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Abstract: Traditional indoor laser scanning trolley /backpacks with multi-laser scanner, panorama
cameras, and an inertial measurement unit (IMU) installed are a popular solution to the 3D indoor
mapping problem. However, the cost of those mapping suits is quite expensive, and can hardly be
replicated by consumer electronic components. The consumer RGB-Depth (RGB-D) camera (e.g.,
Kinect V2) is a low-cost option for gathering 3D point clouds. However, because of the narrow
field of view (FOV), its collection efficiency and data coverages are lower than that of laser scanners.
Additionally, the limited FOV leads to an increase of the scanning workload, data processing burden,
and risk of visual odometry (VO)/simultaneous localization and mapping (SLAM) failure. To find an
efficient and low-cost way to collect 3D point clouds data with auxiliary information (i.e., color) for
indoor mapping, in this paper we present a prototype indoor mapping solution that is built upon
the calibration of multiple RGB-D sensors to construct an array with large FOV. Three time-of-flight
(ToF)-based Kinect V2 RGB-D cameras are mounted on a rig with different view directions in order
to form a large field of view. The three RGB-D data streams are synchronized and gathered by the
OpenKinect driver. The intrinsic calibration that involves the geometry and depth calibration of single
RGB-D cameras are solved by homography-based method and ray correction followed by range
biases correction based on pixel-wise spline line functions, respectively. The extrinsic calibration
is achieved through a coarse-to-fine scheme that solves the initial exterior orientation parameters
(EoPs) from sparse control markers and further refines the initial value by an iterative closest point
(ICP) variant minimizing the distance between the RGB-D point clouds and the referenced laser
point clouds. The effectiveness and accuracy of the proposed prototype and calibration method are
evaluated by comparing the point clouds derived from the prototype with ground truth data collected
by a terrestrial laser scanner (TLS). The overall analysis of the results shows that the proposed method
achieves the seamless integration of multiple point clouds from three Kinect V2 cameras collected
at 30 frames per second, resulting in low-cost, efficient, and high-coverage 3D color point cloud
collection for indoor mapping applications.

Keywords: RGB-D; Kinect; point clouds; registration; calibration; indoor 3D mapping

1. Introduction

Driven by the miniaturization and light weight of positioning and remote sensing sensors, as well
as the need of fusing indoor and outdoor maps for next-generation navigation, 3D indoor mapping
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from mobile laser scanning is a hot research and application topic. Point clouds with auxiliary
information such as color and infrared images derived from 3D indoor mobile mapping suites can
be used in a variety of novel applications, including indoor scene visualization [1], automated floor
plan generation [2], gaming, reverse engineering, navigation [3], and simulation [4]. State-of-the-art
3D indoor mapping systems equipped with multiple laser scanners produce accurate point clouds
of building interiors containing billions of points [5]. However, these laser scanner-based systems
are expensive. Low-cost consumer RGB-Depth (RGB-D) cameras provide an alternative way to
solve the core challenge of indoor mapping, which is capturing the detailed underlying geometry
of building interiors. Since PrimeSense and Microsoft launched the first consumer-class RGB-D
camera (the Kinect V1) in 2010, low-cost consumer RGB-D cameras have gradually come into public
view. According to their measurement principle, RGB-D cameras can be divided into two categories:
structured-light (SL)-based and time-of-flight (ToF)-based. Structured light range sensing is an active
stereo-vision technique in which a sequence of known patterns is sequentially projected onto the
scene, and the distortion (disparity) of the pattern observed by a camera is analyzed to extract the
depth information [6]. The ToF approach is based on measuring the time that light emitted by an
illumination unit requires to travel to an object and back to the sensor array [7]. The Kinect V1 and
Kinect V2 developed by Microsoft are the representative models of the SL-based and ToF-based RGB-D
cameras, respectively. At present, there are many indoor 3D mapping studies using both kinds of
Kinect sensors [8-11].

Nevertheless, single RGB-D cameras have a very limited field of view (e.g., Kinect V2 horizontal
FOV =70°) when compared with laser scanners (e.g., typical horizontal FOV = 360°), resulting in low
efficiency in data collection and incomplete datasets that miss major building structures (e.g., ceilings,
walls) [12]. An existing public benchmark dataset [13] collected by a single RGB-D camera has depicted
the missing data defects. Due to the limited budget, low-cost 3D indoor mapping systems built on
RGB-D cameras are often not equipped with active position and orientation measurement sensors
such as inertial measurement units (IMUs). Visual odometry (VO) and simultaneous localization
and mapping (SLAM) algorithms [14-17] are often used as substitution of those sensors. Similar
to the IMU, position and orientation drifts are inevitable and will increase when the VO/SLAM
algorithms are applied overtime [18]. Meanwhile, VO/SLAM algorithms do not work properly in
no-texture regions or regions with repetitive textures, which are quite common in indoor environments.
In general, the scan matching procedures (e.g., iterative closest point, ICP) of a single RGB-D 3D indoor
mapping system will fail when the scene lacks features in the available field of view (e.g., only a single
homogenous wall is in the view) [10]. For a single RGB-D camera with limited field of view, it is
necessary to rotate the RGB-D camera frequently in order to obtain complete coverage of the indoor
environment to be measured. This unstable data acquisition mode increases the number of unknown
position and orientation parameters that need to be solved, and takes extra time and human labor to
achieve full-coverage datasets. Thus, the complexity and accumulation of errors during the VO/SLAM
process are increased, and the system robustness is reduced. In all, endeavoring to collect a complete
scene without data blanks using a single RGB-D camera in a “rotate-camera” manner is not technically
sound. Because the large amount of human labor and sensor position and orientation parameters
need to be solved, it will greatly increase the scanning workload, data processing burden, and risk of
VO/SLAM failure. VO/SLAM algorithm benefit from a large field of view [19]. Constructing a camera
array by combining multiple cameras can help to cope with occlusions and dynamics of the scenes,
especially in indoor scenes where spaces are normally tight [20].

Thus, to find an efficient and low-cost way to collect 3D point cloud data with auxiliary
information (i.e., color) for indoor mapping, in this paper we present an RGB-D camera array prototype
for indoor mapping that is built upon a novel calibration method that solves intrinsic and extrinsic
parameters of the individual camera in the array. Three Kinect V2 cameras are mounted on a rig
with different view direction to form a large FOV, while the three individual RGB-D data streams are
synchronized and gathered by the open source driver OpenKinect [21]. The calibration procedure
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is two-fold: (1) Intrinsic calibration involving the geometry/depth calibration of a single RGB-D
camera; and (2) Extrinsic calibration solving the placement parameters between the RGB-D cameras.
Geometry-related intrinsic parameters of the RGB/infrared (IR) cameras in the array are solved by a
homography-based method. The depth calibration process first corrects the default IR camera model
to the intrinsic calibrated solution and secondly solves the range bias of the ToF sensor by pixel-wise
spline line functions. The extrinsic calibration is achieved through a coarse-to-fine scheme that solves
the initial placement parameters based on sparse control markers and further refines the initial value
by an iterative closest point (ICP) variant minimizing the distance between the RGB-D point clouds
and the referenced laser point clouds.

The main contribution of the proposed RGB-D camera array is that it overcomes the shortcomings
of the limited view of single RGB-D camera indoor mapping systems by constructing and calibrating
RGB-D camera arrays to extend the view of single RGB-D camera, resulting in the high-coverage and
efficient collection of a 3D indoor point cloud with auxiliary information.

