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Abstract: Accurate 3D reconstruction/modelling from unmanned aerial vehicle (UAV)-based
imagery has become the key prerequisite in various applications. Although current commercial
software has automated the process of image-based reconstruction, a transparent system, which can be
incorporated with different user-defined constraints, is still preferred by the photogrammetric
research community. In this regard, this paper presents a transparent framework for the automated
aerial triangulation of UAV images. The proposed framework is conducted in three steps.
In the first step, two approaches, which take advantage of prior information regarding the flight
trajectory, are implemented for reliable relative orientation recovery. Then, initial recovery of image
exterior orientation parameters (EOPs) is achieved through either an incremental or global approach.
Finally, a global bundle adjustment involving Ground Control Points (GCPs) and check points is
carried out to refine all estimated parameters in the defined mapping coordinate system. Four real
image datasets, which are acquired by two different UAV platforms, have been utilized to evaluate
the feasibility of the proposed framework. In addition, a comparative analysis between the proposed
framework and the existing commercial software is performed. The derived experimental results
demonstrate the superior performance of the proposed framework in providing an accurate 3D model,
especially when dealing with acquired UAV images containing repetitive pattern and significant
image distortions.

Keywords: unmanned aerial vehicle; 3D reconstruction; structure from motion; relative orientation;
exterior orientation parameters; bundle adjustment

1. Introduction

In the past few years, low-cost Unmanned Airborne Vehicles (UAVs) equipped with
consumer-grade imaging systems (e.g., commercial off-the-shelf digital camera) have emerged
as a potential remote sensing platform that could satisfy the needs of a wide range of applications,
such as precision agriculture [1–9], environmental monitoring [10–14], forest inventory [15,16],
wildlife research [17,18], and archaeological applications [19,20]. Compared to conventional
human-operated terrestrial and airborne mapping/remote sensing systems, the advantages of UAVs
include their low-cost, small size, low flying height, ease of storage and deployment, and the capability
of providing high spatial resolution geospatial data at a higher data collection rate [21–23].
From a mapping point of view, deriving accurate three-dimensional (3-D) geo-spatial information
from UAV-based imagery requires the interior orientation parameters (IOPs) of the utilized camera,
and exterior orientation parameters (EOPs) of the involved images. The IOPs, which encompass
the internal sensor characteristics such as focal length and camera-specific distortions, can be derived
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from a camera calibration process [24,25]. The EOPs, which defines the position and orientation of
the imaging system at the moments of exposure, can be either derived through an indirect or a direct
geo-referencing process. For indirect geo-referencing, the image EOPs are traditionally established
using ground control points (GCPs) within a bundle adjustment (BA) procedure. However, the set-up
of control points are time-consuming and costly activities. Alternatively, thanks to the available
GNSS/INS Position and Orientation Systems (POS) onboard, direct geo-referencing simplifies
the derivation of the image EOPs without the need for any GCPs [26–28]. Unfortunately, due to
the limited endurance and payload constraints, current low-cost UAV-based mapping systems
are usually equipped with consumer-grade geo-referencing units and light-weight imaging systems.
Compared to survey-grade GNSS/INS units, the consumer-grade systems are relatively small
and provide inaccurate position and orientation information. At present, Structure from Motion (SfM),
which was initiated by the computer vision research community, has been widely used for automated
triangulation of overlapping UAV-based frame imagery while using minimal GCPs and/or low-quality
navigation information from consumer-grade GNSS/INS units [29]. Similar to the aerial triangulation
procedure that has been adopted by the photogrammetric community for decades, SfM is usually
implemented in three steps to simultaneously estimate the EOPs of the involved images and derive
3D coordinates of matched features within the overlapping area [30]. In the first step, the relative
orientation parameters (ROPs) relating stereo-images are initially estimated using automatically
identified conjugate point and/or line features [31]. Then, a local reference coordinate system is
established to define an arbitrary datum for deriving the image EOPs as well as 3D coordinates of
matched points. Finally, a bundle adjustment procedure is implemented to refine the EOPs and object
coordinates derived in the second step. Current commercial software (e.g., Pix4D, PhotoScan, etc.)
has automated the SfM process for UAV image-based 3D reconstruction. However, for some emerging
applications, such as precision agriculture, accurate UAV-based mapping remains a challenging
task. This is mainly due to the fact that the acquired imagery usually contains poor and/or
repetitive texture, which can severely impact the relative orientation recovery for the involved
stereo-pairs. In addition, due to the black-box nature of commercial software, it is always hard
to figure out reasons for the internal failure of processing. In this regard, this paper aims at proposing
a transparent processing framework which can be augmented with different user-defined constraints,
for the automated aerial triangulation of UAV-based imagery. To be more specific, this research will be
focusing on the following issues:

• Automated relative orientation recovery of UAV-based images in the presence of prior information
regarding the flight trajectory,

• Initial recovery of image EOPs through either incremental or global SfM-based strategies,
• Accuracy analysis of the derived 3D reconstruction through check point analysis, and
• Comparison of the proposed approach against available commercial software, such as Pix4D.

To address these issues, the theoretical background for the proposed framework is introduced
in the next section. Then, the utilized methodology is explained. Afterwards, experimental results
with real datasets are discussed. Finally, drawn conclusions as well as recommendations for future
work are presented.

2. Theoretical Background

This section introduces the theoretical background for the automated aerial triangulation
and SfM-based 3D reconstruction. First, the mathematical model and closed-form solutions for relative
orientation is introduced. Then, a literature review of existing research efforts regarding the recovery of
image EOPs is given. Finally, the concept of bundle adjustment, which is usually conducted as the final
refinement for image-based 3D reconstruction, is presented.
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2.1. Relative Orientation Recovery

Accurate estimation of ROPs is a prerequisite for image-based 3D reconstruction, which follows
an SfM-based framework. For a given stereo-pair, ROP estimation involves the derivation of
five parameters, which include three rotation angles and two translation parameters (i.e., an arbitrary
scale is assumed for the ROP estimation procedure). The most well-known approach for ROP
recovery is based on the co-planarity constraint [32], where a least-squares solution is derived
while using a minimum of five conjugate points. As shown in Figure 1, the co-planarity constraint
describes the fact that an object point P, conjugate image points p1 and p2, and the two perspective
centers O1 and O2 of a stereo-pair must lie on the same plane. In the mathematical expression
for the co-planarity constraint as presented in Equation (1), p1 and p2 are the two conjugate image
points, where p = (x, y,−c) represents the image coordinates corrected for the principal point
offset and camera-specific distortions. The rotation matrix R, which is defined by the three rotation

anglesω, φ, and κ, describes the relative rotation relating the two stereo-images.
→
T is the translation

vector describing the baseline between the stereo-images, and it can be defined by three translation
parameters

(
Tx, Ty, Tz

)
. The symbol × denotes the cross product between two vectors. Due to

the nonlinear nature of the co-planarity model, the least-squares solution requires approximate
initial values for the unknown parameters. Then, these parameters are refined through an iterative
process until a pre-defined stopping criterion is satisfied (e.g., insignificant changes can be observed
between successive estimates of the parameters). However, establishing good approximations are not
always possible, especially when the mapping platform exhibits excessive maneuvers between
the data acquisition epochs (e.g., close range mapping applications).

p1·
(→

T × Rp2

)
= 0 (1)
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Figure 1. The co-planarity model relating stereo-images.

To date, several closed-form solutions (e.g., the eight-point and the five-point algorithms),
which do not require approximations, have been developed for ROP recovery [33–35]. These solutions
are based on the concept of the Essential matrix, which is derived from the co-planarity constraint
and encapsulates the epipolar geometry relating stereo-images. Since the cross product of
two vectors can be expressed as a matrix-vector multiplication, Equation (1) can be simplified
as Equation (2) using the 3-by-3 skew-symmetric matrix T̂. Then, according to Equation (2),
one can derive the expression of the Essential matrix as shown in Equation (3). It is worth
noting that the nine elements of the Essential matrix are defined by the five elements of the ROPs
(i.e., three rotation angles and two translation components). Therefore, there must be four additional
constraints that can be imposed on the nine elements of the Essential matrix E [31]. Given that
the Essential matrix has rank two, the first cubic constraint on the nine unknown parameters of
the Essential matrix is presented as in Equation (4), where the determinant of the matrix has to be
zero. Then, another two constraints—namely the trace constraints—are deduced from the equality
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as established in Equation (5). Finally, the fourth constraint is that the nine elements of the Essential
matrix can be only determined up to a scale.

pT
1 T̂Rp2 = 0 where, T̂ =

 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

 (2)

E = T̂R =

 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

R =

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 (3)

det(E) = 0 (4)

EETE− 1
2

trace
(

EET
)

E = 0 (5)

The first closed-form solution of the Essential matrix is proposed by Longuet–Higgins
for recovering the structure of a scene from two views that have been captured by a calibrated
camera [33]. In spite of its simplicity, this approach fails to consider both the cubic and trace
constraints as shown in Equations (4) and (5), respectively. Therefore, a minimum of eight conjugate
points is required in this approach, and it has been criticized for its excessive sensitivity to noise
in the image coordinates of conjugate point pairs as well as having an object space that is almost planar.
An improvement to such an eight-point algorithm was proposed by Hartley [34], where a coordinate
normalization procedure is applied to bring the origin of the image coordinate system to the centroid
of the involved points. Experimental results from Hartley’s work demonstrated that with image
coordinate normalization, the performance of the eight-point algorithm is almost at the same quality
as the iterative nonlinear approach. Given that a minimum of five conjugate point pairs are sufficient
for ROP recovery, several five-point algorithms [35–41] have been proposed as alternatives to
the eight-point algorithm. To date, the most well-known five-point algorithm is the one proposed by
Nistér [35], which is based on a modified Gaussian–Jordan elimination procedure. An improvement
for Nistér’s five-point algorithm is proposed by Li and Hartley while using a hidden variable
resultant approach for the estimation of unknown parameters [41]. This improvement is easier
to understand and implement. However, it can be much more computationally expensive when
compared to the original Nistér’s approach. Since the five-point algorithms enforce all inherent
constraints among the elements of the Essential matrix, they are capable of providing more accurate
estimate of ROPs when compared to eight-point approaches, especially when dealing with noisy
conjugate image measurements or acquired images from planar scenes [37].

