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Abstract: Leaf nitrogen concentration (leaf N, %) is an essential component for understanding
biogeochemical cycling. Leaf N is a good indicator of grass or forage quality, which is important for
understanding the movements and feeding patterns of herbivores. Leaf N can be used as input for
rangeland carrying capacity and stocking rate models. The estimation of leaf N has been successful
using hyperspectral and commercial high spatial resolution satellite data such as World View-2 and
RapidEye. Empirical methods have been used successfully to estimate leaf N, on the basis that
it correlates with leaf chlorophyll. As such, leaf N was estimated using red edge based indices.
The new Sentinel-2 sensor has two red edge bands, is freely available, and could further improve
the estimation of leaf N at a regional scale. The objective of this study is to develop red edge based
Sentinel-2 models derived from an analytical spectral device (ASD) spectrometer to map and monitor
leaf N using Sentinel-2 images. Field work for leaf N and ASD data were collected in 2014 (December)
in and around Kruger National Park, South Africa. ASD data were resampled to the Sentinel-2
spectral configuration using the spectral response function. The Sentinel-2 data for various dates
were acquired from the European Space Agency (ESA) portal. The Sentinel-2 atmospheric correction
(Sen2Cor) process was implemented. Simple empirical regression was used to estimate leaf N.
High leaf N prediction accuracy was achieved at the ASD level and the best model was inverted on
Sentinel-2 images to explain leaf N distribution at a regional scale over time. The spatial distribution
of leaf N is influenced by the underlying geological substrate, fire frequency and other environmental
variables. This study is a demonstration of how ASD data can be used to calibrate Sentinel-2 for leaf
N estimation and mapping.
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1. Introduction

Rangelands cover about 51% of the Earth’s land surface [1,2] and provide food production for
millions of the world population. Most of the millions of people relying on rangelands for their daily
sustenance, are rural and sometimes poor communities. The human population in 2050 is projected to
be more than 9 billion and most of the increase is estimated to be in developing countries, with more
than half in Africa [3]. Rapid increases in population will cause changes in land cover and land use,
which impact rangelands and food security through land degradation [4,5]. Land degradation is
regarded as a threat to the productivity of rangelands [5]. Degradation or loss of rangeland potential to
provide grazing resources is also exacerbated by continued global climatic change [6]. Climate change
induces erratic rainfall and increases temperatures. As a result, disasters such as drought become
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prevalent in Africa, affecting a high proportion of livestock production by reducing the availability
and quality of grazing forage resources.

Drought as a consequence of climate change is devastating rangelands and livestock systems in
Africa. The occurrence of drought limits the carrying capacity and stocking rates of the rangelands.
Livestock mortality, which is common during this period has many implications for the livelihood
of the local community. The development of techniques to examine the state, extent and quality of
rangeland is critical. In this context, leaf nitrogen (leaf N) could be useful to assess the quality of
rangeland, and thus inform decision makers on planning and management.

Leaf N concentration is an essential component for understanding biogeochemical cycling and a
good indicator of vegetation vitality [7] and grass or forage quality (i.e., protein) which is important
for understanding the movements and feeding patterns of herbivores [8,9]. Leaf N is a key component
for determining vegetation conditions, and is useful for determining livestock carrying capacity and
stocking rates. It is critical to have the latter indicators on order to circumvent the problems of
over-grazing, soil erosion and land degradation which impact negatively on rangeland conditions and
hence livestock production.

The conventional approach to assessing the spatial and temporal distribution of leaf N in
rangelands is reliant on extensive field data collection which is expensive, labour intensive and
time consuming, especially for wider geographic areas. Satellite remote sensing provides an alternative
approach for mapping leaf N for wide geographic areas and over time. The estimation of leaf N in grass
has been successful using hyperspectral data with both field spectrometer and airborne data [10-13].
The latter was possible because of the development of the second generation of vegetation indices
such as the red edge position (REP) [14,15] and narrow band indices which are sensitive to subtle
changes in leaf chlorophyll content in contrast to the traditional Normalized Difference Vegetation
Index (NDVI) which saturates at high green vegetation canopy cover [11,16-19]. The new generation
of satellite constellations has strategically incorporated the red edge band to improve vegetation
and crop condition monitoring. These include commercial satellites such as WorldView-2/3 and
RapidEye. However, the data from these sensors comes at an almost prohibitive cost, especially for the
developing world. On the other hand, Sentinel-2, a multispectral satellite developed and launched
by the European Space Agency (ESA) which features 13 spectral bands in the visible to shortwave
infrared and including two red edge bands (705 nm and 740 nm) provides freely available images.
Like Landsat, Sentinel-2 data are freely available and could be useful to improve the assessment of
crop and rangeland biochemical and biophysical variables.

To date, empirical methods for estimating leaf N require basic and complex statistical
analysis—from simple to machine learning regression [16-18,20,21]. The simple empirical approach
assumes that leaf N is significantly related to specific chlorophyll-based vegetation indices [22-25].
The assumption is that leaf nitrogen is related to chlorophyll [26] and the red edge based vegetation
indices capture subtle changes in vegetation vigour. On the other hand, some methods assume that the
estimation of leaf N is not dependent exclusively on one vegetation index or reflectance at a specific
band, but also a combination of variables—integrated modelling using reflectance, indices and also
environmental variables [10,13]. The latter approach was achieved by using stepwise multiple linear
regressions (SMLR), partial least square regression (PLSR), machine learning techniques including
artificial neural network (ANN) [17,18]. The machine learning techniques are non-parametric in nature
and are known to perform better than the parametric ones for grass N estimation [12,17,18], and could
be critical for monitoring grass nutrients using Sentinel-2.

