AGB estimated for the Terai region of Nepal
was 196.18 t ha—! [15]. The overall average AGB was 159.61 t ha~1 for six forests which did not exceed
the FRA /DFRS (Forest Resource Assessment/ Department of Forest Research and Survey) value [15].
Altogether, 34 species were recorded in the field, of which only 8 species were unknown. Although
many species were recorded, there were only five dominant species, namely sal (Shorea robusta), red
berry (Mallotus philippensis), axlewood (Anogeissus latifolia), duabanga (Duabanga grandiflora), jamun
(Syzygium cumini), and chilla (Casearia graveolens), where sal dominated the whole study area.

Table 3. Descriptive statistics of plot-level aboveground biomass (AGB).

No. Name of Forest Total No. . ¢ha—1) Max(tha—!) Mean(tha—) Standard

of Plots Deviation
1 Ratomate Deurali BZCF 17 35.25 115.95 115.87 33.66
2 Jyamire BZCF 30 3475 304.19 166.81 88.60
3 Radha Krishna BZCF 59 105.40 230.72 174.91 3551
4 Janahit BZCE 30 96.95 286.56 172.18 47.32
5 Shrijana BZCF 21 30.34 200.22 117.94 56.33
6  Mushaharnimae BZCF 16 90.95 210.48 170.52 40.26

3.2. AGB Estimates using Landsat OLI Based on the MLR

AGB estimation results using Landsat 8-derived variables based on the MLR are shown in Table 4
and Figure 2. Multiple linear regression achieved moderate results when applied to the pooled
dataset (ISI and VIs). For example, the pooled dataset as a predictor explained 56% of the variance
(RMSE 37.01 t ha—!, reIRMSE 23.05, p-value < 2.2 x 1071°) (Table 4 and Figure 2). The most important
variables selected by the model were band 5 (NIR) and SR. Similarly, using VIs as predictor variables
yielded more or less the same result, as it did for the combined dataset. No differences were seen in
the adjusted R? value, except for a slight change in RMSE (Adj. R? = 0.56 and RMSE = 37.23 tha™1).
The selected predictor variables for the model were SR and MSI (statistically significant at the 95%
level of confidence). In contrast, the use of spectral bands yielded the lowest adjusted R?, of 0.39, and
the largest RMSE, of 43.85 t ha~!, and band 1 (Coastal), band 5 (NIR), and band 7 (SWIR2) were used
as predictor variables in the final model.

Table 4. Biomass prediction results based on the MLR.

Cross-Validation

Final Variable Inputsin g 4 p2 RMSE(tha!) relRMSE (%)  RMSE-CV

the Model
Band 1, band 5, and 0.41 0.39 43.85 27.42 0.27
band 7
SR and MSI 0.57 0.56 37.23 23.08 0.23
Band 5 and SR 0.56 0.56 37.01 23.05 0.23

relRMSE: relative root mean square error, RMSE-CV: coefficient of variance of the root mean square error.
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Figure 2. Observed vs predicted aboveground biomass (AGB) using an MLR approach for (a) image

spectral information (ISI), (b) vegetation indices (VIs), and (c) ISI + VIs.

3.3. AGB Estimates using Pooled Data and Model Selected Predictor Variables Based on the RF Algorithm

Comparatively, the RF algorithm produced better AGB estimates using the combined dataset (ISI
+ VIs) as a full set of predictor variables (n = 21), as well as when the model selected variables were
used. The use of the Landsat 8 OLI spectral information and the RF algorithm produced an R? value
of 0.870 and reIRMSE of 12.82 when all predictor variables were used in the model. The backward
variable selection resulted in a smaller, optimal number of important variables, producing an R? of
0.95 and minimizing the relRMSE to 8.30 (Table 5 and Figure 3). The RMSE generally decreased as the
least important variables were removed progressively from the RF model (Figure 4). Surprisingly, the
results obtained from the use of the full set of predictor variables and those obtained using important
selected variables did not differ. The same variables were identified as the important ones, but with
different rankings based on the OOB (Figure 5).

Table 5. Biomass prediction results based on the RF.

Final Variable Inputs in

2 -1 o, _

tho Modol Model R RMSE (thal)  relRMSE (%) RMSE-CV
All variables (Table 1) RF (n = 21) 0.87 20.50 12.82 0.13
See Table 2 RF (selected 0.95 13.30 8.30 0.08

variables)
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Figure 3. Observed vs predicted aboveground biomass (t ha~!) using the RF algorithm and (a) pooled
data and (b) only selected important variables.
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Figure 4. Relative RMSEs obtained by backward elimination of variables from the random forest model.