The above-mentioned ROP recovery procedures are based on reliable conjugate points in stereo
imagery. However, illumination changes, induced occlusions by perspective geometry, and arising
ambiguity from repetitive patterns will introduce outliers in automatically identified conjugate
features. For robust ROP estimation, it is always necessary to augment these closed-form solutions
(i.e., eight or five-point algorithms) with strategies for outlier removal. One of the commonly-used
strategies to filter outliers for ROP recovery is Random Sample Consensus (RANSAC) [42]. In practice,
RANSAC starts with conducting random draws of the necessary samples to derive an initial estimate
of the Essential matrix. Then, the point-to-epipolar line distances are evaluated for all available
matches according to the co-planarity model and the estimated Essential matrix. Finally, the draw
that results in the largest consensus is used together with the compatible matches to derive a reliable
estimate of the ROPs. Despite its potential, RANSAC would require an excessive number of trials
when dealing with scenarios that require large samples and/or have high percentage of outliers.
Moreover, RANSAC might fail to provide a set of matches that supports correct ROP estimate when
there is a false hypothesis providing larger consensus.
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In order to mitigate the impact of RANSAC drawbacks, some approaches, which take advantage
of the availability of additional constraints on the system trajectory during data acquisition, have been
developed to reduce the number of required feature correspondences for ROP recovery [43–46].
These approaches, which were mainly initiated by the mobile robotics research community, assume
one or more parameters of the stereo-based relative orientation to be known. For example,
considering the fact that the relative rotation between stereo-images can be alternatively defined
by a rotation angle around an axis (i.e., reference direction) in space [47], several three-plus-one
algorithms [48–50], which utilize three point correspondences and a known rotation reference direction,
have been developed as a substitute of the classic five-point algorithm. In practice, prior information
regarding the reference direction can be either derived from a detected vanishing point [51] or using
a gravity sensor onboard mobile mapping platforms, where the gravity vector becomes the reference
direction [44]. A recent three-point solution has been proposed by Fraundorfer et al. [44]. In his
work, a simplified Essential matrix is estimated from three-point correspondences using two known
rotation angles, which are acquired from a Smart-phone. In addition to these three-point solutions,
another example of using prior trajectory information to facilitate the ROP recovery process is
introduced by Troiani [46]. In Troiani’s work, a two-point algorithm has been proposed for estimating
the translation components of the ROPs while relying on available rotation angles relating consecutive
images from an Inertial Measurement Unit (IMU), which has been rigidly attached to a monocular
camera. It is worth noting that the three translation parameters

(
Tx, Ty, Tz

)
are linearly recovered

to an arbitrary scale through two-point correspondences in this approach. In terms of UAV-based
mapping, He and Habib [23,52] proposed a two-point approach for automated relative orientation
recovery while considering prior information regarding the flight trajectory. This approach assumes
that the UAV platform is moving at a constant flying height while operating a nadir-looking camera.
The derived experimental results from different real datasets have demonstrated the feasibility of this
two-point approach in providing reliable ROPs from UAV-based imagery in the presence of a high
percentage of matching outliers. In this research, the two-point solution is adopted for the proposed
UAV-based aerial triangulation procedure.

2.2. Exterior Orientation Estimation

Now that the ROPs among the overlapping imagery are estimated, the SfM-based framework
generally adopts either an incremental or global strategy to establish the EOPs of the involved
images. These estimated EOPs can be finally utilized as input values in the bundle adjustment
for additional refinement. Existing incremental approaches usually estimate the EOPs through
an image augmentation process. For example, Snavely [53] proposed an incremental SfM procedure
for 3D reconstruction using Internet images. In this procedure, a reference frame is initially established
from a single pair of images that has a large number of matched points and a long baseline.
Then, the remaining images are sequentially added to the reference frame based on the number
of feature correspondences with previously referenced images. The Direct Linear Transform (DLT) [30]
is incorporated within a RANSAC procedure for deriving the EOPs of the augmented images [53].
Another incremental approach to recover the EOPs for either a closed-loop or open-sequence of
acquired images is developed by Fitzgibbon and Zisserman [54]. In their approach, the relative
orientation parameters are first recovered through trifocal tensors [55] for all consecutive image
triplets. Afterwards, an incremental approach is applied to gradually integrate the image triplets to
subsets. Finally, these subsets are augmented into a single image block. Although incremental SfM
has been widely utilized for various 3D reconstruction applications while using ordered/unordered
images [56,57], the high time complexity, which is commonly known to be O

(
n4) for a collection of

n images, impedes the widespread adoption of such a simple strategy for large image datasets [58].
In addition, it is worth noting that the selection of initial image pair/triplet can be critical
for incremental SfM [59]. In practice, due to the increased redundancy, initialization from a location
with an adequate number of overlapping images usually leads to more robust parameter estimation.
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On the other hand, an initial stereo-pair with insufficient image matches may result in unreliable
3D reconstruction as well as the failure of image augmentation. The performance of the incremental
algorithms also depends on the order of augmented images. According to the existing body of
literature [60], a designed image augmentation which considers the geometric compatibility among
overlapping images can be adopted to mitigate the impact of error propagation for reliable estimation
of image EOPs. Moreover, intermediate bundle adjustment, which is periodically conducted during
the image augmentation process, is another commonly-used technique in most incremental SfM
approaches. Although such intermediate bundle adjustment ensures successful augmentation of
the individual images into the final image block, it can be computationally expensive.

Different from the incremental algorithms, a global SfM strategy aims at simultaneously
establishing the EOP estimation for all involved images while providing better efficiency and accuracy.
Currently, most of the state-of-the-art global approaches are based on a two-step strategy.
Specifically, in the first step, a multiple rotation averaging procedure is utilized to simultaneously
solve image orientations using all the derived ROPs. Then, the positional components are derived
through a global translation averaging while using the estimated image rotations. According to
Hartley [61], given a set of m images with n available stereo-based relative rotations (e.g., Rj

i),

the multiple rotation averaging aims at finding the m optimum global rotation estimates (e.g., Rglobal
i

and Rglobal
j ) for all the involved images while satisfying the n compatibility constraints in the form

of Rj
i = (Rglobal

j )
T

Rglobal
i . To date, several approaches have been developed for solving the multiple

rotation averaging problem. For example, Martinec and Pajdla [62] have demonstrated that it is
possible to derive a closed-form solution for all the rotation matrices through a singular value
decomposition (SVD) on the set of linear equations for the established compatibility constraints.
However, it is worth noting that such SVD-based solution fails to consider the inherent orthogonality
constraints among the nine elements of the rotation matrix. On the other hand, considering the fact
that a rotation in 3D space can be represented in different forms (e.g., Euler angles or quaternions),
Martinec and Pajdla introduced another solution for the multiple rotation averaging while using
quaternions. Instead of having nine elements in a rotation matrix, a quaternion gives a concise
way to represent a rotation in 3D space through four numbers that represent a unit vector.
Therefore, the utilization of quaternions can significantly reduce the number of utilized equations
for the estimation of rotations. Unfortunately, at this time, there is no satisfactory way to derive
a linear solution from the quaternion-based approach while enforcing the unit length constraint on
the resulting quaternion [62]. Instead of using Euler angles or quaternions, recent research efforts,
which are based on Lie-algebra representations and robust L1 optimization, have demonstrated better
performance for the multiple rotation averaging [63]. Interested readers can refer to Hartley [61]
and Carlone et al. [64] for more information about the theory of multiple rotation averaging.

In contrast to multiple rotation averaging, the estimation of translational components for all
the available images can be more challenging since the derived stereo-based translations are only
determined up to an arbitrary scale. The existing research efforts for the global translation estimation
include some linear approaches [65–68], which are mainly based on the compatibility constraint
among different translation vectors. For example, Govindu [65] estimated the positions of a group
of images relative to a common reference coordinate system by enforcing consistency constraints
among stereo-based translation directions. However, this approach cannot deal with images
captured in a linear-trajectory configuration. Different from Govindu’s approach, Sinha et al. [67]
determined the global translations through stereo-based registration. However, such a registration
process requires tracking of conjugate 3D points reconstructed in all possible stereo-pairs.
Arie-Nachimson et al. [68] introduced another solution for global translation estimation while using
a novel decomposition of the Essential matrix. This approach can deal with stereo-pairs with
different baseline lengths. However, it still suffers from the degeneracy caused by linear trajectory
configuration. In order to resolve such degeneracy in translation estimation, Cui et al. [69,70]
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utilized corresponding image points, which are derived through a feature tracking process, to establish
an absolute scale for all the translation parameters. However, careful outlier detection/removal is
required in the feature tracking process. On the other hand, considering the fact that a common
scale can be determined within an image-triplet, some trifocal tensor-based approaches have
been investigated for global translation estimation. Recently, Jiang et al. [71] proposed a novel
linear constraint for image triplets, and derived position estimates for all the available images
through a least-squares adjustment. Such trifocal tensor-based approach is capable of dealing
with the degenerate camera motion problem (i.e., linear trajectory). However, strong connection
among overlapping images (i.e., an adequate number of favorably distributed point correspondences)
is usually required. Another draw-back of the trifocal tensor-based approach is that for a dataset
with huge number of images, the total number of available image triplets can be significantly
greater than the number of stereo-pairs, which consequently leads to a low computational efficiency.
Although the global strategy has recently attracted more attention in both photogrammetric
and computer vision research communities, the incremental SfM is still the most commonly-used
approach in the existing commercial software. Therefore, this paper is dedicated to investigate
the performance of both incremental and global strategies for UAV image-based 3D reconstruction by
presenting a transparent framework for automated aerial triangulation.