The rest of the paper is organized as follows: following the introduction, related works are
reviewed in Section 2. Section 3 elaborates the system setup of the RGB-D camera array and the
proposed calibration method. Experimental studies on the array calibration and 3D indoor mapping
results utilizing the proposed indoor mapping prototype are presented and analyzed in Section 4.
The pros and cons of the proposed prototype RGB-D cameras array and the calibration method are
discussed in Section 5, and conclusions are drawn in the final Section 6.

2. Related Works

Studies of 3D indoor mapping using RGB-D sensors are involved in a broad range of research
topics, including RGB-D sensor calibration, RGB-D SLAM systems, and 3D reconstruction from RGB-D
point clouds. Most of the existing RGB-D-based indoor mapping studies so far have utilized a single
sensor for the gathering of point clouds. The well-known KinectFusion [22,23] achieves real-time dense
surface mapping and tracking with a single moving Kinect sensor in small-scale scenes. For large-scale
scenes, Kinfu system [24] uses volume shifting and volume slice extraction to adapt KinectFusion
to the reconstruction. Other RGB-D SLAM systems use sparse features extracted from RGB images
jointly with an ICP algorithm [25], such as Kintinuous [16], RTAB-Map [26], or RGB-D mapping [27].
Only one RGB-D data stream is used as the input to solve the localization and mapping problem in
those studies. State-of-the-art indoor mapping studies have solved the RGB-D SLAM in areas rich in
texture and geometry information. However, texture-less regions, repetitive geometrical structures,
and occlusions are very common in indoor environments. For a single RGB-D SLAM system with a
very limited FOV of around 60°, the SLAM algorithms fail in cases when the amount of the features
observed in the scene is not enough to solve the location ambiguity, resulting in losses of algorithm
robustness. In addition, using single RGB-D sensors whose FOV is small and limited to collect the
indoor point clouds often leads to incomplete datasets, such as missing floors or ceilings, which is
quite common in the publically-available RGB-D benchmark datasets (e.g., SUN3D [13]).

Extending the FOV of the RGB-D sensor by combining multiple sensors is the intuition to
solve this issue. Few studies have been done on combining multiple RGB-D sensors for indoor
mapping. Chow et al. proposed a mobile mapping system called Scannect which is the integration
of a 3D terrestrial light detection and ranging (LiDAR) system, a micro-electro-mechanical systems
(MEMS) IMU, and two Microsoft Kinects mounted on the side of the Scannect to map the indoor
environments [10]. Song et al. proposed a rotated top-bottom (RTB) arrangement of two Kinect V1
s to maximize the FOV and adjusted the individual depths to a frontal reference coordinate [28].
Tsai et al. aligned multiple point clouds collected by a structured light RGB-D camera (ASUS Xtion
Pro RGB-D camera) mounted on a pan-tilt platform to reconstruct the indoor scenes [29]. An offline
extrinsic calibration utilizing checkerboard and online local registration method (e.g., ICP) were
combined to register the point clouds collected at every preset pan-tilt control point in their study.
Serafin et al. presented an extension to the well-known ICP by using an extended point representation
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that captures the surface characteristics around the points [30]. Sufficient overlap between depth
maps/point clouds should be maintained in those approaches to guarantee the convergence of the
ICP algorithm. Matterport3D marketed an RGB-D scanner consisting of three RGB-D sensors pointing
in three different directions for indoor modeling and virtual reality applications [31]. The sensor
calibration is the basis of and the key to constructing an RGB-D sensor array. This paper thus primarily
focuses on the calibration of multiple RGB-D sensors.

The intrinsic calibration of single RGB-D sensors solves the camera geometry and the depth
correction. Most of the consumer RGB-D sensors (namely the Kinect and Intel RealSense) are
originally designed for human-machine interaction in applications such as gaming, where metric
measurements are not the focus. Thus, consumer RGB-D sensors need to be calibrated individually to
refine the manufacturer’s batch calibration parameters [10]. RGB-D sensors are a new kind of sensor.
Fewer studies have been done on their intrinsic calibration [32-34], compared to the mature camera
calibration research. The main reason is that the measurements derived from SL/ToF based RGB-D
cameras are distorted by several phenomena. Considering especially the ToF based KinectV2 used in
this paper, the analysis of related error sources is reported in existing surveys [35,36]. The IR and color
optical sensors inside the Kinect V2 could be modeled using the pinhole camera model and solved
by well-established RGB camera calibration methods [9,34,37]. The calibration of the relative pose
parameters between the IR and RGB cameras is similar to stereo-camera calibration that could be solved
by measuring geometrical targets in the shared FOV (e.g., 2D planar pattern [38,39], circle grid [40],
1D target [41,42]), appearance-based methods [43], or self-calibration used in robot navigation [44—46].
For depth calibration, additional depth error models based on 3D look-up tables [47,48] interpolating the
related deviations, or on curve approximation with single/multiple B-splines [49,50] or polynomials [49]
to model the distance deviations have been designed to enhance the quality of depth data.

The extrinsic calibration of multiple RGB-D sensors calculates the relative rotation (boresight)
and translation (lever-arm) between individual sensors. In the context of the extrinsic calibration of
multiple RGB-D sensors, existing methods can be classified into three categories: (1) moving calibration
targets-based; (2) shared view-based; and (3) camera tracking-based methods. The method based
on moving calibration targets solves the exterior orientation parameters (EoPs) of each sensor in
the array by moving calibration targets with known trajectory across the view of individual sensors.
The trajectory of the calibration target is provided by external optical tracking systems. Beck and
Froehlich [51] employ a tracked checkerboard to establish correspondences in RGB-D camera space
and the world coordinate defined by the tracking system to register multiple RGB-D sensors into a
joint coordinate system. Avetisyan et al. [52] calibrated an array of multiple stationary color and depth
cameras using an optical tracking system tracking a checkerboard target with four additional markers
attached. The use of an optical tracking system in those methods limits their application scope to
where a tracking device is already available (e.g., 3D telepresence systems). The shared view-based
method solves the extrinsic camera calibration by the detection and matching of control points in the
overlapping regions of different cameras. OmniKinect [53] obtains the extrinsic parameters using
a calibration target with Kinect-visible markers that are simultaneously detected in the view of the
mounted Kinects. Fernandez-Moral et al. [54] use an overlap of features in the surrounding planar
environment (e.g., walls, ceiling) for the extrinsic calibration of the range camera. However, these
methods have the disadvantage that the overlap field of view constraint must be fulfilled. Besides,
it is more complicated to match features in depth images than in RGB images. The multiple camera
calibration approaches in this category are inappropriate for camera arrays designed with barely or not
overlapping field of view like the one proposed in this paper. Camera tracking-based methods do not
require an optical tracking system or a sufficient overlap in field of view. They rely on the portability
of the cameras and track the ego-motion of the cameras independently. SLAM or VO techniques are
applied to determine the extrinsic parameters of multiple generic cameras [55,56]. The final calibration
results are correlated to the robustness and accuracy of the used SLAM/VO algorithm, which depends
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highly on the environment. For indoor scenes filled with texture-less regions or repetitive geometry,
this kind of approach is not the optimal choice.