When the RF algorithm with selected important variables (Figure 5) was used to predict AGB
across six BZCFs, the result remained highly similar to those obtained using pooled data. The important
variables selected were OSAVI, SR, MSR, NDVI, MSI, Band 1 (Coastal), RDVI, Band 6 (SWIR1), NDII,
MSAVI2, Band 7 (SWIR2), SAVI, Band 2 (Blue), GEMI, and IPV], in decreasing order of importance as
selected by the OOB technique.
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Figure 5. (a) Important variable ranking by Random forest algorithm and (b) top 15 selected

important variables.

4. Discussion

The quantitative determination and mapping of forest AGB using remote-sensing techniques,
especially with medium-resolution imagery, is quite a challenging task for complex and high-AGB
forest stands. The use of multispectral sensors might be a good alternative for estimating AGB at the
regional scale, especially in areas with limited access to hyperspectral images. Hyperspectral images
are expensive and require advanced and unique technical expertise, making it challenging to determine
estimation errors. In this study, we therefore tried to investigate whether the relatively new-generation
Landsat 8 multispectral OLI has the capability to estimate the AGB of such complex forest, using two
modeling approaches. The results have demonstrated that this spectrally enriched multispectral sensor
offers invaluable opportunities, as it was capable of estimating AGB with presumably minimal errors.
For instance, when extracted Landsat 8 OLI pooled data were used in the RF model, the R? value
reached 0.87 (n = 21), with RMSE = 20.50 t ha—! and RMSE-CV = 0.13. This was also observed when
using the MLR approach, where the combined data showed improved performance in estimating
complex forest AGB, and this can be attributed to the sensor’s unique radiometric, spatial, and spectral
characteristics, as reported in previous studies. Since the launch of Landsat 8 OLIL, only a few studies
have reported the potential use of this satellite data in estimating forest AGB [11,13]. For example,
Karlson et al. [13] reported that the R? based on seven Landsat 8 OLI images from 2013 to 2014 reached
0.57, with an RMSE of 17.6 t ha—!, for AGB in open woodlands in Burkina Faso. Similarly, Dube and
Mutanga [41] showed the strength and performance of Landsat 8 OLI image-derived texture metrics in
estimating the AGB of plantation forest in KwaZulu-Natal, South Africa. Many scholars have reported
that Landsat sensors often dealt with the saturation problem of spectral bands as the biomass increases.

For example, Steininger [53] observed saturation problems in an area with a biomass value above
150 t ha~!. In this study, we observed that this problem has been minimized, which can be attributed
to the inclusion of the narrow or refined near-infrared bands. The NIR band minimizes the effect of
water vapor absorption at a wavelength of 0.825 um, thereby permitting accurate surface spectral
detection, while minimizing satellite spectral saturation problems [54].

The above studies provided insights that corroborate the improvement made so far to the Landsat
8 OLI sensor. Some of these improvements can be attributed to the sensor’s push-broom scanning
design, which is associated with an improved signal-to-noise ratio. Furthermore, the fine radiometric
resolution of 12 bits makes the sensor more sensitive and robust in detecting crucial vegetation
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structural attributes [19,55]. In addition, a prolonged sensor radiation—sampling residence period
for each field of view enhances the precision during spectral detection, and thus helps to minimize
saturation problems. Thus, this unique sensor makes it a better alternative for landscape-scale biomass
application than its predecessors and other costly sensors.

However, it is important to note that the improved AGB estimation model, obtained using pooled
data from the 30-m Landsat 8 OLI multispectral sensor, can be linked to the strength of the advanced
machine-learning algorithm of RF. In recent years, many scholars have successfully demonstrated the
utility of the RF model in estimating forest AGB, and their findings are in line with ours. For example,
Liu et al. [56] demonstrated that a RE AGB model showed the acceptable accuracy of R? 0.95 and
RMSE = 17.73 Mg ha~! when compared to the use of stepwise regression and support vector machine
learning. Likewise, the study by Sadeghi et al. [57] also showed that the RF model can yield the
best results for mapping boreal stand-level biomass (R? = 0.62, RMSE = 26 Mg ha~!). Also, some
authors have even reported that minimal AGB prediction error can be achieved using the RF technique.
For instance, Latifi et al. [58] compared the performance of nearest-neighbor approaches, including RF,
in predicting total volume and biomass at the plot level in a mixed temperate forest in southwestern
Germany, using three different sets of remote-sensing data (aerial orthoimages, TM, and small-footprint
LiDAR). They found that the RF model was superior to other nonparametric approaches.