Deriving leaf N concentration for monitoring purposes using satellite remote sensing is always
hindered by the availability of field data collected simultaneously with the image acquisition, which
is a common practice for leaf N model development. In this study, we intend to explore the use of
the spectrometer data with corresponding field N to calibrate and map grass N using Sentinel-2 data.
The spectrometer data will be used to simulate Sentinel-2 spectral bands by a resampling technique
and the leaf N model will be developed independent of the Sentinel-2 image. Ramoelo et al. [18]
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demonstrated that the simulated Sentinel-2 image coupled with the machine learning techniques
improves the estimation of leaf nitrogen concentrations. The red edge and the SWIR bands were
found to be important in the estimation of leaf N. In this study, only the visible to near infrared data
will be investigated to assess the usefulness of the red edge band in Sentinel-2 data for mapping
and monitoring leaf N. The study by Cho et al. [27] demonstrated a consistent performance of
red edge based indices on the estimation of herbaceous biomass from HyMap images acquired
from different dates, compared to conventional vegetation indices such as NDVI. This study will
further test the influence of environmental factors, such as the underlying geological types, climatic,
topographic features and fire frequency on leaf N, which are some of the major determinants of
savanna ecosystems [28-31].

2. Materials and Methods

2.1. Study Area

The study area is located in the north-eastern part of South Africa in the Lowveld savanna
(Figure 1). The Lowveld landscape is a low lying area extending from the foot slopes of the Drakensberg
Great Escarpment to the west and the Mozambique coastal plain to the east (Venter et al., 2003).
The topography is gently undulating with flat patches in localized areas, and with an average height
of 450 m a.s.]. The study area covers a land use transect ranging from protected areas such as the
Sabi Sands Private Game Reserve and the state-owned Kruger National Park (KNP) to communal
lands in the Bushbuckridge region. The western part of the transect (communal areas) receives higher
mean annual rainfalls (800 mm/year) as compared to the eastern side of the transect (580 mm/year).
The annual mean temperature is about 22 °C. The dominant geology includes granite and gneiss with
local intrusions of gabbro as well as basalt [28].

Gradients of soil moisture and nutrients are important in this area. The soil fertility of gabbro
areas is higher than the granitic ones (Venter et al.,, 2003). The main vegetation communities
include the “granitic lowveld” and the “gabbro grassy bushveld” [32]. In the gabbro patches, grass
species such as Setaria sphacelata dominate the crest while species such as Urochloa mosambicensis
dominate the valleys. Gabbro patches are dominated by grass species with high productive
potential (e.g., Urochloa mosambicensis) compared to granite-derived soils (e.g., Eragrostis rigidior and
Pogonarthria squarrosa. Also, the gabbro sites are dominated by fine-leaved tree species such as
Acacia spp. while the granite sites are dominated by broad-leaved tree species such as Combretum spp.
and Terminalia spp.) [16-18]. Another geology type is basalt, which has similar characteristics to gabbro,
see Ramoelo et al. [16].

2.2. Field Data Collection

The field data collection was done in December 2014 along the land use gradient from
Bushbuckridge communal areas, Sabie Sands and Kruger National Park, covering granite, gabbro and
basalt geological types (Figure 1). The site selection process captured the nutrient contrast from low to
high between granitic, gabbro and basalt derived soils, respectively, and along the rainfall gradient
(east-west). To further ensure grass biomass variability, transects were laid out to sample both valley
and crest land units. Grass biomass in the savanna ecosystems is also influenced by topography with
valley areas generally having higher grass biomass than crest areas. Purposive and road sampling was
done for placement of sampling plots since we could not penetrate deep into the savanna because of
management restrictions. The 300 m buffers were created on both sides of the selected roads. Within
the buffer polygons, random sample points were generated using the ArcGIS add-on, called Hawth
tools. All the points falling on the road and open areas next to the road were rejected because of the
unavailability of grass. A total of 30 plots were surveyed. Each randomly selected sample point was
treated as a plot with a size of 20 m x 20 m. To capture the variability in each plot, two subplots of size
50 cm x 50 cm were used to collect data about the dominant species and grass samples. The grass
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samples were cut for chemical analysis to retrieve leaf N concentrations. Grass samples were dried at
80 °C for 24 h and were chemically analysed for leaf N (%) at the Bemlab, Strand, Western Cape South

Africa [17].
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Figure 1. Study area locality map. Top: vegetation map, [32].

The reflectance spectra were measured in the field using an Analytical Spectral Device (ASD)
spectroradiometer, Fieldspec 3® (Figure 2). The ASD spectral domain ranges from 350 to 2500 nm,
with 1 nm band width. Within each plot, spectral measurements were made for each of the
two subplots [18]. In each subplot, five spectral measurements were taken and later averaged to
account for illumination and grass canopy structural differences as well as bidirectional effects [18].
The measurements were taken between 10h30 and 15h00 on clear sunny days with minimal cloud cover
to maximize illumination. The 25° field-of-view fibre optic was used and was placed at 1 m above
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the ground and at nadir to cover the entire subplot. Before each spectral measurement, a Spectralon
reference panel was used to calibrate the sensor and convert spectral radiance to reflectance.