3. Methodology

The proposed RGB-D camera array aims to collect 3D point cloud data with auxiliary information
(i.e., color) for indoor mapping in an efficient and low-cost manner. The RGB-D camera array is
built upon multiple Kinect V2 cameras, and the calibration method solves intrinsic and extrinsic
parameters of each Kinect V2 in the array. Two key components are encompassed in the proposed
calibration process: (1) Calibrating the RGB/IR camera geometry of each RGB-D camera by a
homography-based method using checkerboard, correcting the infrared ray to obtain the calibrated
range-to-3D transformation, and modeling range biases with pixel-wise spline line functions to correct
the wiggling error along the range measurement by capturing a planar scene (e.g., a wall) from
different depths; (2) Solving the initial EoPs of each RGB-D camera from sparse control markers and
further refining the initial value by an ICP variant minimizing the distance between the RGB-D point
clouds and the referenced laser point clouds. Figure 1 illustrates the RGB-D camera array setup and
the framework of the proposed calibration method. The key components of the sensor array and
calibration method are described below.
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Figure 1. (Top) RGB-Depth (RGB-D) array system setup and (Bottom) schematic diagram of the
proposed calibration method. ICP: iterative closest point.
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3.1. RGB-D Camera Array System Setup

There are three types of RGB-D camera, including stereo camera, structured light (SL) camera,
and time-of-flight (ToF) camera, distinguished by the measurement principle. The stereo camera and
structured light camera use parallax theory to calculate depth, while the ToF camera is based on a beam
distance measurement principle, calculating the distance from the travel time of a modulated beam
between sensor and object. Among the mainstream ToF camera models, including Microsoft Kinect
V2 [57], CubeEye [58], SwissRanger SR4000 [58], and PMD CamCube [59], the Kinect V2 is selected as
the sensor array component in this paper for its wider FOV, higher resolution, longer ranging [35], and
easier accessibility.

In contrast to the open spaces of outdoor environments, indoor data collections are often impeded
by confined and small spaces; therefore, both horizontal and vertical rotation and translation of the
camera is required to achieve full data coverage, which leads to a higher risk of feature tracking failure
in VO/SLAM algorithms and more data collection/processing workload. Typical indoor environments
consist of orthogonal walls and ceilings which follow the Manhattan World Assumption [60].
According to the “Manhattan World” characteristics of the indoor environment, we proposed to
mount the sensors vertically with different pitching angles that orient the sensors forward, obliquely
upward and downward, as shown in the Figure 1. The pitch angles of the three Kinect V2 sensors were
designed to be —50°, 0° and 50°. The roll angles of the sensors were design to be kept consistent at
0°. There was 10° overlap in the FOV of the adjacent sensors. The RGB-D array could theoretically
provide 160° x 70° FOV. According to this design, there will be 89% vertical coverage of the scene
in front of the array, which is considered adequate for most indoor environments. The coverage is
2.7 times that using a single RGB-D camera (33% coverage).

All sensors were locked on a tripod bar using a ball head, and connected to a mobile work station
through a USB3.0 interface. Every sensor was allocated 5 Gbps bandwidth with a USB3.0 expansion
card plugged in separate PCI-E slots; the connection is shown in Figure 2. Since the official software
development kit (SDK) for Kinect V2 does not support more than one sensor, the open source drive
OpenKinect [21] was used to power the three Kinect v2s to collect RGB-D data streams simultaneously.
Although the Kinect V2 can obtain depth values for distances between 4.5 m to 9 m using the OpenKinect
driver, those measurements (range > 4.5 m) are considered as low-quality data and are filtered out in the
experiments using the threshold of 4.5 m suggested by the official driver. The intrinsic parameters of the
Kinect V2 were provided by the manufacturer. However, according to published studies on the Kinect
V2 [61], it is recommended to recalibrate those intrinsic parameters to guarantee the data accuracy.
Additionally, sensor installation of the array involves assembly errors. Thus, intrinsic calibration of
each individual Kinect and extrinsic calibration of the array is essential before use.

Array USB3.0 Expansion
Card(PCI-E) #1
Sensor #1
USB3.0 Expansion Mobile
Sensor#2 Card(PCI-E) #2 Workstation
Sensor #3
USB3.0 Expansion
Card(PCI-E) #3
AC

Figure 2. RGB-D sensor array connection graph.
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3.2. Intrinsic Calibration of Single RGB-D Sensor

The optical system of the Kinect V2 is composed of a color camera with a resolution of
1920 x 1080 pixels, an infrared camera with resolution of a 512 x 424 pixels, and an infrared (IR)
illuminator, as shown in Figure 3. The specifications of the Kinect V2 are listed in Table 1.

Color Infrared Infrared
camera camera illuminator

Figure 3. Sensor structure of the Kinect V2 [62].

Table 1. Specifications of the Kinect v2.

Depth Image Resolution 512 X 424 pixels
Image Resolution 1920 x 1080 pixels
0.5-4.5 m (Official driver)
Depth Range 0.5-9 m (Open Kinect driver)
Validated FOV (H x V) 70° x 60°
Frame Rate 30 Hz

The Kinect V2 utilizes continuous wave (CW) ToF technology to measure the range. This is one of
the two main ToF technologies on the market, while the other is pulsed-based ToF technology. The main
idea is to actively illuminate the scene using near-infrared (NIR) intensity-modulated periodic light
emitted from the IR illuminator. The emitted light is reflected by the scene, and phase detection is used
to measure the time it takes light to travel from the IR illuminator to the object and back to the infrared
camera, and distance is calculated from the results. For the detailed depth measurement principles of
the Kinect v2, see [63]. There are three data streams output from the Kinect V2; namely, the infrared
images from IR camera, the depth maps generated from the phase detection utilizing the IR camera,
and the color images from the RGB camera. Two lenses—the IR camera lens and the RGB camera
lens—are involved in the imaging and range sensing system; thus, individual geometry calibration
of the IR and RGB camera is required. To achieve precise overlay of the depth map derived from
the IR camera and the RGB image, the relative pose of the IR camera and RGB camera needs to be
solved. Despite the above-mentioned camera geometry-related parameters, the depth measurements
generated by ToF sensors suffer from random noise and systematic bias [50]. Thus, the single RGB-D
sensor calibration is done in two steps: (1) geometry calibration, and (2) depth calibration.

3.2.1. Geometry Calibration

Separate and conjunct calibration of the RGB camera and IR camera is required to determine
the camera intrinsic parameter of each camera as well as the relative pose of the two cameras.
Precise intrinsic parameters can correct image distortion, and are important to enhance the accuracy of
depth and color image fusion [64]. Checkerboard was used as the calibration pattern. The corners of
the checkerboard were detected in both RGB images and IR images, and the intrinsic parameters of
the cameras were obtained using a homography-based calibration method [65]. The relative pose was
calculated by minimizing the pixel projection errors of the corners detected on RGB/IR images.
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We used the pinhole camera model and the Brown'’s distortion model [66] to describe the intrinsic
parameters of the camera. The normalized coordinate of a 3D point on the RGB/IR image plane is
denoted as xp =[x, , 1]7. The Brown distortion is modeled as:

xy = x(1+kyr? 4+ kor* + ksr®) 4 2p1xy + po (rF +2x2), (1)

vu =y(1+ kir? + kor* + kar®) + p1 (r* + 2y2) + 2poxy, )

where r2 = x% + y?, (xy,y,) is the corrected coordinate,(k, k2, k3) and (py, p2) are vectors containing
the radial and tangential distortion coefficients, respectively. The pixel coordinate p = [u, U}T is
calculated as:

u Xy f x 0 up Xu
v | =Ky |=1]0 fy v Yu | ®)
1 1 0 0 1 1

where K is the intrinsic matrix that includes the focal length f = [f, f,] and principal point

Po = [uo, vo] T Utilizing the above-mentioned camera and distortion model, the intrinsic parameters are
solved by the homography based calibration method [65] with the checkerboard pattern. To precisely
overlay the color texture onto the depth image, the relative pose parameters between the RGB and IR
camera need to be calculated accurately. The transformation between the RGB and IR image coordinate
systems can be written as:

