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Abstract: Individual tree crown segmentation from Airborne Laser Scanning data is a nodal
problem in forest remote sensing. Focusing on single layered spruce and fir dominated coniferous
forests, this article addresses the problem of directly estimating 3D segment shape uncertainty
(i.e., without field/reference surveys), using a probabilistic approach. First, a coarse segmentation
(marker controlled watershed) is applied. Then, the 3D alpha hull and several descriptors are
computed for each segment. Based on these descriptors, the alpha hulls are grouped to form
ensembles (i.e., groups of similar tree shapes). By examining how frequently regions of a shape
occur within an ensemble, it is possible to assign a shape probability to each point within a segment.
The shape probability can subsequently be thresholded to obtain improved (filtered) tree segments.
Results indicate this approach can be used to produce segmentation reliability maps. A comparison
to manually segmented tree crowns also indicates that the approach is able to produce more reliable
tree shapes than the initial (unfiltered) segmentation.
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1. Introduction

Airborne Laser Scanning (ALS) is an effective technology to support forest survey, research and
management [1–3]. ALS can provide valuable data on forest structure and composition, in the form of
dense 3D point clouds which can be further processed to create a range of useful products (such as
topographical relief, canopy height, canopy layering, timber volume, canopy fuel characteristics,
stand/edge delineation and deciduous/coniferous proportion).

Individual Tree Crown (ITC) segmentation from ALS data is a nodal problem in forest
remote sensing and many different algorithms have been proposed to address it [4–8]. Errors in
individual tree shape delineation propagate in further processing steps (e.g., timber volume,
biomass and species prediction), so it is important to quantify them. However, the majority of
segmentation algorithms do not directly provide any information about shape delineation uncertainty.
Instead, the evaluation of shape delineation accuracy is usually done by comparing the segmentation
with an independently produced and reliable reference (e.g., manual segmentation and/or field
surveys). However, this approach is limited by the low availability of individual tree shape reference
data over large areas. For this reason, 3D shape delineation accuracy is very often not evaluated
in ITC segmentation studies [9]. Even though independent tree shape validation data may not be
available, quantifying segmentation uncertainty is still necessary. One possible solution is to use
algorithms which compare observed values with model based expectations (geostatistics, for example,
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model spatial autocorrelation as function of range). In addition to providing a prediction uncertainty,
these methods also typically produce better predictions, because they incorporate prior knowledge
about the investigated phenomenon. In the context of ITC segmentation, such approaches involve
modeling the spatial distribution and/or the shape of trees based on prior botanical and ecological
knowledge. Many tree species exhibit an increase in crown geometry variability (heteroscedasticity) as
a function of age (height) and environmental conditions. However, some coniferous species (such as
Spruce and Fir) exhibit less geometric variability and are generally easier to model. For this reason,
model based segmentation algorithms are generally better suited for coniferous forests. Several model
based segmentation approaches have been proposed. Swetnam et al. [10] incorporate an allometric
model based on the metabolic scaling theory into a tree detection algorithm, to improve detection
rates and accuracy. Similarly, Sačkov et al. [11] use empirical allometric relations between tree height
and crown radius, horizontal/vertical spacing rules and height difference criteria to separate adjacent
tree crowns. Pouliot et al. [12], Heinzel et al. [13] and Ene et al. [14] use crown model dependent
rules to locally optimize segmentation parameters. They locally adjust raster Canopy Height Model
(CHM) spatial resolutions, levels of Gaussian (low pass filter) smoothing or local maxima search
radius (for tree top detection). Pirotti [15] and Holmgren et al. [16] both use a template (based on
crown radius-height ratio relations) matching approach to detect trees and avoid undersegmentation.
Andersen et al. [17] and Lähivaara et al. [18] use a simple solid of revolution (ellipsoid) model to
approximate different tree shapes. Using the Bayesian statistical framework, they then determine
an optimal fit (i.e location and shape parameters) by estimating the model parameters for each tree.
Zhang et al. [19] optimize a stochastic model which includes both the spatial distribution and the tree
shape (with crown radial symmetry and area criteria). Although they do not focus on model based
segmentation, Ko et al. [20] propose an indirect method to assign a segmentation quality index to
ITC segments. They first perform a supervised classification (Random Forest) of tree genera based
on geometric features derived from the ITC segments. Then, they assign a quality index to the ITC
segments based on their class ambiguity (correct classification rate).

In this article, a method which models tree shape probability directly from the ALS data
(i.e., without the need for a predefined model) is proposed. The method uses the ensemble learning
(model averaging) framework [21–23]. An ensemble is a group of segments which share similar
(geometric and radiometric) features. We make the hypothesis that segments in an ensemble can
be considered as noisy instances of the same tree shape template. By comparing all shape instances
within an ensemble, inconsistencies between the shapes can be detected and an estimate of a probable
underlying tree shape is obtained. The proposed method depends on several assumptions:

• Tree top geometric features can be used as proxies of overall tree shape.
• Tree crowns exhibit approximate radial symmetry.
• Tree growth is approximately vertical.

Under these assumptions, the approach is mainly suitable for coniferous forests. The goals of this
paper are: First, to develop a method to estimate ITC segmentation uncertainty at the point level that
does not rely on validation data. Second, to evaluate how removing points with different degrees of
uncertainty influences the 3D shape delineation quality of the trees.