2.3. Bundle Adjustment

In existing photogrammetric triangulation/SfM approaches, bundle adjustment (BA)
is a commonly-used process to simultaneously refine the 3D coordinates of the scene points, the EOPs of
the involved images, and/or the IOPs of the utilized cameras [72]. The classic photogrammetric bundle
adjustment is based on the well-known collinearity equations. It can be formulated as a nonlinear
least-squares problem, which aims at minimizing the total back-projection error between the observed
image point coordinates and predicated feature locations [73]. In recent years, bundle adjustment
has been further expanded to deal with a wide variety of situations, such as the utilization of
different features (e.g., line [25,74], curves [75], etc.), the reconstruction of dynamic scene objects [76],
and the employment of non-quadratic error models [77]. Interested readers can refer to the review
conducted by Triggs et al. [77] for more details regarding modern bundle adjustment techniques [78,79].

3. Methodology

In this section, the proposed framework for the automated aerial triangulation is introduced.
Similar to most existing procedures for UAV image-based 3D reconstruction, the proposed framework
is accomplished through three steps. In the first step, the ROPs relating stereo-images are directly
derived from conjugate point features. In order to deal with UAV-based imagery acquired
in the presence of a high percentage of matching outliers, two approaches, which exploit prior
information regarding the flight trajectory, are adopted. In the second step, the initial recovery of
image EOPs is achieved. More specifically, the proposed framework investigates both incremental
and global strategies for the EOPs recovery of all the involved imagery. Finally, in the third step, a global
bundle adjustment, which is able to integrate both GCPs and Check Points, is carried out for indirect
geo-referencing and accuracy analysis. Figure 2 illustrates the workflow of the proposed procedure.

3.1. Automated Relative Orientation

Considering the fact that current UAV-based data acquisition is usually executed according to
a mission plan while relying on a consumer-grade navigation sensor within the platform’s autopilot,
the two approaches developed by He and Habib [23]—namely two-point and iterative five-point
approaches—have been adopted in the proposed framework for automated relative orientation. In this
research, SIFT (scale-invariant feature transform) detector and descriptors [80] are utilized to derive
initial matches among overlapping images.
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The two-point approach is based on a common flight configuration for UAV-based mapping,
in which the platform is moving at a constant flying height while operating a nadir-looking camera
(i.e., we are dealing with vertical images that have been captured from the same flying height).
Such flight configuration is commonly known as “planar motion”, where the platform is constrained
to move on a horizontal plane, and the rotation of the camera is constrained along an axis orthogonal
to the horizontal plane. As shown in Figure 3, such UAV-based planar motion leads to two geometric
constraints to simplify the estimation of relative orientation parameters among the image stereo-pairs.
The two geometric constraints include:

• The rotation angle ω and φ between overlapping stereo-images can be assumed to be zero, and
• The translation component Tz is approximated to be zero.
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Figure 3. Stereo-images from a UAV platform equipped with a nadir-looking camera while moving
at a constant flying height.

Based on the two geometric constraints, the rotation matrix R and the translation vector
→
T relating

the stereo-images can be expressed as in Equation (6). Then, substituting both R and
→
T into Equation (3)

leads to the simplified Essential matrix in Equation (7), where L1, L2, L3, and L4 are the four unknown
elements within the simplified Essential matrix. It is worth noting that L1, L2, L3, and L4 are derived
from three independent parameters (Tx, Ty, and κ ). Therefore, there should be one more constraint
relating the four elements of the simplified Essential matrix. Through a closer inspection of Equation (7),
one can derive the additional constraint as presented in Equation (8). In addition, since L1, L2, L3,
and L4 can be only determined up to an arbitrary scale, two pairs of conjugate points are sufficient
for deriving the simplified Essential matrix through a closed form solution. Similar to the conventional
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five/eight-point algorithms, the two-point approach can be incorporated within a RANSAC framework
for outlier removal.

R =

 cos κ − sin κ 0
sin κ cos κ 0

0 0 1

 and
→
T =

 Tx

Ty

0

 (6)

E = T̂R =

 0 0 Ty
0 0 −Tx
−Ty Tx 0


 cos κ − sin κ 0

sin κ cos κ 0
0 0 1


=

 0 0 Ty

0 0 −Tx

−Ty cos κ + Tx sin κ Ty sin κ + Tx cos κ 0


=

 0 0 L1

0 0 L2

L3 L4 0


(7)

L2
1 + L2

2 − L2
3 − L2

4 = 0 (8)

The iterative five-point approach starts from the co-planarity model while assuming
the availability of prior information regarding the platform trajectory between the images of a stereo

pair. Given approximate values for the platform’s rotation matrix R and translation
→
T between

the images of a stereo-pair and assuming unknown incremental rotation and translation corrections
(δ R and δ T), the co-planarity model can be modified to the form in Equation (9). As shown
in Equation (9), T̂ is the 3-by-3 skew-symmetric matrix determined by the approximate values
for the translation parameters Tx, Ty, and Tz, and δ T is the 3-by-3 skew-symmetric matrix comprised
from the unknown corrections to the approximate translation vector. R is the rotation matrix defined
by the approximate angles ω, φ, and κ, which can be derived from either the assumed flight
trajectory or the measurements from onboard GNSS/INS unit. δ R describes the unknown incremental
rotation matrix defined by the incremental angles ∆ω, ∆φ, and ∆κ. In practice, one translation
correction (e.g., ∆ Tx) can be set to 0 since the translation is only determined up to an arbitrary scale.
Moreover, assuming that the deviations from the approximate rotation R are small (i.e., ∆ω, ∆φ,
and ∆κ are small rotation angles), the incremental rotation matrix δR can be represented as in Equation
(10). Substituting Equation (10) into Equation (9) and ignoring the second-order correction terms
lead to a linear equation in five unknown parameters (i.e., two translation corrections and three
incremental angles). Given five or more conjugate point pairs, one can derive a least-squares solution
for the unknown corrections. In the iterative five-point approach, the derived corrections are used to
refine the approximate ROPs through an iterative procedure until a convergence criterion is achieved.
A built-in outlier removal process is adopted within the iterative procedure by imposing constraints on
the normalized image coordinates according to epipolar geometry. Different from the two-point
approach that assumes a planar motion of the utilized imaging system, the iterative five-point
approach is capable of dealing with acquired UAV imagery at any tilt angles and vertical translation.
However, accurate initial approximations, which are close to the true values of ROPs in stereo-pairs,
are always required.

pT
1
(
T̂ + δT̂

)
δ RRp2 = 0 (9)

δ R =

 1 −∆κ ∆φ
∆κ 1 −∆ω
−∆φ ∆ω 1

 (10)

In practice, to deal with the acquired UAV images that exhibit significant variations from
the designed flight plan (e.g., when operating a light-weight UAV in a relatively windy condition),
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a hybrid strategy which integrates both the two-point and iterative five-point approaches can be
adopted. More specifically, in such a strategy, the two-point approach is first conducted to provide
initial ROP estimates. Then, the derived parameters are further refined through the implementation
of the iterative five-point approach. Interested readers can refer to He and Habib [23] for more
information about the two-point and iterative five-point approaches.

3.2. Incremental Strategy for EOP Recovery

Now that the ROPs among overlapping imagery are estimated, either an incremental or global
strategy can be incorporated into the proposed automated aerial triangulation framework to establish
the EOPs of the involved images. In this section, the incremental approach for the initial recovery
of image EOPs is presented. The proposed approach is initiated by using seed images to define
a local reference coordinate system. Then, the remaining images are sequentially augmented into
the final image block or trajectory through closed-form solutions for both the rotational and positional
components of the EOPs.

3.2.1. Local Reference Coordinate System Initialization

The proposed incremental approach starts with selecting an initial image triplet, which is
comprised of three overlapping images, to define the local reference coordinate system. In order
to find the optimum candidate for the initial image triplet, two conditions have to be satisfied:

• There should be a sufficient number of feature correspondences within the selected image
triplet, and

• There should be a good geometric configuration among the three overlapping images.

In this research, the first condition is easily satisfied by maximizing the total number of conjugate
points within the image triplet. The second condition, on the other hand, can be achieved through
a compatibility analysis, which aims at evaluating the geometric configuration within the selected
image triplet. Before presenting the proposed compatibility analysis, we first introduce the geometric
constraints within an image triplet. Figure 4 depicts a sample image triplet comprised of three images i,

j, and k. As can be seen in the figure,
(

ri
j, Ri

j

)
,
(
ri

k, Ri
k
)
, and

(
rj

k, Rj
k

)
are the relative orientation

of the three involved stereo-pairs (i, j), (i, k), and (j, k) within the image triplet, respectively.

Given that the stereo-based translation components (i.e., ri
j, ri

k, and rj
k) are only recovered to

an arbitrary scale, a mathematical model to define the common scale within the image triplet has been
provided in Equation (11). The conceptual basis of this mathematical model is based on the fact
that within an image triplet, one relative translation vector can be expressed as a summation of
the other two while considering appropriate scale factors. As shown in Equation (11), the common scale

within the image triplet (i, j, k) is defined by ri
j, which is the translation vector relating the two images

i and j. λ1 and λ2 are two unknown scale factors for the other two translations ri
k and Ri

jr
j
k. For each

image triplet, a system of three linear equations in the two unknowns λ1 and λ2 can be established.
One can derive a solution for the two unknown scale factors through a classic least-squares approach.

ri
j = λ1ri

k − λ2Ri
jr

j
k (11)
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Once the values for the two scale factors λ1 and λ2 are determined, the EOPs of each image
within the image triplet can be recovered relative to the local reference frame, which is established
as the camera coordinate system of image i. Such a local reference frame will be denoted as l in this
research. With a closer inspection of the image triplet shown in Figure 4, one can come up with
two sets of EOP estimates of image k through the EOPs of either image i or j. The mathematical
expressions for deriving the two different EOP estimates are presented in Equations (12) and (13),
respectively. As can be seen in Equation (12), the first EOP estimate of image k, which is
represented as rl

k[i] and Rl
k[i], only relies on the scale factor λ1 and the ROPs relating images i and k.