Field Data ;
Leaf Nitrogen Spectrometer data Sentinel-2 Image data
Simulateto Sentinel-2A Atmospheric correction
Modelling H Model inversion
-
-
S
J/

Figure 2. Flow chart conceptualizing the process or methods followed in this study.

2.4. Image Acquisition and Preprocessing

About nine Sentinel-2A images were freely acquired from the European Space Agency data hub
dated from 26 December 2015 to 11 October 2016 (Table 1). The image was comprised of 13 bands
ranging from visible to shortwave infrared [18]. Of the available bands or wavelength, there are
two red edge bands centred at 705 and 740 nm. The atmospheric correction was implemented using
the Sentinel-2 atmospheric correction tool (Sen2Cor) performed on Sandbox handled by Terradue
and CSIR’s Meraka Institute. Sen2cor is a prototype processor or tool that undertakes atmospheric,
terrain and cirrus correction. It is implemented with a large database of look-up tables (LUT) compiled
using an atmospheric radiative transfer model based on libRadtranl. The LUT include a wide variety
of atmospheric conditions, solar geometries and ground elevations computed with high spectral
resolution of 0.6 nm. In order to get the sensor specific functions for Sentine-2, the database have been
spectrally resampled using the Sentinel-2 spectral response function (http://step.esa.int/main/third-
party-plugins-2/sen2cor/).

Table 1. List of Sentinel-2 images used in the study.

Image No. Reference Dates

1 S2A_T36JUT_R092_20151226 16 December 2015
2 S2A_T36JUT_R092_20160504 4 April 2016

3 S2A_T36JUT_R092_20160524 23 April 2016

4 S2A_T36JUT_R092_20160723 23 July 2016

5 S2A_T36JUT_R092_20160812 12 August 2016
6 S2A_T36JUT_R092_20160822 22 August 2016
7 S2A_T36JUT_R092_20160901 1 September 2016
8 S2A_T36JUT_R092_20160921 21 September 2016
9 S2A_T36JUT_R092_20161011 11 October 2016
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2.5. Data Analysis

2.5.1. Development of Leaf N Predictive Model

Field measured reflectance spectral data were resampled to Sentinel-2 wavelength configuration
using the respective spectral response function (Figure 2). Several indices were computed including the
red edge based indices. The normalized difference vegetation indices (NDVI) = (NIR — R)/(NIR + R)
and the simple ratio (SR) = NIR/R [33] were computed, where NIR was near-infrared and R was the red
region of the spectrum. The red edge based indices for both NDVI and SR were computed as follows
(NIR VS. R), RE1 (R740 VS. R665 nm)/ RE2 (R705 VS. R665 nm)/ RE3 (R783 VS. R705 nm) [34,35], RE4 (R783 VS.
R740 nm) y RE5 (R842 VS. R705 nm) y RE6 (R842 VS. R740 nm) and RE7 (R740 VS. R705 nm) [35—37]. Chlorophyll—red
edge based index (CIred—edge) = (R783 /R705) -1 [35,38,39] and the CIgreen = (R783/R560) -1 [35,38,39].
The MERIS Terrestrial Chlorophyll Index (MTCI) was also computed based on the bands centred at
705 nm, 740 nm and 665 nm (Rys9 — Ryo5/R705 — Rees) [40]. The red edge position (REP) based on
a linear four-point interpolation method, was computed and Sentinel-2 bands centred at 663, 705,
740 and 783 nm were used; see Guyot and Baret [41]. Simple linear regression with bootstrapping
was used to validate leaf N models based on various remote sensing variables (indices and bands),
and was implemented in R programming language (“Boot function package”). Bootstrapping was
used because of the small sample size and it is an unbiased means of evaluating the performance of
various estimation models [42-44]. Bootstrapping technique subsets ~70% of data for calibration of the
regression model and validates with the remainder, iteratively, and 1000 interactions were used in this
study. Ramoelo et al. [16-18] and Mutanga and Skidmore [19] are examples of successful validation of
regression models using this technique (bootstrapping). Statistical accuracy and precision metrics such
as the coefficient of determination (R?), root mean square error (RMSE) and relative RMSE (%) were
used. The relative RMSE was computed by dividing the RMSE by the observed mean and multiplying
by 100.

Additional independent validation was undertaken using the leaf N and RapidEye data collected
in 2010, from Ramoelo et al. [16]. Firstly, the red edge-based vegetation index was derived using
RapidEye data. Leaf N will be predicted using Sentinel-2 derived model applied to the corresponding
and selected RapidEye based vegetation index. Finally, the statistical accuracy will be computed
based on the predicted and measured leaf N values. The assumption here is that Sentinel-2 red edge
based model should be able to estimate leaf N using RapidEye’s red edge based indices—to confirm
the transferability and stability of the red edge based models. The red edge bands for Sentinel-2
and RapidEye are comparable, 705 nm and 710 nm, respectively. The first red edge band (705 nm)
of Sentinel-2 has been found to be more important in estimating leaf N using machine learning
techniques [18] and it is expected to perform better in estimating leaf N when transformed to indices.