Ce = [RirZC’TiI‘ZC} Cir, 4

TS, |
i/ ~ir
are the rotation and translation parameters of the RGB camera with respect to the IR camera. For a 3D
point X in the world coordinate, let its projection onto the ith IR image be p!” and that onto the ith RGB

image be p{. The pinhole imaging process can be formulated as:

where C;, and C, are the image coordinate system of the RGB and IR cameras, respectively, [R§

P;:r =K, [Rl

1/

T]x ©)

pL = K [RLTI]X, ®)
where K;, and K, are, respectively, the intrinsic camera matrix of the RGB/IR camera as defined in
Equation (3). The radial distortion and tangential distortion are modeled as in Equations (1)—(2). In light

of Equations (4)—(6), the rotation matrix R calculated according to
the ith image can be written as:

and the translation matrix T,

ir2c ir2c

[Rip0 T}

ir2c’ *ir2c

] = [RirR;'Tir_RirR;TC]/ (7)

where [R;,T;.],[R.T] are assigned as the extrinsic parameters of the ith image. Thus, for each RGB
and IR image pair with conjunct checkerboard corner observation, [R;,. T;s.] can be calculated.
To obtain the optimized [R;,,T;,, ] utilizing the whole calibration image set rather than using a single

image, the pixel projection errors minimization process is illustrated as in Equation (8):
min) _ wi||pj, — Pl + wellpe — PEl, ®)
i

where [:lr and [;C are the detected checkerboard corner in the ith IR and RGB image, respectively.
The p!. is calculated as in Equation (9):

. Ri Ti
Pl = K[R; R

ir2c ’Til‘ZC] X. (9)
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The w;,, w. are the weights of the projection errors of the IR images and RGB images, which
are determined by the resolution ratio of the IR and RGB cameras. The RGB image size is
1920 x 1080 pixels and the focal length of the camera (f. ) is about 1047 pixels. The IR image size is
512 x 424 pixels, and the focal length of the camera (f;, ) is about 360 pixels. The layout of the IR and
RGB camera inside the Kinect V2 is shown in Figure 4. According to the similar triangle principle, the
ratio of the Res;,». and Res;, can be formulated as:

Resjyoc/ Res;y = ff/fir‘ (10)

Res;, is set to be the baseline; that is, 1. f. and f;, are set as 1047 pixels and 360 pixels,
respectively. Res;p., which means the number of pixels that one IR pixel projected on the color
image, can be calculated as Res;;p, = Res;, fc/ fiy = 2.91. The result means that there are 2.91 color
pixels corresponding to 1 pixel on the IR image. Thus,w, is set as 1 and w;, is set as 2.91, which
means 2.96 pixel error in a color image is considered as the same as 1-pixel error on an IR image.
Levenberg-Marquardt optimization is used to minimize Equation (8) to find the best relative placement
parameters [R,,,.,T;,.] between the IR and RGB cameras.

ir2c¢’ ~ir2c
IR camera
Res,,,,
Res;, ,
I
S !
e
S :
® IR camera
RGB ® RGB camera
camera
(a) (b)

Figure 4. Determining the weights of the projection errors according to the IR and RGB image resolution.
FOV: field of view. (a) Overlapped FOV of the IR and RGB cameras (Front view); (b) Top view of the
layout of the IR and RGB cameras.

3.2.2. Depth Calibration

The ToF-based Kinect V2 is an active imaging system that uses optics to focus the emitted IR
lights onto the chip to generate the range measurements. In spite of the typical optical error sources
(e.g., shifted optical center and lens distortion) that can be corrected by the abovementioned geometry
calibration, there are several other error sources that will affect the accuracy of its 3D measurements.
A detailed review is given by [36]. The listed error sources of the ToF camera (e.g., Kinect V2) include
temperature drift, multi-path effects, systematic distance error, intensity-related distance error, etc.
Major parts of the error sources are environment-related (e.g., intensity-related distance error), and
thus cannot be solved through calibration processes. Existing research on depth calibration of the ToF
RGB-D camera mainly deals with the systematic range bias, also known as the wiggling error [7,9,49,50].
The depth calibration proposed in this paper is a two-step process: (1) Infrared ray correction solves the
correct range measurements to 3D point clouds transformation according to the geometry calibration
results to remove the optical-related errors affecting the final point clouds; (2) Range biases are modeled
with pixel-wise spline line functions to correct the error along the range measurement.

(1) Infrared ray correction

A depth map which stores the range measurements in polar coordinate system is the raw output
of a ToF RGB-D camera. The 3D point clouds that are required in applications such as indoor mapping
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are actually transformed values represented in 3D Cartesian coordinate system. The transformation
applies the perspective projection relationships between the object points in the world coordinate
and corresponding imaging pixels on the image plane. Thus, it is related to the camera’s intrinsic
parameters. This transformation of the Kinect V2 is predefined by the manufacturer in a form of
mapping function provided by the official/open source SDK, and is in accord with the factory camera
intrinsic calibration results. However, because of the mechanical differences in the manufacturing
process, the predefined transformation/camera intrinsic calibration is inaccurate to individual sensors.
Therefore, we recalculate the transformation according to the intrinsic parameters estimated by the
abovementioned geometry calibration so that its infrared ray direction coincides with the calibrated
camera model before further range errors correction.

For a pixel [u, v T, the ray direction is defined by its normalized undistorted coordinate [x,, y,] in
the image coordinate system that is calculated by the intrinsic parameters (ki, k2, k3, p1, p2, fx, fy, 1o, Vo)
of the camera following Equations (1)—(3). The range measurement is denoted as R. The transformation
between the ranges and the 3D point clouds can be written as Equation (11), following the perspective
projection principles:

]T

Xre = XuZre = XuS(R + Rpigs)
Yre = YuZre = YuS(R + Ryigs) (11)
Zre = S(R + Rbias)

where Ry, is the range biasand s = 1/4/x% 4 y2 + 1 which is a normalization factor. Ry, is a small value
with respect to the measured range R, and is thus considered as zero in the transformation calculation.

(2) Range bias correction

The main systematic errors = of a ToF sensor (including Kinect V2) is the systematic wiggling
error that moves the range measurements toward or away from the sensor [49]. The Kinect V2 suffers
from this kind of error in its range measurements because it calculates the distances from the phase
difference of the returned signal. The reference signal is based on the theoretical assumption of a
sinusoidal signal shape. Due to the limited electronics, the shapes of the modulated signals are not
exactly sinusoidal, and in reality contain odd harmonic components. As a result, range bias appears
as shown in Figure 5 (left column). The systematic wiggling range bias Ry;,s has been proven to be
related to the object distance R and spatial distribution of the pixel location (x, y) deriving the range
measurement on the image plane [9,50], and thus the range bias can be formulated as:

Rpigs = f(xr Y, R)‘ (12)

Existing studies on correcting the systematic wiggling error of the ToF sensors Ry;,;s mainly
focus on modeling the range bias of all the measurements using a single global B-spline function [67]
or clustering the measurements into groups in order to model the biases using multiple B-spline
functions [50] on different clusters. ToF cameras including the Kinect V2 are working under active IR
illumination. Because of the IR light cone, the illumination of the scene is not homogeneous, so the
range bias at each pixel is different. In this context, the range biases are considered per-pixel unique
and independent. Thus, we proposed to fit the biases with pixel-wise B-spline functions through a
training scheme. The range bias of all the pixels on the image plane at different ranges can be written
as a range bias matrix Rp;,sMatrixs:

f(x,y1,R) ... f(xw,y1,R)
RbiasMatrixs = { |R S (dmin/ dmax)}r (13)
fe,ynR) - f(xw,yn R)

where w, h are the IR image width and height, respectively. dyin, dmax are the minimum and maximum
validated measuring range (0.5 m, 4.5 m). Each matrix element R, Matrixs(m, n) which is the range
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bias of pixel location (m, n) at different ranges (R) is fitted with a B-splines function Bspline,,(+), as
written by Equation (14):

Ry;sMatrixs(m,n,R) = f(m,n,R) = Bsplineyn(R) R € (dmin, dmax) - (14)

Thus, in light of Equations (12)—(14), taking R as the independent variables, R, ;.. Matrixs can be
rewritten as a matrix of continuous B-splines functions (BSM(+)) as in Equation (15).