Alternatively, the second estimate—rl
k[j] and Rl

k[j]—is derived through the EOPs of image j while using
the scale factor λ2 and the ROPs within stereo-pair (j, k).

Rl
k[i] = Ri

k and rl
k[i] = λ1ri

k (12)

Rl
k[j] = Ri

jR
j
k and rl

k[j] = ri
j + λ2Ri

jr
j
k (13)

Ideally, the two estimated EOPs of image k as in Equations (12) and (13) should have identical
values. However, due to the uncertainty introduced in the estimated ROPs, the two EOPs are usually
different. Inspired by He and Habib [81], a simple strategy, which evaluates the rotational
and positional differences between the two estimated EOPs as in Equations (12) and (13), can be
conducted for the compatibility analysis of all possible image triplets. Specifically, the rotational
difference (∆ω, ∆φ, ∆κ), which describes the angular deviations between the two rotation matrices

Rl
k[i] and Rl

k[j], can be derived through a product of (Rl
k[i])

T
and Rl

k[j] as shown in Equation (14).

In practice, R(∆ω, ∆φ, ∆κ) is expected to be close to the 3-by-3 identity matrix I3×3 since we

usually assume small difference between the two estimated rotation matrices Rl
k[i] and Rl

k[j].

The positional difference (∆ x, ∆ y, ∆ z), which represents the discrepancies between rl
k[i] and rl

k[j],

can be computed as in Equation (15). Despite the simplicity of the introduced compatibility

analysis, the derived rotational and positional differences cannot be compared together as they
are defined by different metrics (e.g., degrees and meters). To resolve this issue, another estimate,
which quantitatively evaluates the impact of angular deviations (∆ω, ∆φ, ∆κ) in object space,
is proposed as in Equation (16). As graphically illustrated in Figure 5, such estimate can be interpreted
as the discrepancy (∆ xR, ∆ yR, ∆ zR) caused by the angular deviations (∆ω, ∆φ, ∆κ) at image k.
Then, a final score function S, which considers both the rotational and positional differences in object
space, can be used for the compatibility analysis (see Equation (17)). Since a high degree of similarity
between the two estimated EOPs usually indicates a good geometric compatibility within the image
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triplet, the second condition for initializing the local reference coordinate system can be satisfied by
selecting the candidate with the minimum score value S in the compatibility analysis.
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(∆ω, ∆φ, ∆κ) = (Rl
k[i])

T
Rl

k[j] (14) ∆ x
∆ y
∆ z

 = rl
k[i] − rl

k[j] (15)

 ∆ xR
∆ yR
∆ zR

 = (R(∆ω, ∆φ, ∆κ)− I3×3) ·λ1ri
k (16)

S =

∥∥∥∥∥∥∥
 ∆ x

∆ y
∆ z


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 ∆ xR

∆ yR
∆ zR


∥∥∥∥∥∥∥ where, ‖·‖ stands for the L2 − norm of a vector (17)

It is worth noting that the proposed compatibility analysis cannot handle a set of images with the linear
trajectory configuration as it assumes a triangular relationship within the initial image triplet. In this
case, an image stereo-pair that satisfies the requirements of a large number of corresponding points
as well as a large baseline/depth ratio is selected to establish the local coordinate frame.

3.2.2. Image Augmentation Process

Once the local reference coordinate system is established, the remaining images can be sequentially
augmented into the final image block or trajectory. The proposed approach for EOP recovery of each
individual image is based on the tree structure introduced by Martinec and Pajdla [62]. As shown
in Figure 6, the tree structure can be defined as a collection of referenced and unreferenced images.
In this research, the referenced images refer to the images that have already been augmented in the local
coordinate system. The unreferenced images, on the other hand, represent the remaining ones with
unknown EOPs. In the given tree structure, one unreferenced image is selected as the root node;
m (m > 2) referenced images are considered as leaf nodes, and possible relative orientations relating
the referenced image to the unreferenced ones are used to represent the edges connecting the root
and leaf nodes. In the remainder part of this section, the estimation of the rotational and positional
components of the image EOPs defined by the root node is conducted separately according to
the following sequence.
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Rotational Parameters Estimation:

Looking into Figure 6, one can establish the rotation constraint within the stereo-pair (i, j)
as in Equation (18), where the rotation of the unreferenced image j (i.e., Rl

j) is expressed as a product

of the rotation of the referenced image i (i.e., Rl
i) and the relative rotation Ri

j relating the two images.
Given m available stereo-pairs between the referenced and unreferenced images as illustrated in the tree
structure, m estimates of the rotation matrix Rl

j can be established. In this regard, the proposed
approach for deriving the rotation of the unreferenced image j can be considered as a single rotation
averaging problem, which aims at finding the optimum estimate of a single rotation from multiple
observations [61]. In practice, averaging the m estimates of the rotation matrix Rl

j can be simply
accomplished through a linear approach. Through a closer inspection of Equation (18), one can modify
the presented rotation constraint to the matrix form in Equation (19), where r11 to r33 represent
the nine unknown elements of Rl

j, Y9×1 is a 9-by-1 vector, and A9×9 is a 9-by-9 coefficient matrix.
It is worth noting that every element in Y9×1 and A9×9 is defined by a numeric value. According to
Equation (19), a system of 9m linear equations can be established for the m possible stereo-pairs
within the tree structure. Then, a least-squares solution for the nine unknown elements (i.e., r11 to r33)
can be derived. An alternative linear solution for the single rotation averaging is achieved through
quaternion [62]. Compared to the rotation matrix approach, the utilization of quaternion can be more
advantageous as it only requires four elements for the representation of a rotation. As a result, the total
number derived linear equations is reduced from 9m to 4m. However, one has to note that both
the rotation matrix and the quaternion-based approaches fail to consider the inherent constraint
within a rotation (i.e., the orthogonal constraints for the rotation matrix and the unit length constraint
for the quaternion).

Rl
j = Rl

i R
i
j ⇒ Ri

j = (Rl
i)

T
Rl

j where, Rl
j =

 r11 r12 r13

r21 r22 r23

r31 r23 r33

 (18)

Y9×1 = A9×9



r11

r12

r13

r21

r22

r23

r31

r32

r33


(19)
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In this research, a new quaternion-based approach has been proposed for single rotation averaging
while enforcing the unit length constraint on the resulting quaternion. The conceptual basis of
the proposed approach is the quaternion-based solution, which is initially proposed by Horn [82],
and further investigated by Guan and Zhang [83] and He and Habib [84]. This solution is originally
designed for the recovery of absolute orientation parameters between two datasets while using two sets
of conjugate vectors with compatible directions in these datasets. However, our proposed approach is
the first attempt to adopt such concept for resolving the single rotation averaging problem. As can be
seen in Equation 18, the rotation matrix Rl

j describes the rotation between the camera coordinate
system of the image j and the local coordinate system l. Therefore, the proposed approach starts with
generating two sets of conjugate vectors in the two coordinate systems. In this research, the three unit
vectors along the x, y, and z axes in the camera coordinate system of the image j are first selected.
Then, the derived rotation matrix Rl

j of each possible stereo-pair (see Equation (18)) is applied to
the three vectors to convert them into the the local coordinate system l. Given m available stereo-pairs
in the tree structure, 3m pairs of conjugate unit vectors can be established. For each pair of conjugate
vectors, one can introduce a parallelism constraint as in Equation (20).

→
v

l{i}
[d] = Rl

j
→
v [d] = Rl

i R
i
j
→
v [d] (i = 1, · · · , m and d = x, y, or z) (20)

In Equation (20),
→
v [d] and

→
v

l{i}
[d] are two conjugate unit vectors defined in the camera coordinate

system of image j and the local coordinate system l, respectively. In
→
v [d] and

→
v

l{i}
[d] , the subscript [d]

(d = x, y, or z) describes the direction of the unit vector (i.e., x, y, or z axes of the coordinate system),
and the superscript {i} indicates the utilized stereo-pair (i, j) for establishing the parallelism constraint.

For the 3m pairs of conjugate unit vectors, a set of 3m the equations as the form in Equation (20) can be

established. To derive the optimum estimate of the rotation matrix Rl
j, a least-squares approach

is adopted to minimize the sum of squared errors (SSE) for all the involved 3m pairs of conjugate

unit vectors (see Equation (21)). In Equation (21), the terms (
→
v

l{i}
[d] )

T→
v

l{i}
[d] and (

→
v [d])

T→
v [d] are always

equal to 1 as they are the squared magnitudes of the unit vectors
→
v

l{i}
[d] and

→
v [d]. Therefore, to minimize

the SSE, the rotation matrix Rl
j has to be estimated in such a way to maximize to the term (

→
v

l{i}
[d] )

T
Rl

j
→
v [d].

One should note that the term (
→
v

l{i}
[d] )

T
Rl

j
→
v [d] is always positive as Rl

j
→
v [d] and

→
v

l{i}
[d] are always pointing

in the same direction. Then, this term can be formulated as a dot product as in Equation (22).

According to quaternion properties, the rotation multiplication Rl
j
→
v [d] is equivalent to the quaternion

multiplication
.
q

.
v[d]

.
q∗, where the unit quaternion

.
q corresponds to Rl

j, and
.
q∗ is the conjugate quaternion

constructed by negating the imaginary part of
.
q. The term

.
v[d] is the quaternion form of

→
v [d],

which is simply adding a zero as the real part and the three elements of
→
v [d] as the imaginary part.