In our study, the strength of the RF model was also examined based on an important variable
selection technique, achieved through the model tuning process. In this study, the parameter tuning
proved to be beneficial in AGB estimation using the RF model. For instance, the coefficient of
determination increased from 0.87 to 0.95 and the RMSE decreased from 20.50 to 13.30 t ha~!.
This observed result was surprising, as one would expect that the removal of less-important variables
would not impact the model’s performance, as indicated by Kuhn et al. [59]. This presumably brings
difficulties in understanding its computation, due to the complexity of the RF algorithm [60]. However,
the advantages of using the RF model is that it offers the smallest subset of the input variables, which
further optimizes the model’s performance through the OOB technique. The RF model provides an
OOB data-based unbiased estimation error for the test dataset [61]. Performance of the algorithm
depends on the selected parameters, such as the number of trees [52,62], splitting at each node of each
tree [60,63], and the number of examples in each cell, below which the cell is not split [38], but equals
the default value of the nodesize [64]. In this study, the default value was used as recommended
in the literature. One limiting factor of random forest variables is that they do not automatically
select the optimal number of variables that have the lowest error [65]. The empirical investigation by
Gromping [62] showed that the choice of mtry in the RF model can substantially affect the allocated
variable importance. Furthermore, the author stated that for the purposes of identifying a small
number of variables sufficient for a good prediction, there is a need to avoid redundancy and obtain a
parsimonious model. It is, therefore, not so important that the model contains all the relevant variables,
as long as the prediction works well. In concordance with the authors of [62], in this study, the RF
model identified 15 input variables as the smallest subset with satisfactory predictive ability.

The use of percentincMSE and IncNodePurity (Figure 5) in ranking predictor variables in relation
to their capability to predict forest AGB improved the model’s predictive accuracy. Although we
achieved an acceptable result in this study, it is important to note that the performance of the model
depends on the selection of important variables, such as the number of trees [52] and the number
of splits. Kuhn and Johnson [59] suggested the use of at least 1000 trees for optimal RF model
parameterization. Similarly, as suggested by Verikas et al. [61], using the optimal number of variables
to split a node, instead of using a default value, results in different variable rankings. NDVI was ranked
4th mainly due to the presence of Landsat 8 OLI spectral saturation problems for high biomass [4],
but the results showed that VIs better relate to AGB than spectral bands [54]. OSAVI could have been
affected through the radiometric correction technique used to minimize the background effect (soil)
in retrieving vegetation information [66,67]. Similarly, SR being the second most important variable
selected reveals the presence of a dense canopy [68]. Using the Landsat 8 OLI sensor, the study by
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Shao and Zhang [69] showed that similar variables were selected for estimating forest biomass for
coniferous and broad-leaved species in China.

Another possible explanation for the better performance in estimating AGB can be attributed
to the ability of the RF to block the influence of noisy predictor variables [70]. The majority of
the variables selected were from vegetation indices, and this might be one possible reason for the
improved performance. Lu et al. [71] stated that the use of VIs can partially reduce the impacts of
environmental conditions and shadows on reflectance, thus improving the correlation between AGB
and VlIs, especially in sites with complex vegetation stand structures. In addition, we attributed the
strong performance of RF in this study to the collection of a sufficient reference dataset which contained
a modest amount of extreme values. The extreme values were represented in the tree construction,
and RF prediction was not biased towards the mean value [13]. Nevertheless, variables’ importance
measures in this high-dimensional setting should be interpreted with care due to data redundancy.
For example, collinearity among the predictors was not considered in the model. However, 45% of all
the pairwise Pearson’s correlations among the predictors had values > 80, indicating high collinearity
among the multiple predictors. Nevertheless, the good model parameter optimization minimized
model overfitting problems and multicollinearity effects [61].