2.5.2. Explaining Leaf N Distribution

For explanatory analysis, over 200 randomly points were generated to the extent of the Sentinel-2
image, and used to extract predicted leaf N values and fire frequency (number of times a grid of 90 m
x 90 m is burnt) from 2005 to 2015, acquired from South African National Parks (SANPARKS, Skukuza,
South Africa), long-term mean annual precipitation (mm) (worldclim.com), topographic features
(e.g., digital elevation model (m), slope (degree) and aspect (degree) from a 30 m Shuttle Radar and
Topography Mission (SRTM30) (https://dds.cr.usgs.gov/srtm/version2_1/SRTM30/), and geology
data acquired from the Council for Geosciences (South Africa) and produced in 2008. Correlation
analysis was done to determine the relationship between leaf N concentrations and various continuous
variables such as precipitation and topographic features. Analysis of variance (ANOVA) was used
to test for significance differences between leaf N (%) and categorical variables such as geology and
fire frequency:.
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3. Results and Discussion

3.1. Descriptive Statistics

The variation of leaf N across the study areas was moderate with a co-efficient of variation
about 36% (Table 2). Lower values are associated with the granite, while the higher end of the leaf N
values represents the gabbro and basalt geological sampling sites. In the heterogeneous systems of
the savanna, multiple factors such as fire, geology, soils and climate influence the distribution of leaf
N [28]. There is no correlation between leaf N and herbaceous biomass (g/ m?) (R% = 0.0064, p =0.669).
This shows that the estimation of leaf N is minimally influenced by the interaction effects of biomass
and leaf N [12,16].

Table 2. Descriptive statistics for leaf N (%) across the study area.

Min Max Mean CV (%) N
0.54 2.05 0.88 36.35 30
CV = Coefficient of Variation.

3.2. Leaf N Predictive Models

Sentinel-2’s red edge based simple ratio index (SR_RE3—based on 783 and 705 nm), MTCI,
Clred edge explained over 75% of the leaf N variation, with 19% error, respectively (Table 3).
Red edge position based on the Linear Interpolation method yielded about 70% of the leaf N variation.
Even though most of the bands yielded a significant relationship with leaf N, their coefficient of
determination (R?) and relative root mean square error (%) indicated poor performance as compared
to the red edge based vegetation indices—SR and the NDVI. In addition, red edge based indices such
as CI and MTCI performed equally well. From spectroscopy studies, it was demonstrated that the
red edge based indices are significantly related to chlorophyll and N concentrations [14,21,26]. Often,
leaf N is indirectly estimated using red edge information because it is related to chlorophyll [14,26].
Red edge indices making use of 705 nm and any near infrared band yielded the highest accuracy for
estimating leaf N concentrations (Figure 3, Table 3). The latter band (705 nm) is placed at the onset
of the high reflectivity portion of the vegetation response, and is crucial for plant health estimation
(e.g., leaf N or chlorophyll) while the second red edge band (740 nm) is influenced by the concerted
effects of plant health (e.g., leaf N or chlorophyll) [14] and the vegetation structure (e.g., leaf area
index and biomass) [14,18]. Results for this study concurs with other studies that evaluated the
applicability of the multispectral red edge bands for mapping vegetation quality or health in the
grasslands or savanna [16-18,45] subtropical forests [46] and Mediterranean forests (Loozen et al.,
2017) [47]. In addition, the notable performance of the MTCI on the estimation of N content or
concentrations has been further reported by Cho et al. [46]; Ullah et al. [45] and Loozen et al. [47].

The leaf N model based on SR-RE3 was evaluated using independent leaf N and RapidEye data
collected from the same area during peak productivity (March 2010) [16]. The predicted leaf N values
were significantly correlated to the measured data collected in 2010, with acceptable accuracy (r = 0.48
(R? = 0.23), RMSE = 0.36%). Figure 4, shows the scatterplot indicating a relationship between observed
and predicted leaf N values. The performance of the SR_SR3 model (this study) is comparable with
the significant model achieved using RapidEye data (R? = 0.23, RMSE = 0.15%N) [16]. This further
highlights the potential of the red edge band in developing transferable models.

Sentinel-2 data sets are set to improve the estimation of leaf N at various scales, including the
global scale, in a cost-effective manner. The strategic placement of the two red edge bands provide an
opportunity to estimate and map leaf N during peak productivity. Ramoelo et al. [18], indicated that
Sentinel-2’s short-wave infrared bands are important in the estimation of leaf N (1610 and 2190 nm),
which further provides an opportunity to estimate leaf N during the dry season. In this study, we used
only the visible-near infrared (VNIR) spectral regions to further explore the utility of the two red



Remote Sens. 2018, 10, 269

edge bands. The results achieved here are comparable with that of Ramoelo et al. [16] where red
edge based indices—from RapidEye images were used to regionally map leaf N, (see also Figure 4.
Zengeya et al. [48] and Ramoelo et al. [18]) and indicated that WorldView-2, has the potential to
estimate leaf N with comparable accuracy. The main disadvantage of using RapidEye and World View
data is the cost, and it might not be affordable for most developing countries. The main shortcoming
of the latter models is that they are site, data, and season specific and cannot be easily transferred.
Ramoelo et al. [18] demonstrated that machine learning techniques, such as random forest improved
the estimation of leaf N by 49%, and are robust, if well parameterized. Ramoelo et al. [18] and this
study demonstrated that Sentinel-2 can be used to accurately estimate leaf N concentrations.