Using the quaternion properties, Equation (22) can be rewritten as in Equation (23), where C and
=
C

are 4-by-4 matrices that convert the quaternion-based multiplication to a matrix-based multiplication,

and the summation matrix S is a 4-by-4 matrix constructed using the components of
→
v

l{i}
[d] and

→
v [d]



Remote Sens. 2018, 10, 1952 15 of 34

for all the conjugate vector pairs.

min
Rl

j

m
∑

i = 1
∑

d∈ {x, y,z}
(
→
v

l{i}
[d] − Rl

j
→
v [d])

T(→
v

l{i}
[d] − Rl

j
→
v [d]

)
= min

Rl
j

m
∑

i = 1
∑

d∈ {x, y,z}
((
→
v

l{i}
[d] )

T→
v

l{i}
[d] + (

→
v [d])

T→
v [d] − 2

(
→
v

l{i}
[d] )

T Rl
j
→
v [d]

)
(21)

max
Rl

j

m

∑
i = 1

∑
d∈ {x, y,z}

(
→
v

l{i}
[d] )

T
Rl

j
→
v [d] = max

Rl
j

n

∑
i = 1

∑
d∈ {x, y,z}

→
v

l{i}
[d] ·

(
Rl

j
→
v [d]

)
(22)

max.
q

m
∑

i = 1
∑

d∈ {x, y,z}

.
vl{i}
[d] ·

.
q

.
v[d]

.
q∗ = max.

q

m
∑

i = 1
∑

d∈ {x, y,z}

( .
vl{i}
[d]

.
q
)
·
( .

q
.
v[d]
)

= max.
q

m
∑

i = 1
∑

d∈ {x, y,z}

(
C
( .

vl{i}
[d]

) .
q
)
·
(

C
( .

v[d]
) .

q
)

= max.
q

m
∑

i = 1
∑

d∈ {x, y,z}

.
qTC(

.
vl{i}
[d] )

T
C
( .

v[d]
) .

q

= max.
q

.
qT

(
m
∑

i = 1
∑

d∈ {x, y,z}
C(

.
vl{i}
[d] )

T
C
( .

v[d]
)
)

.
q

= max.
q

.
qTS

.
q

(23)

To maximizes the term
.
qTS

.
q while maintaining the unity constraint of

.
q (see Equation (24)),

one has to maximize the target function ϕ using the Lagrange multiplier λ as in Equation (25).
The partial derivative of the target function ϕ with respected to

.
q is then established as the expression

in Equation (26). Equation (26) is satisfied if and only if λ and
.
q are the corresponding eigenvalues

and eigenvectors of the summation matrix S. Given the fact that
.
qTS

.
q is maximized when λ is

the largest eigenvalue of S, the quaternion
.
q is eventually the eigenvector corresponding to this

largest eigenvalue. Finally, the rotation matrix Rl
j is recovered through the estimated quaternion

.
q.

It is worth noting that the proposed solution for Rl
j can be integrated within a RANSAC framework

for outlier removal. Specifically, a single stereo-pair is first randomly selected between the unreferenced
image j and the set of referenced images within the involved tree structure. Then, the ROPs of this

stereo-pair is used to derive an estimate of the rotation matrix Rl
j as presented in Equation (18).

Afterwards, the rotational errors are evaluated for all the remaining stereo-pairs according to

the rotation constraint (Rl
j)

T
(

Rl
i R

i
j

)
= I3×3. Such a sampling-and-testing procedure is repeated

until the random selection resulting in the largest consensus is achieved. All these inlier stereo-pairs
are finally used in the proposed single rotation averaging to derive a reliable estimate of the rotation

matrix Rl
j.

max.
q

.
qTS

.
q , ‖ .

q‖ = 1 (24)

max.
q

ϕ
( .
q
)
=

.
qTS

.
q− λ

( .
qT .

q− 1
)

(25)

∂ϕ

∂
.
q

= 2S
.
q− 2λ

.
q = 0 ⇒ S

.
q = λ

.
q (26)
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Positional Parameters Estimation:

The positional parameters of the unreferenced image j is separately estimated relative to the local
reference coordinate system through two different closed-form solutions. These two solutions
are designed to handle UAV images that are captured either in a block or a linear trajectory
configuration, respectively. As for the images within a block configuration, the positional parameters
are derived through an intersection of multiple vectors. As shown in Figure 6, these vectors
are the translations connecting the referenced images to the unreferenced one within the tree structure.
The mathematical model for the multi-vector intersection is presented in Equation (27), where rl

j stands

for the positional parameters of the unreferenced image j defined in the local coordinate system.

rl
j = rl

i + λiRl
ir

i
j (27)

Looking into Equation (27), one can note that rl
j is expressed as a summation of two vectors:

rl
i and λiRl

ir
i
j. Specifically, rl

i is the position of the referenced image i defined in the local coordinate

system while λiRl
ir

i
j represents the translation relating the two images. The vector λiRl

ir
i
j can be derived

in two steps. First, the rotation matrix Rl
i is applied to the relative translation ri

j to convert it to the local

coordinate system l. Then, considering the fact that the relative translation ri
j is defined with an arbitrary

scale, a scale factor λi is multiplied to Rl
ir

i
j to get the translation vector with correct scale between

the two involved images. Assuming m available stereo-pairs connecting the set referenced image to
the unreferenced one, one would have a system of 3m equations in m + 3 unknowns (i.e., m unknown
scale factors λi and three unknown parameters for rl

j). In this regard, a minimum of two intersecting
translation vectors (i.e., two stereo-pairs) would allow for a least-squares solution for the positional
parameters rl

j as well as the unknown scale factors λi.

It is worth noting that the mathematical model as presented in Equation (27) assumes non-collinear
relationship among multiple vectors. Given a set of UAV images captured in a linear trajectory
configuration (i.e., all images are acquired in a single straight flight path), the proposed multi-vector
intersection model leads to a degenerate case, in which all involved translation vectors are collinearly
aligned. In order to derive a reliable estimate of the positional parameters for these linear trajectory
images, we first conduct feature tracking among the referenced and unreferenced images according to
the introduced tree structure. In the feature tracking process, a set of corresponding features among
overlapping images is called a feature track. In this research, the derived feature tracks within the tree
structure should include corresponding points visible in the unreferenced image j as well as all/some
of the referenced images. In addition, the minimum length of the accepted feature tracks should
be greater or equal to three, which, in other words, means that the tracked tie points should be
visible in at least three images. Now that the feature correspondences are established, the 3D object
coordinates of these tracked points can be derived through a spatial intersection while using the EOPs
of the referenced images. As illustrated in Figure 7, these reconstructed object points can be then
utilized to recover the translation parameters of the unreferenced image. The mathematical expression

for deriving the positional parameters of the unreferenced image j, which have been denoted as rl
j,

is shown in Equation (28).

rl
j = siRl

j p
j
i +

 Xi
Yi
Zi

 where, pj
i = (xj

i , yj
i ,−cj)

T
(28)

In Equation (28), (Xi, Yi, Zi)
T stands for the 3D coordinates of the object point Pi (i = 1, · · · , m).

The vector pj
i = (xj

i , yj
i ,−cj)

T
represents the image coordinates of Pi in the unreferenced image j
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after correcting for the principal point offset and camera-specific distortions. The rotation matrix
Rl

j is derived through the presented single rotation averaging approach, and converts the vector of

image coordinates to the local coordinate system. si is the unknown scale factor for the vector Rl
i pj

i .
It is worth noting that, in this paper, we always denote the scale factor for the translations among
overlapping images as λ while using s for the image vector connecting the object point to the image.
Given m object points, a system of 3m equations in in m + 3 unknowns can be established according
to Equation (28). Although a minimum of two object points is sufficient for solving the unknown
positional parameters rl

j, redundant points with good spatial distribution are always preferred to
achieve a more reliable estimation. One has to note that different from the existing single photo
resection approaches, which directly recovers the EOPs of the involved images through the coordinates
of object points, the closed-form solution as presented in Equation (28) only recovers the positional
parameters while the rotation of the image is separately estimated through the introduced single
rotation averaging.
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Compatibility Analysis for Image Augmentation:

Similar to most existing incremental approaches, the proposed image augmentation for the initial
recovery of image EOPs suffers from the accumulated drifting errors. In order to mitigate
the impact of error propagation, the proposed incremental strategy is based on augmenting images
that exhibit the best compatibility with previously referenced images to establish the final image
block or trajectory. In this research, for a set of previously referenced images, we check all possible
unreferenced images that could be augmented. More specifically, the overall residuals derived
from the rotational/positional parameters estimation are used to evaluate the compatibility among
the referenced and unreferenced images within the tree structure. Only the image that exhibits
the highest compatibility (i.e., lowest residuals) with the set of previously referenced imagery is selected
and referenced into the current image network at each step of the image incremental augmentation.

3.3. Global Strategy for EOP Recovery

Apart from the incremental strategy, a global approach, which simultaneously establishes
the rotational and positional estimation of all involved images, has been investigated in this
research. The proposed global approach is implemented in two steps. In the first step, a multiple
rotation averaging is conducted for deriving the rotational parameters of all involved imagery.
Then, the positional parameters are determined through a global translation averaging while using
the derived rotations in the first step.