Bspline11(R) ... Bspliney (R)
BSM(R) = Ry;,sMatrix(R) = : : R € (dmin, dmax) - (15)
Bspliney,(R) --- Bspliney,(R)

To solve the w - h B-splines functions in Equation (15), range errors were measured at several
discrete distances (R) in a controlled environment to minimize other error sources, such as temperature
drift (warm-up time: 30 min). To estimate the range biases, a wall was chosen as the planar observation
target, as proposed by most calibration studies [9,50]. The wall was observed by the Kinect V2 at
different distances from 0.818 m to 2.674 m, with regular step equal to 0.116 m. At each distance,
100 data frames were captured and averaged to minimize the influence of the random noise on the
range measurement to obtain a reliable representative frame of the wall at the observed distance.
The acquired range measurements were modeled as a plane through a RANSAC approach [68].
The distance between the range measurement and the fitted plane along the ray was taken as the range
errors/range biases. The observed range errors were thus taken as the range biases and then used
to fit B-splines functions at each pixel location. Figure 5 shows the range bias correction at different
pixel locations (along the diagonal of the depth map) utilizing pixel-wise B-spline functions. The range
biases before the correction (Figure 5, left row) were not uniform and randomly distributed around the
statistically estimated distance, showing a wide range of variance. While, after correction (Figure 5
right row), the range biases were corrected by pixel-wise B-splines functions so that the distributions of
the biases were zero-mean Gaussian-like. However, the range bias correction process does not change
the case that corner pixels are less accurate than the center ones (Figure 5 right row).

After the range bias correction, the wiggling range offsets were removed and the error distribution
represented characteristics of a zero-mean Gaussian. The correction enhanced the data quality derived
from the Kinect V2 ToF sensor and thus develops its potential of being better adopted in applications
such as close-range archaeology modeling [9] and indoor SLAM [10], where high depth accuracy is
essential. Once the individual geometry and depth calibration of the Kinect V2s were completed, the
exterior orientation parameters (EoPs) of the Kinect V2s in the RGB-D sensor array were calculated in
a coarse-to-fine approach.
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3.3. Extrinsic Calibration of RGB-D Sensor Array

The point clouds from individual Kinect V2s are in their own 3D Cartesian coordinate system
defined by Equation (11). In order to fuse the three individual data streams from the Kinect V2s,
the EoPs of the Kinect V2s with respect to each other need to be solved. The three Kinect V2s of the
proposed sensor array were mounted on a rig (shown by Figure 1) through fixing screws on the bases
of the sensor. Because of the mechanical error and the flexible mounting base of the Kinect, the relative
pose of the sensor cannot be accurately measured beforehand. Thus, we propose a coarse-to-fine
extrinsic calibration method to solve the relative poses of the Kinects in the RGB-D camera array.
The proposed method is twofold: (1) a calibration field equipped with sparse high-reflectance markers
is set up and measured using a high-precision terrestrial laser scanner (TLS), and the coarse EoPs of
the Kinects are calculated through control marker pairs in RGB-D and laser point clouds; (2) the coarse
EoPs are then refined by a variant of ICP which minimizes the distances between the points clouds
from each of the Kinects and their corresponding nearest points in the TLS point clouds to find the
optimal transformation parameters.

The Cartesian coordinate system of the RGB-D point clouds derived from the horizontally placed
RGB-D camera is taken as the reference of the other two Kinects. The coordinate transformation
between the upward (C,), forward (Cy), and downward (C;,) camera in normalized coordinates can be
described as in Equation (16). The C; which originated at the principle point of the IR camera of the
forward Kinect is taken as the reference coordinate frame of the array:

Cy = RT; - C; = RT,C,, (16)

where RT1/RT; is a 4 x 4 transformation matrix that rotates and translates the coordinate system of
the upward and downward RGB-D cameras to the forward RGB-D camera reference frame. At least
three pairs of conjugate points are needed to estimate a single coordinate transformation formulated by
Equation (16). A typical indoor scene was chosen as the calibration field to make the process practical
and easy to set up. Control point patterns made from rough rubber and smooth high-reflective plastic
that guarantee high significance and distinctness in both point clouds and images were placed in the
scene. The geometry of the calibration field was collected using a TLS Riegl VZ-400 in the form of
dense point clouds and taken as the ground truth. Let C; be the reference frame of the TLS point
clouds. The transformation of the coordinate system of the three RGB-D cameras to C; is formulated as
Equation (17):

Ct = RTy,Cp = RT@Cp = RTcC. (17)

For point X, in Cp, its conjugate point X; in C; is calculated as Equation (18).
Xt = RTpXp (18)

To solve the transformation between the C;, and C; (RTy,) in Equation (18), conjugate control point
patterns in laser point cloud and RGB-D point clouds are chosen, and singular value decomposition
(SVD) [69] is applied to calculate transformation parameters using the picked control point pairs.
The transformation between the C;, C¢(RTt,) and C,, C4(RTy) is solved in the same manner.

The precision of the registration is not enough with only the manually measured reference
target [36,70]. The density of the RGB-D point clouds are low compared to the TLS point clouds.
The precision of the manually selected control point is limited, especially in RGB-D point clouds.
The number of markers used as the control point targets are confined by the space of the calibration
field, and thus are sparsely distributed. Moreover, affected by the multi-path interference effects [71]
and intensity-related depth error, the center points of the control point patterns are deformed in RGB-D
point clouds derived from the ToF camera. In all, it is difficult to achieve high-precision extrinsic
calibration through a small number of handpicked control targets. However, the calculated results
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(RT§,, RTg,, RT§,) can be taken as the initial transformation to roughly align the RGB-D point clouds
and the TLS point clouds for further refinement.

In this case, redundant measurements are required to reduce the coarse calibration errors. In this
study, to refine the coarse transformation, a variant of standard ICP is proposed. It minimizes the
distances between the RGB-D point clouds and their corresponding nearest points in the TLS laser
point clouds, Considering the raw point clouds (Pycp_p,
points (CPrp_p, CP LS
written as Equation (19):

) as well as the manually picked control
L %

), and thus finds the optimal transformation parameters. The refinement is

RT(—argRr;un{ Zw,||n1 (RTPigp p— Pl )l+2 Zw]||n] (RT-CPlgp p—CPL) I}, (19)

where n;, n; is the normal vector at P;LS, CP%'LS ; wi, w; is the weight of conjugate point pair

(Picp_pr TLS) (CP}{GB D CPTLS) and calculated as the dot product of the unit normal vector at

—>
— . C C
each point w;= n pi n pi, Wi= " cpl n oy RT},, RT.)