Although the objective of this study was not to compare algorithms, we also checked how well
the RF model could estimate AGB in complex stands by comparing it to the MLR. Our result showed
that the MLR performance was moderately satisfactory in predicting AGB. However, comparatively,
the results were very weak when compared to the RF model observed AGB estimates. For instance,
linear regression employed for the pooled dataset yielded an adjusted R? of 0.56 (RMSE = 23.05 t ha™!)
and identified the two most important variables as being Band 5 (NIR) and SR. Variable selection in
the RF model yielded a similar result, except for that a different vegetation index (SAVI) was selected
when compared to the MLR. The presence of multicollinearity was tested using the VIF, and those
with a high value were removed from the model. The following variables, Bands 2, 3, 4, and 6; MSR;
NDVIL RDVI; and MSAVI2, experienced high collinearity. As a result, the removal of highly collinear
variables resulted in different variables being selected by the model. Similar results were observed for
the other two datasets. In addition, it is important to note that the integration of the spectral bands
and vegetation indices did not influence the model performance much (i.e., gave a slight improvement
in the error term, but the same adjusted R? value). On the other hand, the use of spectral bands
as independent variables yielded weaker AGB estimates. This observation is not unique, but is in
line with other studies where VIs were found to relate better with AGB than spectral bands [4,11,41].
For example, the study by Dube and Mutanga [11] used spectral bands and VIs to estimate commercial
forest species’ (E. dunii, E. grandis, and P. taeda) biomass. The results showed that the spectral bands
yielded an R? of 0.40 (RMSE 18.13t ha—'), 0.32 (RMSE 29.13 tha~!), and 0.30 (32.83 t ha—!), whereas VIs
produced an R? of 0.53 (RMSE 18.66 t ha™1), 0.36 (RMSE 26.54 t ha~!), and 0.37 (RMSE 29.48 t ha—!)
for these three species, respectively.

The observed 56% model variability is comparable to previous findings in the literature [72].
Kumar et al. [72] obtained a lower AGB prediction accuracy of 0.44 using 250-m spatial resolution
MODIS data. However, the MLR results are weak when compared to those of Zheng et al. [73], who
obtained a high R? of 0.82 in the simple-structured temperate forest. The previous studies in complex
and dense forest obtained considerably lower results similar to those obtained in this study using the
simple linear model [4,53,74,75].

Although we obtained a better AGB model, using vegetation indices, the MLR model explained
half of the variability in biomass. Moreover, the RMSE of 37.01 t ha~! obtained from cross-validation is
still large, depicting model underestimation and overestimation for low and high biomass, respectively,
within the study area. This could be due to an increase in homogenous texture and the higher
prevalence of subtropical species in the study area (Figure 2). Very few plots were fitted on the line,
suggesting that linear regression might not be suitable for AGB estimation in such complex and dense
forests. However, the weak performance of MLR in AGB estimation in the complex forest ecosystem
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shows that the use of nonlinear models such as RF or SVM (support vector machine) [62] is critical if
accurate estimates are to be obtained in such areas. It is important to note that there are various AGB
modeling approaches using different sensors and in situ data. It is thus difficult to conclude outright
that one model is more suitable than the other, until and unless they are assessed separately. This is
only the way that different results can be shown when considering different forest types, sensors used,
and topographical structures. Nevertheless, uncertainties in remote sensing techniques of AGB are
high due to the structural variation of vegetation, heterogeneity of landscapes, seasonal variation,
and disproportionate data availability, among others [76]. Since our study area lies in flat terrain and
comprises almost homogenous canopy structures with high biomass, the potential of such a valuable
sensor in AGB estimation in different forest environments with complex terrain can be exploited
further, which can help to fill the voids related to the lack of data on forest resources.

5. Conclusions

Here, we investigated the utility of Landsat 8 OLI spectrally derived variables in estimating
complex forest stand AGB based on two statistical analysis techniques, namely RF and MLR.
We concluded that:

1.  Improvements in the medium-resolution Landsat 8 OLI have the potential to satisfactorily predict
biomass in subtropical forest areas exhibiting flat terrain but complex forest characteristics.

2. Important variables’ selection from pooled data derived from Landsat 8 OLI using the RF model
yielded better results with the lowest observed RMSE value when compared to the MLR model.

3.  The RF model selected the Landsat 8 OLI-derived OSAVI, SR, and MSR as the most suitable
variables for estimating AGB, whereas MLR selected Band 5 (NIR) and SR.

Overall, our results demonstrate the utility, potential, and strength of the combination in situ data
with Landsat 8 OLI derivatives in predicting biomass. The method presented here is relatively simple
and is applicable to other parts of Nepal, where access to hyperspectral data is limited. It should be a
good alternative for researchers and conservationists who require cheap, efficient, and freely available
satellite sensor data to use for the reliable and accurate monitoring of AGB and carbon sequestration
where ground data are scarce. Furthermore, it can be utilized in strategic forest management in Nepal.
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