3.3.1. Multiple Rotation Averaging

Given a set of estimated ROPs from the relative orientation procedure, the multiple rotation
averaging aims at providing a direct rotation estimation for all involved imagery. In this research,
a simple global rotation averaging approach, which is based on the rotation constraint as presented
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in Equation (18), is adopted. Different from the single rotation averaging, in which only the rotation
matrix Rl

j has to be estimated, both Rl
i and Rl

j are unknown in the proposed multiple rotation
averaging. For a single stereo-pair, the rotation constraint can be represented using the matrix form
in Equation (29), where A9×18 is a 9-by-18 coefficient matrix (i.e., each element in the matrix is defined
by a numeric value). Assuming that there are m available stereo-pairs within a set of n overlapping
images, a system of 9m equations in 9n unknown parameters (i.e., nine elements within each unknown
rotation matrix) can be established in a matrix form of Equation (30), where A9m×9n is the 9m-by-9n
coefficient matrix, and X9n×1 is the 9n-by-1 vector containing all the elements in the unknown rotation
matrices. A closed-form solution for the unknown vector X9n×1 can be derived through the eigenvector
corresponding to the smallest eigenvalue in (A9m×9n)

T A9m×9n. Unfortunately, such a solution ignores
the inherent orthogonality constraint within the estimated rotation matrix. In practice, more accurate
estimate of the rotational parameters can be achieved through a non-linear iterative refinement while
enforcing the orthogonal constraints among the elements of the rotation matrices.

Rl
j = Rl

i R
i
j ⇒ A9×18



r{i}11
...

r{i}33

r{j}
11
...

r{j}
33


= 018×1

where, Rl
i =

 r{i}11 r{i}12 r{i}13

r{i}21 r{i}22 r{i}23

r{i}31 r{i}32 r{i}33

 and Rl
j =

 r{j}
11 r{j}

12 r{j}
13

r{j}
21 r{j}

22 r{j}
23

r{j}
31 r{j}

32 r{j}
33



(29)

A9m×9nX9n×1 = 09m×1 (30)

3.3.2. Global Translation Averaging

The proposed global translation averaging starts with generating a graph structure for the set of
involved images. As illustrated in Figure 8a, each node in the graph represents one image, and each
edge connecting two nodes indicates an available relative orientation between two overlapping
images. To estimate the positional parameters, the graph structure can be further divided into
several sub-graphs. In Figure 8b, the sub-graph established on image j, which is similar to the tree
structure shown in Figure 6, includes one root node (i.e., image j), a few leaf nodes (i.e., all images
connected to image j), and edges connecting the root and leaf nodes (i.e., stereo-based relative
orientation). Based on such graph and sub-graph structures, two different types of constraints
can be established for estimating the positional parameters of each involved image. The first type
of constraints—namely the translation constraint—is based on the same mathematical expression
as presented in Equation (27), which describes the fact that within the stereo-pair (i, j), the positional
parameters of image j (i.e., rl

j) can be defined by a summation of the position of image i (i.e., rl
i)

and the scaled translation vector between the two images (i.e., λiRl
ir

i
j). The second type of constraints is

based on the conjugate point pairs among overlapping images. As can be seen in Figure 9, the conjugate
point constraint can be formulated as an intersection of two image vectors. Such a vector intersection

can be formulated as in Equation (31), where pi = (xi, yi,−ci) and pj =
(
xj, yj,−cj

)
are the image

coordinates for two conjugate points after correcting for the principal point offsets and camera-specific

distortions, and si and sj are the two scale factors for pi and pj, respectively.

rl
i + siRl

i pi = rl
j + sjRl

j pj (31)
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In practice, given a set of n overlapping images with m available stereo-pairs, m translation-based
constraints can be established through Equation (27). Meanwhile, suppose that a total number
of o pairs of conjugate points can be identified within the given image dataset, o conjugate
point constraints can be formulated as in Equation (31). It is worth noting that there is

a total number of (3n + m + 2o) unknown parameters within the (3m + 3o) derived equations

(i.e., each translation/conjugate-point constraint leads to three linear equations). To derive a solution

for the (3n + m + 2o) unknown parameters, the condition 3m + 3o ≥ 3n + m + 2o has to be satisfied.
The (3n + m + 2o) unknown parameters include: 3n unknown positional parameters (i.e., one image

has 3 unknown positional parameters), and m + 2o unknown scale factors (i.e., each translation
constraint provides one unknown scale factor λi, and every conjugate point constraint gives
two unknown scale factors si and sj). A matrix form for the set of established constraints can be
established as in Equation (32), where A(3m+3o)×(3n+m+2o) is a coefficient matrix, and X(3n+m+2o)×1 is

a vector comprised of all the unknown parameters. Similar to the proposed multiple rotation averaging,

the closed-form solution for the unknown vector X(3n+m+2o)×1 corresponds to the eigenvector

of the smallest eigenvalue in (A(3m+3o)×(3n+m+2o))
T A(3m+3o)×(3n+m+2o). Although all identified

conjugate points in stereo-pairs can be used for the proposed global translation averaging, the excessive
number of unknown parameters regarding the scale factors si and sj leads to a huge and sparse matrix
of A . Such huge matrix size makes the computation really expensive and even impossible. In order to
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resolve this problem, the sparse matrix technique is utilized for the representation of matrix in this
research. In addition, to reduce the total number of unknown parameters, the proposed approach
only randomly selects 10 pairs of conjugate points from each stereo-pair. Compared to the introduced
solution for the incremental strategy, the proposed global translation averaging is capable of dealing
with images captured either in a block or a linear trajectory configuration due to the utilization of both
translation and conjugate point constraints.

A(3m+3o)×(3n+m+2o)X(3n+m+2o)×1 = 0 (32)

3.4. Global Bundle Adjustment

It is worth noting that the proposed incremental and global approaches for the EOP recovery
are both conducted in an arbitrary local coordinate system. In order to geo-reference the derived
3D model, an initial 3D Helmert transformation [85] is required to establish the transformation from
the local coordinate system to the mapping frame. Such initial 3D Helmert transformation provides
approximations for further bundle adjustment of the estimated parameters in the mapping coordinate
system. In this research, to estimate the 3D Helmert transformation parameters (i.e., scale factor,
three translation parameters, and three rotation angles) relating local and mapping coordinate systems,
tie points corresponding to the GCPs are first manually identified. Then, the 3D coordinates of tie
points, which are defined in the local coordinate system, are computed through a spatial intersection.
Afterwards, the transformation parameters are estimated using the GCPs and their corresponding local
coordinates. Finally, the set of estimated transformation parameters are used to convert the estimated
image EOPs as well as 3D object coordinates from the local coordinate system to the mapping frame.
After conducting the initial 3D Helmert transformation, a global bundle adjustment is adopted to
refine the geo-referenced image EOPs and object coordinates as well as the GPS-surveyed ground
control/check points. In the implemented global bundle adjustment, GCPs are established for absolute
orientation/datum definition. The inputs and outputs for the global bundle adjustment process
are illustrated in Figure 10.
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4. Experimental Results

The main objective of the experimental results is illustrating the feasibility of the proposed
framework for automated aerial triangulation while using UAV-based imagery with different “texture”
characteristics. In this research, the concept of “texture” refers to the number of unique image features
that can be identified within image stereo-pairs. More specifically, images with sufficient or strong
“texture” always lead to a large number of unique features that can be used to robustly estimate ROPs
within stereo-pairs, while only very few conjugate point pairs can be identified within stereo-pairs
with poor “texture”.
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4.1. Data Description

Two different types of test sites are involved for the experimental tests. The first test site covers
agriculture fields with repetitive patterns. Such repetitive patterns might introduce point features with
significant ambiguities in the image matching procedure. The second one is at the vicinity of a building
with a complex roof structure, and the texture on the building rooftop is capable of providing a large
number of unique point features for image matching and relative orientation recovery. In this research,
three datasets arising from the agriculture field, and one dataset captured for the building have been
acquired by two different UAV platforms. The two utilized UAVs include: a DJI Phantom 2 UAV with
a GoPro Hero 3+ black edition camera (see Figure 11a), and a DJI S1000+ UAV with a Sony Alpha 7R
camera (see Figure 11b). The specifications of the utilized UAVs and cameras are reported in Table 1.
The internal characteristics of the utilized cameras are estimated through a calibration procedure similar
to the one proposed by He and Habib [86], where the USGS Simultaneous Multi-frame Analytical
Calibration (SMAC) distortion model is adopted. For years, the USGS has been using the SMAC model
for calibrating both film and digital cameras. In the SMAC model, all image points must be referenced
to the center of image coordinate system with the correct principal distance c and the principal point(

xp, yp
)
. Regarding the distortion parameters, the model considers both radial and de-centering lens

distortions. In this research, due to the significant image distortions caused by the wide-angle lens,
three radial lens distortion parameters K1, K2, and K3 and two de-centering lens distortion parameters
P1 and P2 are used for the calibration of the GoPro Hero 3+ black edition camera. On the other
hand, only four distortion parameters (K1, K2, P1, P2) are considered for the Sony Alpha 7R camera.
One should note that for the DJI Phantom 2 UAV, the GoPro camera is mounted on a gimbal to ensure
that images are acquired with the camera’s optical axis pointing in the nadir direction. On the other
hand, the Sony Alpha 7R camera is rigidly fixed to the body of the DJI S1000+ UAV platform while
pointing in the nadir direction. According to such configuration of the cameras, images captured
by the utilized UAVs can be assumed to comply with the assumption of the two-point approach
(see Section 3.1) for relative orientation recovery. The details pertaining to the four utilized image
datasets for the experimental tests are provided in the following paragraph.