RGB-D TLS RGB-D TLS

calculated from the conjugate control point in RGB-D and TLS point clouds provide a good initialization
for the ICP algorithm to ensure stable convergence. After initializing, the ICP variant includes the
following two steps: (1) Find the correspondent point in the two point clouds. The indoor scene is
mainly composed of sets of planes, and thus minimal point-to-plane distance [72] is chosen as the
matching criteria. The closest point search process is accelerated utilizing KD-tree. (2) Minimize
the distance between matched point pairs to solve the transformation. In the minimization step, the
proposed error function (Equation (19)) which is a modification of the originally ICP error function
is minimized with adjustable weights of the raw point clouds and the control points to acquire the
optimal transformation. The weight A is empirically set to 0.5, which means that the control targets
and the raw point clouds contribute equally in the minimization process. The abovementioned two
steps are iteratively repeated until convergence, resulting in the desired transformation.

The ICP variant refinement is applied for each of the RGB-D cameras in the array, thus the refined
transformations (RTf,, RTf , RTE) are solved. The desired transformation RTq, RT; can be written as
Equation (20):

. The coarse transformations (RTf,,

{ RT; = RTf, 1. RTf, 20)

RT, = RT{, 1 RTf,

The relative EoPs of the three Kinect V2s in the array are finally calibrated into a common reference
frame. The individual three RGB-D data streams are co-registered for efficient data acquisition.

4. Experiments and Analysis

4.1. Intrinsic Calibration Results of Single RGB-D Sensor

A 5 x 7 checkerboard pattern with voxel size of 0.03 m was used in the optical-related geometry
calibration of the RGB-D camera (Figure 6) following the proposed method. In total, 1041 pairs of RGB
and IR images were collected for the calibration of the three Kinect v2s, as listed in Table 2. The sync
images stand for simultaneously collected color and infrared image pairs, and are used for the conjunct
calibration of the RGB and IR camera that solves the relative pose between them. Because of their different
FOVs, it is difficult to maintain good checkerboard coverage in both the IR and RGB images using the sync
images. Thus, separate datasets are used for the IR/RGB camera intrinsic calibration and the estimation
of the relative pose parameters between them. The calibrated intrinsic parameters of the three pairs of
IR/RGB cameras are shown in Table 3. The pixel projection errors of the detected checkerboard corners
are used to evaluate the accuracy of the calibration results. It is also taken as the criteria to determine
whether the corresponding images should be included in the next iteration of the calibration process, in
order to identify the outlier caused by image blur. The projection error threshold is set to 1 pixel to detect
the outliers. The accuracy of the optical-related geometry calibration is shown in Table 4.
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Figure 6. Color image (left, in grey scale) and IR image (right) for calibration with 5 x 7 x 0.03
checkerboard pattern.

Table 2. Image number for optical-related geometry calibration.

Sensors IR Image Color Image Sync Image
Sensor #1 105 112 112
Sensor #2 125 131 133
Sensor #3 109 106 108

Table 3. Calibrated intrinsic parameters of the IR/RGB cameras.

RGB Camera IR Camera
Upward Horizontal Downward Upward Horizontal Downward
fr(Pixel) 1.0476 x 103 1.0441 x 103 1.0496 x 103 3.5898 x 102 3.6303 x 102 3.6079 x 102
fy(Pixel) 1.0464 x 103 1.0461 x 103 1.0493 x 103 3.5925 x 102 3.6396 x 102 3.6104 x 102
i 9.3196 x 102 9.4695 x 102 9.4030 x 102 25353 x 102 2.4947 x 102 2.5407 x 102
v 5.3339 x 102 5.3738 x 102 5.4417 x 102 1.9781 x 102 2.1056 x 102 2.0385 x 102
ki 3.8126 x 1072 4.4726 x 1072 3.9747 x 1072 8.5110 x 1072 7.0900 x 10~2 9.6235 x 1072
ko —4.4836 x 1072 —55681 x 1072 —4.5250 x 1072 —2.7264 x 1071 —23734 x 1071 —3.2029 x 10!
k3 1.0454 x 102 1.4570 x 1072 45968 x 1073 1.2137 x 107! 7.8478 x 1072 1.7748 x 107!
P —4.4198 x 1073 6.1033 x 1073 25611 x 1073 —3.0022 x 1073 3.0057 x 1073 —2.5319 x 1073
P2 —7.0858 x 1073 —2.7240 x 107*  —5.6884 x 1073  —2.2251 x 103  —5.8013 x 10~*  1.3550 x 103

Table 4. Pixel projection errors of the optical-related geometry calibration.

Max Residual Error RMSE

Color #1 0.8563 0.1830
IR #1 0.3793 0.0826
Color #2 0.9986 0.1644
IR #2 0.3114 0.0695
Color #3 0.8071 0.2377
IR #3 0.3634 0.0909

To reduce the range measurement noise inherent to the sensor, an amount of successive data
frames from the Kinect were averaged to deliver the depth map used in the following calibration
process. Figure 7a shows the original range errors distributions rendered in color of a random selected
depth map frame at 1.232 m. The depth map frame generated by averaging 100 successive frames
is depicted in Figure 7b. The salt-and-pepper-like noise on the single frame were reduced after the
averaging procedure. Figure 7c illustrates the observed standard deviations along the horizontal center
line of the depth map by averaging 20 successive frames (blue) and 100 successive frames (red). It is
learned from the statistics that increasing the frame amount makes the range errors uniform rather than
enhancing the precision. Similar conclusions can be found in existing studies [73,74]. Considering both
the data quality and data gathering efficiency, the amount of averaging successive depth map frames
was empirically set to 100 frames (3.3 s observation) in the calibration process of this study.
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(c) Color-coded standard deviation calculated using different numbers of successive data frames.

Figure 7. Averaging successive depth map frames to suppress the sensor noise (distance: 1.232 m).
The horizontal /vertical axis and the legend of (a,b) are in pixels and millimeters, respectively.

After the geometry calibration of the individual Kinect V2, the depth calibration process proposed
in Section 3.2 was applied to the three Kinect V2s to correct the range measurements deriving from the
sensor. Figure 8 illustrates the range biases distribution in different view directions before and after
the depth calibration process of randomly selected averaged data frames from one of the three Kinect
V2s. The observation distance was 1.208 m. Range biases greater than 15 mm were taken as outliers
and were not included in the statistical analysis. The statistics of the range biases before and after the
depth calibration are listed in Table 5. As it can be learned from the calibration results: (1) the range
biases were reduced after the calibration; the percentage of low-bias points was much higher than that
before calibration. (2) The originally randomly distributed range biases were corrected so that their
distributions were more uniform. (3) Seldom outliers appeared on the lower-right section of the depth
map. These could be caused by a defect in the infrared image sensor or miscalculations derived from
the OpenKinect drive.
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Figure 8. Range biases distribution averaging 100 successive frames (left) before and (right) after depth
calibration. The horizontal/vertical axis and the legend are in pixels and millimeters, respectively.
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Table 5. Range biases statistics before and after depth calibration (observation distance 1.208 m).

Bias Range <1 mm 1-3 mm 3-5 mm 510 mm  10-15 mm >15 mm

After depth calibration ~ 81.020% 18.899% 0.000 0.081% 0.000% 0.000%
Before depth calibration ~ 36.374% 43.063% 13.441% 6.470% 0.573% 0.081%

4.2. Extrinsic Calibration Results of the RGB-D Camera Array

After the intrinsic calibration of each sensor in the array, the EoPs of each sensor were solved
following the coarse-to-fine calibration method proposed in Section 3.3. Figure 9 illustrates the RGB-D
camera array extrinsic calibration process. The color point clouds from the individual Kinects are
in their own sensor coordinate reference frame. To fuse the three data streams (Figure 9a), extrinsic
calibration of the sensors in the array was applied to generate the final data fusion results (Figure 9c).