Table 3. Performance of bands and various vegetation indices on the estimation of leaf N using

simulated Sentinel-2 spectral configuration from spectrometer data.

Variables R? RMSE (%N)  RRMSE (%) p <0.05
443 nm 0.11 0.31 35.23 No
490 nm 0.14 0.30 34.09 Yes
560 nm 0.01 0.32 36.36 No
665 nm 0.27 0.28 31.82 Yes
705 nm 0.15 0.30 34.09 Yes
740 nm 0.23 0.29 32.95 Yes
783 nm 0.30 0.27 30.68 Yes
842 nm 0.27 0.28 31.82 Yes

REP 0.70 0.18 20.45 Yes
NDVI 0.59 0.21 23.86 Yes
NDVI1 0.60 0.21 23.86 Yes
NDVI_RE1 0.59 0.21 23.86 Yes
NDVI_RE2 0.51 0.23 26.14 Yes
NDVI_RE3 0.69 0.18 20.45 Yes
NDVI_RE4 0.73 0.17 19.32 Yes
NDVI_RE5 0.69 0.18 20.45 Yes
NDVI_RE6 0.22 0.29 32.95 Yes
NDVI_RE?7 0.68 0.19 22.00 Yes
SR 0.70 0.18 20.45 Yes
SR1 0.70 0.18 20.45 Yes
SR_RE1 0.68 0.18 20.45 Yes
SR_RE2 0.56 0.22 25.00 Yes
SR_RE3 0.75 0.17 19.32 Yes
SR_RE4 0.74 0.17 19.32 Yes
SR_RE5 0.74 0.17 19.32 Yes
SR_RE6 0.22 0.29 32.95 Yes
SR_RE7 0.72 0.17 19.32 Yes

Clyed edge 0.75 0.17 19.32 Yes
Clgreen 0.69 0.18 20.45 Yes

MTCI 0.75 0.17 19.32 Yes

REP = Red Edge Position; SR = Simple Ratio; NDVI = Normalized Difference Vegetation Index; RE = Red Edge;
MTCI—MERIS Terrestrial Chlorophyll Index; CI = Chlorophyll index.
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3.3. Explaining Spatial Distribution of Leaf N

One of the best performing empirical models based on SR_RE3 was used to create leaf N
maps over time (Figure 5). Figure 5 shows the realistic patterns of leaf N concentrations in the
southern part, KNP and the spatial distribution and variation of leaf N is influenced by a number of
variables, including seasons. The variability of leaf N is clear during peak productivity (see Figure 5,
May 2016) and less during dry season (Figure 5, July and August map). In addition, mean annual
precipitation, altitude (digital elevation model), slope, aspect, fire frequency and geology were analysed.
The correlation results showed that mean annual precipitation and altitude significantly influence
(p < 0.05) the spatial distribution of leaf N concentrations (Figure 6). There is a pronounced regional
effect of the west—east gradient of precipitation with the western part receiving higher precipitation.
The process of nutrient uptake and dissolving of organic matter is facilitated by the availability of
water or by precipitation [29]. Altitude is one of the topographic features that introduce heterogeneity,
patchiness of nutrients distribution and variation in the Lowveld. Bottomlands and valley areas have
high nutrient concentration potential as compared to crest or mid-slopes, independent of the geological
type. High nutrients in the bottomlands are due to the run-off from the high slopes.

Using the analysis of variance (ANOVA), results indicated that geology and fire frequency
significantly influence the spatial distribution of leaf N distribution and variation over time. Areas
characterized by high fire returns or frequency have significantly higher leaf N concentrations
(See Figure 7, Table 4). Fire is known to enhance forage availability in the savanna ecosystem by
suppressing tree and unpalatable grass growth and creates favourable conditions for highly nutritious
and palatable grass species to grow [32,49,50]. On the other hand, geology as indicated above,
influences the quality of the grass in the Lowveld. The granite type of soil has generally lower
nutrient concentrations as compared to gabbro and basalt, including lava and shale. In this study,
though leaf N significantly varies across geological types, granite still has relatively higher leaf N
concentration (Figure 7, Table 4). This could be due to the complexities and heterogeneities imposed by
the topographic features such as bottomlands and sodic sites within the granite, with relatively higher
leaf N concentrations [31,51]. Again, the influence of environmental factors on the leaf N concentration
is scale dependent. Locally, disturbances such as fire, grazing impact and mega herbivores could have
a major influence on leaf nutrient concentrations, while at the regional scale, the influence of climate
factors i.e., precipitation and geology could be important [49].

Table 4. Influence of geological types and fire frequency on leaf N spatial distribution.

F-Statistics Significance Level (p < 0.05)
Geo vs. STDEV N (%) F(10,610) = 5.4770 yes
Geo vs. Mean N (%) F(10,610) = 3.8157 yes
Geo vs. Median N (%) F(10,610) = 2.0364 yes
Fire Freq vs. STDEV N (%) F(9611) = 5.0712 yes
Fire Freq vs. Mean N (%) F(9611) = 6.1198 yes
Fire Freq vs. Median N (%) F(9611) = 4.8006 yes

Geo = geological types; Freq = frequency.
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Figure 5. Spatial distribution of leaf nitrogen concentrations (%) derived from field spectrometer
based models applied on Sentinel-2 image. Top: end of wet season (4 and 23 May 2016), and bottom:
dry season (23 July and 12 August 2016).
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Figure 7. The analysis of the influence of geological types (top) and fire frequency (below) on the
variation of leaf N data, mean, median and standard deviation, derived from nine months or granules
of spatial data.