Remote Sens. 2019, 11 FOR PEER REVIEW  20 

 

building with a complex roof structure, and the texture on the building rooftop is capable of 
providing a large number of unique point features for image matching and relative orientation 
recovery. In this research, three datasets arising from the agriculture field, and one dataset captured 
for the building have been acquired by two different UAV platforms. The two utilized UAVs include: 
a DJI Phantom 2 UAV with a GoPro Hero 3+ black edition camera (see Figure 11a), and a DJI S1000+ 
UAV with a Sony Alpha 7R camera (see Figure 11b). The specifications of the utilized UAVs and 
cameras are reported in Table 1. The internal characteristics of the utilized cameras are estimated 
through a calibration procedure similar to the one proposed by He and Habib [86], where the USGS 
Simultaneous Multi-frame Analytical Calibration (SMAC) distortion model is adopted. For years, the 
USGS has been using the SMAC model for calibrating both film and digital cameras. In the SMAC 
model, all image points must be referenced to the center of image coordinate system with the correct 
principal distance c and the principal point (𝑥௣, 𝑦௣). Regarding the distortion parameters, the model 
considers both radial and de-centering lens distortions. In this research, due to the significant image 
distortions caused by the wide-angle lens, three radial lens distortion parameters 𝐾ଵ, 𝐾ଶ, and 𝐾ଷ 
and two de-centering lens distortion parameters 𝑃ଵ  and 𝑃ଶ are used for the calibration of the GoPro 
Hero 3+ black edition camera. On the other hand, only four distortion parameters (𝐾ଵ, 𝐾ଶ, 𝑃ଵ, 𝑃ଶ) are 
considered for the Sony Alpha 7R camera. One should note that for the DJI Phantom 2 UAV, the 
GoPro camera is mounted on a gimbal to ensure that images are acquired with the camera’s optical 
axis pointing in the nadir direction. On the other hand, the Sony Alpha 7R camera is rigidly fixed to 
the body of the DJI S1000+ UAV platform while pointing in the nadir direction. According to such 
configuration of the cameras, images captured by the utilized UAVs can be assumed to comply with 
the assumption of the two-point approach (see Section 3.1) for relative orientation recovery. The 
details pertaining to the four utilized image datasets for the experimental tests are provided in the 
following paragraph.  

 

Figure 11. (a) The DJI Phantom 2 UAV with a GoPro Hero 3+ camera mounted on a gimbal, and (b) 
the DJI S1000+ UAV equipped with a Sony Alpha 7R camera with a vertical view. 

Table 1. Specification of the utilized UAV and cameras. 

Specs/Model 
UAVs 

DJI Phantom 2 DJI S1000+ 

Weight 
1000 g  

(Take-off weight: < 1300 g) 
4.2 kg  

(Take-off weight: 6.0 kg ~ 11.0 kg) 
Max Speed 15 m/s 20 m/s 

Max Flight Endurance Approximate 23 min 15 min  
(9.5 kg take-off weight) 

Diagonal Size 350 mm 1045 mm 

Specs/Model 
Cameras 

GoPro Hero 3+ Black Edition Sony Alpha 7R 

Image Size 
3000 ×  2250 pixels  

(medium field-of-view) 7360 ×  4912 pixels 

Pixel Size 1.55 µm 4.90 µm 
Focal Length 3.5 mm 35 mm 

DJI Phantom 2 & GoPro Hero 3+ DJI S1000+ & Sony Alpha 7R Camera
(a) (b)
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Table 1. Specification of the utilized UAV and cameras.

Specs/Model
UAVs

DJI Phantom 2 DJI S1000+

Weight 1000 g
(Take-off weight: < 1300 g)

4.2 kg
(Take-off weight: 6.0 kg ~ 11.0 kg)

Max Speed 15 m/s 20 m/s

Max Flight Endurance Approximate 23 min
15 min

(9.5 kg take-off weight)

Diagonal Size 350 mm 1045 mm

Specs/Model
Cameras

GoPro Hero 3+ Black Edition Sony Alpha 7R

Image Size 3000 × 2250 pixels
(medium field-of-view) 7360 × 4912 pixels

Pixel Size 1.55 µm 4.90 µm

Focal Length 3.5 mm 35 mm

Phantom2-Agriculuture Dataset is comprised of 569 images that are captured from a flying
height of 15 m while moving at a speed of roughly 8 m/s. The overlap and side lap percentages
for the acquired images are approximately 60%. The Ground Sampling Distance (GSD) is about 0.7 cm.

Phantom2-Building Dataset includes 81 images acquired with a speed of roughly 4 m/s from
a flying height of roughly 20 m. The overlap and side lap percentages for the acquired images
are approximately 80% and 60%, respectively. The GSD is about 0.9 cm.

S1000-Agriculture-1 Dataset includes 421 images that are captured from a flying height of 50 m
with a flying speed of roughly 5 m/s. The overlap and side lap percentage of the acquired images
are approximately 78% and 73%, respectively. The GSD is about 0.7 cm.

S1000-Agriculture-2 Dataset has 639 images, which are captured by the DJI S1000+ UAV while
flying at a speed of 8 m/s at a flying height of almost 40 m. The overlap and side lap percentages
for the acquired images are approximate 70%. The GSD is about 0.6 cm.

Figure 12 shows sample images that are captured with different characteristics from
the four experimental datasets. Figure 12a illustrate the image captured by the GoPro Hero 3+
camera above one agriculture field with repetitive patterns. Due to the large field-of-view (FOV)
of the utilized GoPro camera, one can observe significant image distortions in the acquired image.
On the other hand, Figure 12b exhibits the image, which was acquired by the same GoPro camera,
over building roof-top with rich “texture”. The rich “texture” in the acquired image (see Figure 12b)
leads to an adequate number of features for image matching. Figure 12c presents the image
that was taken by the Sony Alpha 7R camera before planting any crop in the field. The bare ground
as shown in the image only provides a limited number of identified features. The sample image
in Figure 12d captured by the same Sony camera shows the repetitive pattern over mature crops
within the agricultural test field.
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4.2. Comparison between Incremental and Global Estimation for Image EOPs

The objective of the first stage of the experimental results is a comparative analysis between
the proposed incremental and global approaches for the initial recovery of image EOPs. In this
research, such comparative analysis is performed through a quantitative comparison between
the incremental/global image EOPs and those derived from the global bundle adjustment refinement
(i.e., BA-based EOPs). In this comparison, the same set of inlier stereo-pairs, which are identified
in the incremental approach (the incremental approach is coupled with a built-in process for outlier
detection/removal), are utilized in the global approach for the initial recovery of image EOPs.
In addition, since the two sets of estimated EOPs (i.e., incremental, global) are defined in different
local coordinate systems, a 3D Helmert transformation has to be conducted to transform the derived
incremental/global parameters as well as the BA-based EOPs to a common reference coordinate
system for the comparison. To estimate the transformation parameters converting the estimated
incremental/global parameters to the reference frame, the mathematical formula as in Equation (33)
can be used. In this equation, RBA and rBA represent the image rotational and positional
parameters that are derived in the bundle adjustment. Rincremental/global and rincremental/global

stand for the corresponding orientations and positions estimated through either the incremental
or global approach. s, R, and t are the 3D Helmert transformation parameters relating the estimated
incremental/global EOPs to the BA-based EOPs. Given two sets of corresponding image EOPs defined
in different coordinate systems, an estimate of the 3D Helmert transformation parameters can be
derived through the introduced closed-form solution by Horn [82]. It is worth noting that different from
the initial 3D Helmert transformation for the geo-referencing of the derived 3D model (see Section 3.4),
the transformation as shown in Equation (33) is only used to compute the RMSE values between
the incremental/global and BA-based EOPs.

rBA = s·Rrincremental/global + t and RBA = RRincremental/global (33)
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Table 2 presents the statistics of the derived differences between the transformed
incremental/global and BA-based EOPs. Specifically, in Table 2, rows 1 through 6 present the derived
root-mean-square error (RMSE) differences for both rotational and positional parameters when
comparing the transformed incremental/global EOPs to the BA-based ones. Row 7 illustrates
the processing time for the proposed incremental and global approaches in the four experimental
datasets. Through a closer inspection of the reported results, one can conclude the following:

• Compared to the incremental approach, the global approach provides more accurate initial
estimates of image EOPs when compared to the BA-based EOPs.

• According to the reported processing time, one can note that the global approach is more efficient
when dealing with datasets including a large number of images.

Table 2. Comparison between the incremental/global and the bundle adjustment (BA)-based exterior
orientation parameters (EOPs).

Values

Datasets

Phantom2-Agriculture Phantom2-Building S1000-Agriculture-1 S1000-Agriculture-2

Incremental Global Incremental Global Incremental Global Incremental Global

RMSEω(◦) 1.12 0.83 0.61 0.43 0.29 0.17 1.52 1.24
RMSEφ(◦) 1.79 0.77 0.88 0.65 0.55 0.31 1.71 1.63
RMSEκ(◦) 0.94 0.46 0.53 0.37 0.27 0.14 1.86 1.49
RMSEXo(m) 0.44 0.28 0.28 0.21 0.84 0.40 0.80 0.46
RMSEYo(m) 0.53 0.33 0.25 0.20 0.69 0.37 0.96 0.51
RMSEZo(m) 0.78 0.43 0.38 0.24 0.79 0.55 0.85 0.60

Time
(min) 92.8 22.1 20.1 5.8 43.7 11.2 137.2 31.3

4.3. Accuracy Analysis

At the second stage of the experimental results, the accuracy of the derived 3D model is evaluated
for each experimental dataset. More specifically, the reconstruction accuracy of Phantom2-Agriculture,
S1000-Agriculture-1, and S1000-Agriculture-2 Datasets are evaluated through check point analysis.
Due to the absence of ground control information, a LiDAR point cloud, which was acquired
by an Optech ALTM 3100 airborne laser scanning system, is used for the accuracy analysis of
Phantom2-Building Dataset.