Figure 9. RGB-D camera array point clouds before and after extrinsic calibration. (a) Colored point clouds

from individual RGB-D camera. (b) Overlay the individual point clouds before extrinsic calibration of the
sensor array. (c) Overlay the individual point clouds after extrinsic calibration of the sensor array.

The calibration field was built on a typical layout of an indoor scene that was a 2.5 X 2 X 3m
space consisting of two 90 degree intersected vertical walls and horizontal ceiling/floors (Figure 10a).
Twenty high-contrast control targets were mounted on different surfaces facing various directions
in the scene. The control targets were made of low-reflection black rough rubber and high-contrast
smooth white plastic. Thus, the color contrast and the laser reflection intensity contrast were both taken
into account for better significance in color RGB-D and laser point clouds. The snapshots of the control
targets in the color images, TLS point clouds, and RGB-D point clouds are shown in Figure 10b—d.

Each sensor in the array can simultaneously observe more than four high-contrast control targets
that are not coplanar. The reference point clouds (Figure 11a) were collected by a Riegl VZ-400 scanner
with an angle resolution set to 0.02 degrees. The control targets were measured in both the RGB-D
and the TLS point clouds to construct conjugate control target pairs to solve the initial transformation
between the individual sensors in the array, according to the method described in Section 3.3. The coarse
alignment between the reference laser point clouds and the RGB-D point clouds is illustrated in
Figure 11b,e (left column). The details in the overlaying regions between the Kinects in the array after
coarse calibration are illustrated in the first and third picture of Figure 11d. From visual inspection,
the RGB-D point clouds are not blending in the laser point clouds; thus, showing the registration
between the point clouds is not accurate. The misalignments are mainly caused by the imprecise control
target selection, which cannot be overcome due to the limitation of the point clouds density, range, and
reflectance resolution. Therefore, the coarse calibration of the array needs to be improved.

The coarse calibration parameters were used to convert the sensor data from the sensor coordinate
system to the array coordinate system and taken as the initial alignments between the point clouds
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in the next ICP refinement. This initial calibration was further refined according to the ICP variant
algorithm in Section 3.3. Figure 11c,e (right column) show the results of overlaying the RGB-D sensor
array point clouds and the reference laser point clouds after refinement. The 2nd and 4th pictures of
Figure 11d show that the misalignment in the overlaying regions between the Kinects were eliminated
after the refinement. Figure 12 depicts the point clouds registration details before (middle row) and
after refinement (bottom row). It can be learned from the registration results that the refining process
eliminated the major registration errors existing in the coarse calibration step.

(d)

Figure 10. Overview of the calibration field and control targets inside it. TLS: terrestrial laser scanner.
(@) Snapshot of the calibration field; (b) Snapshot of the control target; (c) High-contrast control target in TLS
point clouds colorized by intensity; (d) High-contrast control target in RGB-D data colorized by true color.

(d)

Figure 11. Cont.
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Figure 11. Coarse-to-fine calibration process. (a) Ground truth TLS point clouds collected by VZ-400.
(b) RGB-D point clouds after coarse alignment. (¢) RGB-D point clouds after refinement. (d) Details
in the overlaying regions between the Kinects in the array after coarse calibration (Ist, 3rd) and
fine calibration (2nd, 4th) at location 1 (red rectangle in (a)) and at location 2 (blue rectangle in (a)).
(e) Overlaying the TLS point clouds (rendered in green) and the RGB-D array point clouds (rendered
in red) using (left) coarse and (right) fine calibration parameters.

Figure 12. Details of overlying TLS and RGB-D point clouds in the coarse-to-fine calibration
process. From top to bottom are (1) TLS point clouds; (2) Overlaying using the initial transformation;
(3) Overlaying using the refined transformation.

To quantify the accuracy of the calibration results of the proposed method, the difference in
terms of point-to-point distance between the RGB-D array point clouds and the reference TLS point
clouds were statistically analyzed. For each point in the TLS point clouds, a local plane patch was
fitted according to its neighborhood points, and its normal was calculated. The closest point in the
RGB-D array point clouds along the normal direction was considered as the conjugate point of the
TLS point. The registration error (the Euclidean distance between these two points) was taken as the
calibration accuracy measurement. Figure 13 shows the registration errors rendered in color between
the RGB-D array point clouds and TLS point clouds. The color encoding addresses the value of
the point clouds’ registration error measurements. The error values are represented from blue to
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red. As can be learned from visual inspection, significant registration errors still existed after coarse
calibration (green coded points), and the fine registration eliminated most of the significant errors,
resulting in the final calibration parameters. Table 6 lists the statistical results of the registration errors
in the coarse and fine calibration stages. The RMSE and mean residual error dropped to 0.01 m and
0.005 m after the refinement. The histogram of the registration errors distribution is shown in Figure 14.
The peak of the histogram was found to be close to zero, and 95% of the registration errors were
smaller than 0.025 m. The locations where large registration errors existed were the object edges
or high-reflectance surfaces (e.g., metal surfaces).The Kinect V2 is known deliver inaccurate depth
measurements in those spots [36]. Points on the large areas of the horizontal and vertical plane were
in the low error category. The improvement of the fine calibration process was achieved by not only
considering the sparse control points, but also the whole RGB-D point clouds.
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Figure 13. RGB-D array and TLS point clouds registration errors distribution rendered in color.

0. 000. 0. 000,

(a) Coarse calibration. (b) Refinement.

The legend is in meters.

Table 6. RGB-D array and TLS point clouds registration errors (m).

Max Residual Error Mean Residual Error RMSE
Coarse calibration 0.189 0.008 0.04
Fine calibration 0.185 0.005 0.01

Percentage

002 004 0068 008 0.1 012 014 016 018
Error

Figure 14. Histogram of RGB-D array and TLS point clouds registration errors distribution.
The horizontal axis is in meters.

4.3. Indoor Mapping with the Calibrated RGB-D Camera Array

Typical indoor scenes were chosen for the RGB-D indoor mapping with the calibrated sensor array.
The RGB-D camera array proposed in this paper is not equipped with any position and orientation
sensors such as IMU. To solve the indoor localization problem, the real-time SLAM system of the
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real-time appearance-based mapping (RTAB-Map) [26,75,76] is adopted in this study. The RTAB-Map
is a RGB-D SLAM solution that includes monocular vision odometry based on extracting key-points
in key frames, an incremental appearance-based loop closure detector using bag of words (BoW) to
distinguish whether the current location has been visited, and a global graph optimizer to achieve the
bundle adjustment of the estimated pose parameters according to the found loop. However, RTAB-Map
currently lacks support for three-band sensor array data input. Therefore, only the horizontally
mounted RGB-D camera output stream was taken as the input of the SLAM algorithm; that is to say,
the array exterior orientation parameters were solved by the horizontally mounted RGB-D data frame.
The other two RGB-D data streams were converted to the mapping coordinate system of the RTAB-Map
according to the calibration parameters calibrated in the aforementioned process. Typical indoor scenes’
point clouds collected by the proposed system are illustrated in Figure 15. It can be seen that the
completeness of the point clouds is well maintained (especially the floor and ceiling). Benefiting from
the large field view produced by the calibrated three-RGB-D camera structure, the proposed system
delivers almost three times the data coverage compared with the single RGB-D mapping system.
The workload of the manual operation and the number of the unknown EoPs needing to be solved
by SLAM is reduced three times in the task of acquiring full-coverage 3D point clouds with auxiliary
information (i.e., color) for indoor mapping.

(c) Office.