4. Conclusions

New and freely available Sentinel-2 data has the potential to estimate leaf N as an indicator of
rangeland quality with the inclusion of red edge bands. The red edge based indices (especially simple
ratio based on 705 and 783 nm), CI and MTCI based on simulated Sentinel-2 data showed higher
potential to estimate leaf N. The latter has been achieved because the red edge position is known to
relate to leaf N and chlorophyll. Even though spectral bands did not yield higher estimation accuracy,
most of them were significantly related to leaf N. ASD reflectance data could be useful in the estimation
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of leaf N, provided there is a good red edge embedded satellite data such as Sentinel-2. Geology
and fire frequency significantly influence the spatial distribution of leaf N. Topographic features such
as altitude significantly influenced the spatial distribution of leaf N, while aspect and slope did not.
Monitoring the spatial distribution of nutrients is crucial for understanding the feeding patterns
and movements of the herbivores, and is useful to the improvement of rangeland management and
planning tools such as stocking rates and rangeland carrying capacity.

Acknowledgments: We would like to thank CSIR, National Research Foundation (NRF)—SASSCAL Project
and European Union’s Horizon 2020 research and innovation programme under grant agreement No. 641762
(ECOPOTENTIAL Project) for providing funds to undertake this work. I would like to thank SANPARKS scientific
services at Skukuza for facilitating field work activities and providing other ancillary datasets. I would also
like to thank CSIR’s Meraka Institute, Terradue and South African National Space Agency for downloading
and processing Sentinel-2 data. I am grateful to Cecilia Masemola and Lucas Mashele (Bushbuckridge area) for
field work assistance. I would further like to thank the Editor and anonymous reviewers for their constructive
comments, which eventually improved the quality of this manuscript.

Author Contributions: Abel Ramoelo (A.R.) conceptualized the idea, collected, analyzed the data and wrote the
manuscript. Moses A. Cho (M.A.C.) contributed on the conceptualization of the idea and paper writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

Child, R.D.; Frasier, G.W. ARS range research. Rangelands 1992, 14, 17-32.
Friedl, M. Range condition assessment and the concept of thresholds: A viewpoint. J. Range Manag. 1991, 44,
422-426. [CrossRef]

3. United Nations, Department of Economic and Social Affairs, Population Division—UNPD. World Population
Prospects: The 2015 Revision, Methodology of the United Nations Population Estimates and Projections;
ESA /P/WP.242; United Nations: New York, NY, USA, 2015.

4. Thornton, PK. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. 2010, 365,
2853-2867. [CrossRef] [PubMed]

5. FAO (Food and Agriculture Organization of the United Nations). Land Degradation Assessment in Drylands
(LADA). 2010. Available online: http://www.fao.org/nr/lada/ (accessed on 15 September 2017).

6. Palmer, A.R,; Bennett, J.E. Degradation of communal rangelands in South Africa: Towards an improved
understanding to inform policy. Afr. J. Range Forage Sci. 2013, 30, 57-63. [CrossRef]

7. Grant, C.C,; Peel, M.; Zambatis, N.; van Ryssen, ].B.]. Nitrogen and phosphorus concentration in faeces:
An indicator of range quality as a practical adjunct to existing range evaluation methods. Afr. J. Range
Forage Sci. 2000, 17, 81-92. [CrossRef]

8.  Ben-Shahar, R.; Coe, M.]. The relationships between soil factors, grass nutrients and the foraging behaviour
of wildebeest and zebra. Oecologia 1992, 90, 422-428. [CrossRef] [PubMed]

9. Kaszta, Z.; Marino, J.; Ramoelo, A.; Wolff, E. Bulk feeder or selective grazer: African buffalo space use
patterns based on fine-scaled remotely sensed data on forage quality and quantity. Ecol. Model. 2016, 323,
115-122. [CrossRef]

10. Ramoelo, A.; Skidmore, A K.; Cho, M.A.; Mathieu, R.; Heitkonig, LM.A.; Dudeni-Tlhone, N.; Schlerf, M.;
Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen
and phosphorus using in situ hyperspectral and environmental data. ISPRS |. Photogramm. Remote Sens.
2013, 82, 27-40. [CrossRef]

11. Mutanga, O.; Skidmore, A K. Integrating imaging spectroscopy and neural networks to map grass quality in
the Kruger National park, South Africa. Remote Sens. Environ. 2004, 90, 104-115. [CrossRef]

12.  Skidmore, A K.; Ferwerda, J.G.; Mutanga, O.; van Wieren, S.E.; Peel, M.; Grant, R.C.; Prins, H.H.T.; Balcik, EB.;
Venus, V. Forage quality of savannas—Simultaneously mapping foliar protein and polyphenols for trees and
grass using hyperspectral imagery. Remote Sens. Environ. 2010, 114, 64-72. [CrossRef]