4.3.1. Check Point Analysis

In order to evaluate the accuracy of the derived 3D point clouds, both GCPs and check
points, which are established on the signalized targets in the field, are surveyed by an RTK
GPS with an approximate accuracy of 2 cm, and utilized in the proposed automated aerial
triangulation for Phantom2-Agriculture, S1000-Agriculture-1, and S1000-Agriculture-2 Datasets.
Figure 13a–c shows the configuration of the utilized GCPs and check points for the three experimental
datasets, and Figure 13d present a sample image for the utilized target. As shown in Section 3.4,
an initial 3D Helmert transformation, which is followed by a global bundle adjustment procedure
using GCPs and check points, is conducted at the final stage of the proposed framework to refine all
the derived parameters. Once the global bundle adjustment is completed, the derived square root
of a-posteriori variance factor σo can be computed, and the RMSE values for the check points can be
evaluated (the GCPs are totally fixed in the global bundle adjustment). Table 3 reports the number
of utilized GCPs and check points, derived σo, check point RMSE values, and the extent of covered
area for the three experimental datasets. Looking into Table 3, one can observe that the derived σo

values for the three experimental datasets are all smaller than 1.5 pixels, which indicate a good precision
of the conducted bundle adjustment. In terms of the RMSE analysis of the check points, one can note
that the derived RMSE values for both planimetric (i.e., X and Y) and vertical (i.e., Z) coordinates are
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below 0.04 m. Such results indicate a good accuracy of the derived 3D reconstruction in object space.
It is worth noting that due to the limited access to the test sites, only S1000-Agriculture-2 Dataset
has check points established in middle of the involved agricultural field. The utilization of these check
points leads to the larger RMSE values of S1000-Agriculture-2 Dataset when compared to the other two.
Such large RMSE values would be expected in both Phantom2-Agriculture, and S1000-Agriculture-2
Datasets if additional check points are available in the middle of the agricultural field.
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Table 3. The number of utilized GCPs and check points, the derived σo, and the root-mean-square error
(RMSE) values for Phantom2-Agriculture, S1000-Agiruculture-1, and S1000-Agriculture-2 Datasets.

Phantom2-Agriculture S1000-Agriculture-1 S1000-Agriculture-2

Number of GCPs 10 9 10
Number of Check Points 18 21 22

σo (pixel) 0.88 1.30 1.16
RMSE_X (m) 0.01 0.01 0.03
RMSE_Y (m) 0.01 0.01 0.03
RMSE_Z (m) 0.04 0.02 0.04

Extent of Covered Area 280 m × 100 m 650 m × 100 m 410 m × 100 m

4.3.2. Comparison with Airborne LiDAR Data

Since no ground control is available for Phantom2-Building Dataset, the accuracy evaluation is
conducted through a comparison between the derived image-based sparse point cloud (See Figure 14a)
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and the airborne LiDAR data, which was acquired by an Optech ALTM 3100 airborne laser scanning
system. The airborne LiDAR data consists of multiple strips with an approximate 50% overlap.
According to the manufacturer’s specifications, horizontal accuracy of the acquired LiDAR data is less
than 1/2000 of the flying height in meters while the vertical accuracy is less than 15 cm at a flying height
of 1200 m and less than 25 cm at a flying height of 2000 m. A total number of 78,000 points has been
cropped from the LiDAR data for the accuracy comparison. The average point spacing of the airborne
LiDAR data is about 0.75 m (See Figure 14b). It is worth noting that although the absolute accuracy of
airborne LiDAR is in the range of dozen centimeters, the relative accuracy within the test site covered
by the building is much better (in the range of few centimeters). To perform the accuracy evaluation,
the UAV image-based point cloud is precisely aligned with the LiDAR data through an ICPatch
process [87]. Instead of using point point-to-point correspondence, the geometric primitives chosen
in ICPatch are points and triangular patches. In this comparison, the UAV image-based point cloud
is represented by the original points while the airborne LiDAR data is represented by the triangular
patches from a TIN (Triangulated Irregular Network). The registration leads to a 5 cm RMSE value
of the normal distance between the points and the corresponding triangular patches. Figure 14c
illustrates the point-to-patch distances from the UAV image-based point cloud to the LiDAR data.
Looking into Figure 14c, one can observe that there is a good compatibility between the two point
clouds, especially in planar areas, such as building roof and flat ground.
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4.4. Comparison with Pix4D

The last stage in the experimental tests is to compare the performance of the proposed approach
with the Pix4D Mapper Pro software. In this research, both quantitative and qualitative evaluation
methodologies have been established for the comparative performance analysis. It is worth noting that,
to have a more general comparative analysis, we only compare our proposed framework to the default
3D Maps settings in Pix4D, which is mainly designed for vertical aerial images acquired using a grid
flight plan with high overlap percentage. In addition, no geo-location information is used to facilitate
the image matching process in Pix4D. The quantitative analysis is performed by comparing the number
of images, whose EOPs have been successfully recovered in the proposed framework and the Pix4D
software. Table 4 provides the number of estimated image EOPs for the four utilized experimental
datasets, respectively. As can be seen in Table 4, the proposed automated aerial triangulation provides
estimates for all the involved images in Phantom2-Agriculture Dataset, while only 487 out of 569 (86%)
image EOPs are recovered in Pix4D. For the remaining datasets, both the proposed approach and Pix4D
exhibit similar performance regarding the number of estimated image EOPs. Possible explanations
for the inferior performance of Phantom2-Agriculture Dataset while using Pix4D software include
the significant image distortions from the GoPro camera as well as the repetitive “texture” pattern
within the agricultural field in question. Therefore, one can conclude that the proposed automated
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aerial triangulation is more capable of dealing with UAV-based imagery with significant lens distortion
and repetitive pattern.

Table 4. Number of images with estimated EOPs for Phantom2-Agriculture, Phantom2-Building,
S1000-Agriculture-1, and S1000-Agriculture-2 datasets.

Total Number of Images
Number of Images with Estimated EOPs

Proposed Approach Pix4D

Phantom2-Agriculture 569 569 487
Phantom2-Building 81 81 81
S1000-Agriculture-1 421 418 420
S1000-Agriculture-2 639 639 639

The qualitative evaluation is conducted through the evaluation of the RGB-based orthophoto
mosaic in the four utilized experimental datasets. In the proposed framework, a Digital Surface
Model (DSM) is firstly interpolated from the UAV image-based point cloud. Then, the DSM
together with the bundle adjustment-based EOPs as well as the estimated camera IOPs are used
to generate the RGB-based orthophoto mosaic. For both the proposed framework and Pix4D,
the spatial resolution for the DSM and the RGB-based orthophoto mosaic is set to 1 cm.
Figures 15–18 illustrate the RGB-based orthophoto mosaic for the four experimental datasets,
which are generated through the proposed framework and Pix4D, respectively. It is worth noting
that since no color correction/balancing is utilized in the proposed framework, obvious boundaries
among the set of mosaicked images can be observed in the derived orthophoto mosaic as shown
in Figures 15–18. Compared to those Pix4D-based orthophoto mosaic with correctly balanced
intensity values (see Figures 15–18), such boundaries are used to indicate the accuracy of the utilized
image EOPs for the orthophoto generation. Specifically, when inaccurate image EOPs are used,
obvious discrepancies can be observed along the boundaries among the mosaicked images.
Carefully looking into these derived orthophotos, one can observe obvious gaps and discrepancies
in the generated RGB-based orthophoto for Phantom2-Agriculture Dataset (see highlighted
area in Figure 15b) while using Pix4D. For the same area, the proposed procedure, on the other
hand, demonstrates better mosaicking quality in the final orthophoto as shown in Figure 15a.
Such observation provides another evidence to support the claim that, compared to Pix4D,
the proposed automated aerial triangulation has superior performance when dealing with images
acquired with repetitive texture and significant radial lens distortions (e.g., Phantom2-Agriculture
Dataset). For the remaining three experimental datasets, no significant differences can be observed
in the RGB-based orthophoto that are respectively generated through the proposed procedure
and the Pix4D software. In this regard, one can conclude that both the proposed approach
and the Pix4D software are capable of providing comparable 3D reconstruction for UAV images,
which are either acquired in a test site with “rich” texture (e.g., Phantom2-Building) or captured by
a camera with less image distortions (e.g., S1000-Agriculture-1 and S1000-Agriculture-2 Datasets).
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Figure 17. The generated RGB-based orthophoto mosaic from (a) the proposed automated aerial
triangulation, and (b) Pix4D for S1000-Agriculture-1 Dataset.
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5. Conclusions and Recommendations for Future Work

This paper presents a fully automated framework for aerial triangulation of UAV-based images.
Different from the existing commercial software, the proposed framework is a transparent system,
and it can be incorporated with different user-defined constraints to improve the process of UAV
image-based 3D reconstruction. In the proposed framework, two approaches which take advantage of
prior information regarding the trajectory of the utilized UAV platform have been adopted for reliable
ROP recovery of the involved stereo-images. Moreover, both incremental and global strategies
have been proposed and investigated for the initial recovery of image EOPs. The performance
of the proposed framework has been evaluated through four real image datasets acquired by
two different UAV systems. The comparison between the incremental/global and the BA-based
EOPs has shown the better accuracy and efficiency of the proposed global approach for the initial
recovery of image EOPs. In terms of the accuracy of the derived 3D model, centimeter level
accuracy (i.e., RMSE value < 5 cm) has been achieved in the proposed aerial triangulation framework
for all the experimental datasets when compared to the GPS-surveyed check points/airborne
LiDAR point cloud. In addition, both quantitative and qualitative evaluation has been established
for the comparative analysis with Pix4D software. The evaluation has demonstrated the superior
performance of the proposed framework when dealing with the acquired UAV images containing
repetitive pattern and significant image distortions. Recommendation for future work includes
focusing on the improvement of the proposed global approach for the initial recovery of image
EOPs. It is worth noting that in the proposed global approach, the utilized multiple rotation
averaging estimation ignores the orthogonality constraints during the estimated rotation matrices.
Therefore, the comparison with other multiple rotation averaging techniques, such as the iterative
approach introduced by Hartley, will be investigated for future work. In addition, an outlier
detection/removal process, which aims at achieving more reliable parameter estimation, will be
another focus for the global approach. Moreover, the augmentation of the proposed automated aerial
triangulation framework with the available GNSS/INS information from the UAV platform will be also
investigated. Finally, we will conduct the comparative analysis between our approach and the existing
professional triangulation software, such as Trimble Inpho, for future research.
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