Figure 15. Point clouds captured by the proposed RGB-D camera array in typical indoor scenes.
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5. Discussion

The RGB-D camera array proposed in this paper aims to improve the data collection efficiency
and completeness of indoor 3D point clouds at low cost. The three Kinect V2s were calibrated
and synchronized for simultaneous data collection. Thus, the collection efficiency of the 3D
point clouds is three times higher than that of a traditional single RGB-D mapping system.
The up-forward-down-looking array design (Figure 1) guarantees a large coverage of the indoor
scenes in each data frame. The proposed calibration method solves the unknown intrinsic and extrinsic
parameters of each Kinect V2 in the array in an easy-to-implement manner. The used calibration
patterns were checkerboard, flat wall, and a calibration field with sparse control point markers.
These are easy to obtain or assemble. The optical-related geometry calibration achieved sub-pixel
accuracy using a total of 1041 images, including separate and simultaneously collected RGB/IR
images. The depth calibration corrected the range biases (wiggling errors) by pixel-wise B-spline
functions. The statistics show that the irregularly distributed range biases were corrected to zero-mean
Gaussian-like distribution after the calibration, thus improving the data quality. The proposed
coarse-to-fine extrinsic calibration process achieved an accuracy of 95% registration errors smaller than
0.025 m when compared with TLS data in the calibration field. Indoor mapping with the proposed
Kinect V2 array was accomplished in multiple locations, proving the efficiency and data-completeness
of the proposed system. To guarantee a large FOV, there were barely any overlaps between three views
of the proposed RGB-D array. Therefore, we tackled the registration problem of three RGB-D point
clouds streams directly using 3D point clouds registration techniques instead of a 2D image registration
method [28] or a local registration method utilizing overlaps [29,30] between the individual RGB-D
point clouds. The advantages are that no specially made calibration board and no overlap of FOV
is needed in the extrinsic calibration process. Further, a complex calibration field filled with dense
control markers is avoided in our proposed method, which is essential if the calibration is done in the
photogrammetric approach. The drawback is that a TLS is needed to setup the reference point clouds.

Despite the advantages that the array improves the collection efficiency and data completeness of
RGB-D point clouds, the array data quality and accuracy should be discussed. The low data quality
region mainly appears at the four corners in the depth maps and the edges in the scene. Figures 7
and 8 depict the error distribution of a single depth data frame. There are clearly dark corners, which
indicates larger range errors. It can be learned from the comparison result (Figures 11-14) between
the RGB-D array and TLS point clouds that the registration errors have three characteristics: (1) High
registration errors are distributed on the edge of the object and highly reflective surfaces. (2) Medium
registration errors are mainly distributed near the wall and ceiling intersections. (3) The rest of the
large areas of the horizontal and vertical plane are low registration error areas.

The “corner effect” is mainly caused by the nonhomogeneous IR illumination. The RGB-D array is
essentially made of three Kinect V2s. The Kinect V2 is built upon the ToF principle, which means that it
is a range finder with active IR illumination. The IR illumination follows a light cone distribution [35],
which is not uniformly distributed. Thus, less-well-illuminated areas (e.g., corners, far objects) deliver
inaccurate depth measurements. Even after the depth calibration in controlled environments proposed
in this paper, light diffraction effect cannot be omitted, and may result in a depth error pattern (Figure 8)
similar to Fraunhofer diffraction [77].

The “edge-effect” is mainly caused by the shadow and multipath effect. In uncontrolled
environments, the Kinect V2 depth measurements are influenced by temperature, material, ambient
light, and multipath effect [36]. The high error distribution at the edges of objects with complex
shape whose local curvature changes severely is caused by a shadow effect [62] in complex edges.
This is the outcome of the different optical axis of the infrared emitter of the infrared camera.
The Kinect V2 suffers from multipath interference, which deviates the depth measurements from
the actual position [71]. The medium error distribution area appeared in the two plane intersection
positions where multipath interference is inevitable, resulting in the loss of accuracy in such scenarios.
Additionally, high-reflectance material cannot be detected by infrared cameras, resulting in data blanks.
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Although inaccurate points existed in the point clouds collected by our array, the proportion of them
was small according to the calibration filed data (<5% with error higher than 0.025 m).

Even though the data accuracy and quality of the Kinect V2 is not as good as laser scanners and
is easily influenced by the scene, the low-cost and ready availability of the sensor make it ideal for
indoor mapping with a low budget. Due to the nature of lower range measurement accuracy of the
ToF sensor, the proposed array cannot be applied to TLS-level data accuracy-demanding tasks such as
indoor cadastral map generation. It is known that the frequent movements of the sensor and longer
task time increases the complexities of the SLAM problem in terms of more unknown pose parameters
and drift, resulting in inaccuracy localization and mapping solution. The proposed RGB-D array only
needs to be moved in the horizontal plane to achieve complete point clouds with fine details, while
the single RGB-D mapping suite needs to rotate the sensor frequently to complete the point clouds
data. Only one data stream in the RGB-D array is currently used for SLAM. However, all three RGB-D
cameras provide individual observation data that are inherently connected. So, the calibrated array
can be utilized for a more robust solution of the localization and mapping problem. Thus, in future
work, RGB-D array SLAM will be addressed to make full use of the three RGB-D data streams.

6. Conclusions

The low-cost, fast, and efficient collection of 3D point clouds data with auxiliary information (e.g.,
color, semantic information) is key to the popularization and development of indoor mobile mapping
technology. Traditional indoor laser scanning trolley /backpacks with multi-laser scanner and IMUs
installed solved the efficient and full-coverage indoor laser point clouds collection to a certain degree.
However, the cost of those mapping systems is quite high and can hardly be replicated by consumer
electronic components. The RGB-D camera is low-cost, but the FOV of a single sensor is narrow;
thus, the collection efficiency and the data coverage are low when compared with laser scanners.
Aiming to tackle the low-cost efficient indoor point clouds collection bottleneck with RGB-D sensors,
after preliminary work, an RGB-D camera array was designed, and the intrinsic/extrinsic geometry
and depth calibration method of the array is presented in this paper. The three RGB-D data streams
are synchronized and gathered by the open source driver OpenKinect. The optical-related intrinsic
calibration that involves the RGB/IR camera model parameters and the relative pose between the RGB
and IR cameras are solved by a homography-based method and by minimizing the weighted RGB/IR
pixel projection errors, respectively. The depth calibration process corrects the default IR camera model
parameters to the intrinsic calibrated solutions to correct the IR ray, and the range bias of the ToF
sensor is solved by pixel-wise spline line functions. The extrinsic calibration is achieved through a
coarse-to-fine scheme that solves the initial EoPs based on sparse control markers and further refines
the initial value by an ICP variant, minimizing the distance between the RGB-D point clouds and the
referenced laser point clouds. The effectiveness and accuracy of the proposed method are evaluated by
comparing the point clouds derived from the proposed prototype with ground truth data collected by
TLS at high density. The optical-related intrinsic calibration achieves sub-pixel accuracy using a total
of 1041 IR/RGB images. The calibrated range biases are zero-mean Gaussian-like distributed, thus
improving the data quality (Bias < 1 mm: 36.374% (before) to 81.020% (after) at 1.208 m). The extrinsic
calibration of the array achieved an accuracy of only 5% of the points captured in the calibration field
are with an error higher than 0.025 m, compared with the TLS data. The overall analysis of the results
shows that the proposed method achieves seamless integration of multiple point clouds from different
RGB-D cameras collected at 30 frames per second, resulting in low-cost, efficient, and high-coverage
3D color point clouds collection for indoor mapping applications.
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