13.  Knox, N.M.; Skidmore, A K,; Prins, H.H.T.; Heitk6nig, . M.A.; Slotow, R.; van der Waal, C.; de Boer, W.E.
Remote sensing of forage nutrients: Combining ecological and spectral absorption feature data. ISPRS J.
Photogramm. Remote Sens. 2012, 72, 27-35. [CrossRef]


http://dx.doi.org/10.2307/4002737
http://dx.doi.org/10.1098/rstb.2010.0134
http://www.ncbi.nlm.nih.gov/pubmed/20713389
http://www.fao.org/nr/lada/
http://dx.doi.org/10.2989/10220119.2013.779596
http://dx.doi.org/10.2989/10220110009485743
http://dx.doi.org/10.1007/BF00317701
http://www.ncbi.nlm.nih.gov/pubmed/28313531
http://dx.doi.org/10.1016/j.ecolmodel.2015.12.006
http://dx.doi.org/10.1016/j.isprsjprs.2013.04.012
http://dx.doi.org/10.1016/j.rse.2003.12.004
http://dx.doi.org/10.1016/j.rse.2009.08.010
http://dx.doi.org/10.1016/j.isprsjprs.2012.05.013

Remote Sens. 2018, 10, 269 14 of 15

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data:
The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181-193. [CrossRef]

Curran, PJ.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The effect of a red leaf pigment on the relationship
between red edge and chlorophyll concentration. Remote Sens. Environ. 1991, 35, 69-76. [CrossRef]
Ramoelo, A.; Skidmore, A K.; Cho, M. A ; Schlerf, M.; Mathieu, R.; Heitkonig, LM.A. Regional estimation
of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor. Int. |. Appl. Earth
Obs. Geoinf. 2012, 19, 151-162. [CrossRef]

Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring
grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling
and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43-54. [CrossRef]

Ramoelo, A.; Cho, M.A.; Mathieu, R.; Skidmore, A. The potential of Sentinel-2 spectral configuration to
assess rangeland quality. J. Appl. Remote Sens. 2015, 9, 094096. [CrossRef]

Mutanga, O.; Skidmore, A.K. Red edge shift and biochemical content in grass canopies. ISPRS ]. Photogramm.
Remote Sens. 2007, 62, 34—42. [CrossRef]

Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, L.R.; Foley, W.J. Estimating foliage nitrogen concentration from
HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18-29. [CrossRef]

Kokaly, R.E,; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry
from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113
(Suppl. 1), S78-591. [CrossRef]

Muharam, EM.; Maas, S.J.; Bronson, K.F,; Delahunty, T. Estimating cotton nitrogen nutrition status using leaf
greenness and ground cover information. Remote Sens. 2015, 7, 7007-7028. [CrossRef]

Caturegli, L.; Casucci, M.; Lulli, F.; Grossi, N.; Gaetani, M.; Magni, S.; Bonari, E.; Volterrani, M. GeoEye-1
satellite versus ground-based multispectral data for estimating nitrogen status of turfgrasses. Int. J.
Remote Sens. 2015, 36, 2238-2251. [CrossRef]

Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Heiden, U.; Heurich, M.; Wang, T. Leaf nitrogen content
indirectly estimated by leaf traits derived from the PROSPECT model. IEEE ]. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 3172-3182. [CrossRef]

Wang, Z.; Wang, T.; Darvishzadeh, R.; Skidmore, A K,; Jones, S.; Suarez, L.; Woodgate, W.; Heiden, U.;
Heurich, M.; Hearne, J. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest.
Remote Sens. 2016, 8, 491. [CrossRef]

Yoder, B.J.; Pettigrew-Crosby, R.E. Predicting nitrogen and chlorophyll content and concentrations from
reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995, 53, 199-211.
[CrossRef]

Cho, M.; Skidmore, A.K,; Corsi, F.; van Wieren, S.; Sobhan, I. Estimation of green grass/herb biomass from
airborne hyperspectral imagery using spectral indices and partial least square regressions. Int. |. Appl. Earth
Obs. Geoinf. 2007, 9, 414-424. [CrossRef]

Venter, EJ.; Scholes, R.J.; Eckhardt, H.C. Abiotic template and its associated vegetation pattern. In The
Kruger Experience: Ecology and Management of Savanna Heterogeneity; Toit, ].T.D., Kevin, H.R., Biggs, H.C., Eds.;
The Island Press: London, UK, 2003; pp. 83-129.

Pickectt, S.T.A.; Gadenasso, M.L.; Benning, T.L. (Eds.) Biotic and Abiotic Variability as Key Determinants of
Savanna Heterogeneity at Spatiotemporal Scales; Island Press: London, UK, 2003.

Sankaran, M. Fire, grazing and the dynamics of tall-grass savannas in the Kalakad-Mundanthurai Tiger
Reserve, South India. Conserv. Soc. 2005, 3, 4-25.

Grant, C.C.; Scholes, M.C. The importance of nutrient hot-spots in the conservation and management of
large wild mammalian herbivores in semi-arid savannas. Biol. Conserv. 2006, 130, 426—437. [CrossRef]
Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; SANBI: Cape Town,
South Africa, 2006.

Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663-666.
[CrossRef]

Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.;
Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density
using ground-based multispectral data. In Proceedings of the Fifth International Conference on Precision
Agriculture, Bloomington, MN, USA, 16-19 July 2000.


http://dx.doi.org/10.1016/j.rse.2005.12.011
http://dx.doi.org/10.1016/0034-4257(91)90066-F
http://dx.doi.org/10.1016/j.jag.2012.05.009
http://dx.doi.org/10.1016/j.jag.2014.12.010
http://dx.doi.org/10.1117/1.JRS.9.094096
http://dx.doi.org/10.1016/j.isprsjprs.2007.02.001
http://dx.doi.org/10.1016/j.rse.2004.06.008
http://dx.doi.org/10.1016/j.rse.2008.10.018
http://dx.doi.org/10.3390/rs70607007
http://dx.doi.org/10.1080/01431161.2015.1035409
http://dx.doi.org/10.1109/JSTARS.2015.2422734
http://dx.doi.org/10.3390/rs8060491
http://dx.doi.org/10.1016/0034-4257(95)00135-N
http://dx.doi.org/10.1016/j.jag.2007.02.001
http://dx.doi.org/10.1016/j.biocon.2006.01.004
http://dx.doi.org/10.2307/1936256

Remote Sens. 2018, 10, 269 15 of 15

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Clevers, ].G.P.W,; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using
red-edge bands on Sentinel-2 and 3. Int. ]. Appl. Earth Obs. Geoinf. 2013, 23, 344-351. [CrossRef]

Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of
Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll
estimation. J. Plant Physiol. 1994, 143, 286-292. [CrossRef]

Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a
wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337-354.
[CrossRef]

Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral
reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. |. Plant Physiol.
2003, 160, 271-282. [CrossRef] [PubMed]

Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll,
carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [CrossRef]
Dash, J.; Curran, PJ. The MERIS terrestrial chlorophyll index. Int. ]J. Remote Sens. 2004, 25, 5403-5413.
[CrossRef]

Guyot, G.; Baret, F. Utilisation de la haute résolution spectrale pour suivre 1’état des couverts végétaux.
In Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing.
ESA SP-287, Assois, France, 18-22 January 1988; pp. 279-286.

Bunke, O.; Droge, B. Bootstrap and cross-validation estimates of the prediction error for linear regression
models. Ann. Stat. 1984, 12, 1400-1424. [CrossRef]

Efron, B. Estimating the error rate of a prediction rule: Improvement on cross-validation. J. Am. Stat. Assoc.
1983, 78, 316-331. [CrossRef]

Efron, B.; Tibshirani, R. Improvements on cross-validation: The 632+ Bootstrap Method. J. Am. Stat. Assoc.
1997, 92, 548-560.

Ullah, S.; Si, Y.; Schlerf, M.; Skidmore, A K.; Shafique, M.; Igbal, L. A. Estimation of grassland biomass and
nitrogen using MERIS data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 196-204. [CrossRef]

Cho, M.A.; Ramoelo, A.; Debba, P.; Mutanga, O.; Mathieu, R.; van Deventer, H.; Ndlovu, N. Assessing
the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data.
Landsc. Ecol. 2013, 28, 1479-1491. [CrossRef]

Loozen, Y.; Rebel, K.T.; Karssenberg, D.; Wassen, M.].; Sardans, J.; Penuelas, J.; de Jong, S.M. Regional
detection of canopy nitrogen in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll
Index. J. Biogeosci. Discuss. 2017, 1-32. [CrossRef]

Zengeya, EM.; Mutanga, O.; Murwira, A. Linking remotely sensed forage quality estimates from
WorldView-2 multispectral data with cattle distribution in a savanna landscape. Int. J. Appl. Earth Obs. Geoinf.
2013, 21, 513-524. [CrossRef]

Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, A.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I;
Le Roux, X.; Ludwig, F; et al. Determinants of woody cover in African. Nature 2005, 438, 846-849. [CrossRef]
[PubMed]

Van Wilgen, B.W. The evolution of fire management practices in savanna protected areas in South Africa.
S. Afr. J. Sci. 2009, 105, 343-349. [CrossRef]

Scholes, R.J. The influence of soil fertility on the ecology of Southern African dry savannas. . Biogeogr. 1990,
17,415-419. [CrossRef]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.jag.2012.10.008
http://dx.doi.org/10.1016/S0176-1617(11)81633-0
http://dx.doi.org/10.1016/S0034-4257(02)00010-X
http://dx.doi.org/10.1078/0176-1617-00887
http://www.ncbi.nlm.nih.gov/pubmed/12749084
http://dx.doi.org/10.1029/2006GL026457
http://dx.doi.org/10.1080/0143116042000274015
http://dx.doi.org/10.1214/aos/1176346800
http://dx.doi.org/10.1080/01621459.1983.10477973
http://dx.doi.org/10.1016/j.jag.2012.05.008
http://dx.doi.org/10.1007/s10980-013-9908-7
http://dx.doi.org/10.5194/bg-2017-228
http://dx.doi.org/10.1016/j.jag.2012.07.008
http://dx.doi.org/10.1038/nature04070
http://www.ncbi.nlm.nih.gov/pubmed/16341012
http://dx.doi.org/10.4102/sajs.v105i9/10.107
http://dx.doi.org/10.2307/2845371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Collection 
	Spectral Measurements 
	Image Acquisition and Preprocessing 
	Data Analysis 
	Development of Leaf N Predictive Model 
	Explaining Leaf N Distribution 


	Results and Discussion 
	Descriptive Statistics 
	Leaf N Predictive Models 
	Explaining Spatial Distribution of Leaf N 

	Conclusions 
	References