The following sections present the data and explain the method. The results are then evaluated
and discussed.

2. Materials

The method was tested on a site (cf. Figure 1a) located in northwest Switzerland (46.96035 N,
6.50852 E, 1150 m a.s.l). The site is a uneven-aged coniferous dominated forest plot of ~5 ha.
The central 1.97 ha part of the plot (yellow polygon in Figure 1b) was inventoried with measurement
of approximate tree location, Diameter at Breast Height (DBH) and species by the Neuchâtel forest
service, in October 2015. Results derived from this field inventory are reported in Table 1.
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Table 1. Study site metadata. These attributes refer to the central 1.97 ha area indicated by the yellow
polygon in Figure 1b.

Topography Aspect East-northeast

Slope ~10◦

Forest Plot

Density
(DBH ≥ 12.5 cm)

382
per ha

Basal area
per ha 28.4 m2/ha

Composition
(by count)

Abies alba (38%), Picea abies (33%),
Fagus sylvatica (28%), Acer Pseudoplatanus (1%)

Canopy layering Mostly single layered

ALS data was acquired simultaneously (i.e., camera and LiDAR system mounted on the same
aircraft) with aerial imagery between March and May 2016 over the State of Neuchâtel. The data used
in this study is a subset of the state-wide acquisition. The acquisition metadata (for the study areas) is
presented in Table 2 and the point cloud covering the study site is illustrated in Figure 1b.

Table 2. Airborne Laser Scanning (ALS) acquisition metadata. The measurement configuration refers
only to the three sites used in this study (not the complete ALS acquisition). The echo digitization,
intensity normalization and point cloud classification were done by the data provider.

Platform and
Instrumentation

Aircraft Cessna T206H

LiDAR scanner Riegl LMS-Q1560

Camera Phase One iXA 180-R50

GNSS-Inertial
System

Applanix POS/AV 610
Trimble AP60 with IMU57

Measurement
Configuration

Acquisition
dates 4–5 May 2016

Phenology leaf-off

Sensor to surface range
(mean ± std) 675 ± 38 m

Pulse repetition
rate 800 kHz

Aircraft speed 176 km/h

Min/max scan angle ± 30◦

Median point density
(in forest areas) 30 m−2

Post-Processing

Echo digitization Riegl RiProcess

Ground filtering Progressive TIN densification
(TerraScan implementation)

The return intensity was normalized (by the data provider) with respect to the sensor to surface
range using the formula described in [24]:

In = I ·
(

r
rre f

)2

(1)

where:
In is the normalized intensity;
I is the raw intensity;
r is the range between the sensor and the point;
rre f is an arbitrary constant reference range (1000 m was used here).
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(a) (b)

(c)

(d)

Figure 1. (a) Global and country level context. (b) ALS point cloud (high vegetation only) of the
study site represented with a false color composite (Red channel = ALS intensity rescaled to 0–1 range,
Green channel = aerial image Red, Blue channel = aerial image Green). For leaf-off ALS acquisitions,
this color scheme helps differentiate foliage persistence (red represents persistent foliage and green
deciduous foliage). The yellow polygon indicates the extent of the field survey. (c) False color composite
oblique view of the ALS point cloud (high vegetation only). (d) Side (first row) and top (second row)
view of manually delineated tree examples.
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Using a custom built (Matlab based) application, the 3D tree shapes were manually delineated
in the point cloud to produce a set of reference segments (cf. Figure 1d). The shape delineation
process involved extracting subsets of the point cloud, visualizing them under different viewing
angles and progressively removing points until a single tree was visible. In cases where trees were in
very close proximity, horizontal cross sections were also used to separate adjacent crowns. Segments
with an ambiguous shape (e.g., when there was a suspicion of the presence of multiple trees in a
segment) were flagged and excluded from the validation dataset. The resulting reference dataset
contained a total of 940 tree segments (754 coniferous, 122 deciduous and 64 unidentified or dead
trees). These reference samples include a variability of height (age) and shape. Only the coniferous
trees were used for validation.

In this study, the ensembles were built using data covering the study site and two additional sites
in the same region. Three criteria are important when selecting/preparing data to build ensembles:

• Most of the tree shape variability for the species (spruce and fir here) and heights of interest
should be covered.

• It is expected that the reliability of the average shape estimation increases with the number of
observations. So, multiple examples of the same tree shape should be available to ensure an
ensemble size that allows determination of the average shape unambiguously.

• If radiometric features are used to build the ensembles, all sample areas should be in the same
phenological stage and echo intensity must be rescaled to a common range.

3. Methods

3.1. Overview

The proposed workflow starts with a set of ITC segments (obtained with any generic segmentation
algorithm, such as marker controlled watershed [25–27]). Each segment is then characterized by a
set of descriptive (geometric and radiometric) features and matched with similar segments to form
ensembles (groups). Within each ensemble, the 3D alpha shapes (concave hulls) [28] derived from
the point cloud segments are mutually overlaid to detect common regions and determine shape
probability. A threshold is then applied to the probability, to filter out erroneous points from the
initial segmentation.

The five main steps of the method are summarized in Figure 2 and each step is explained in the
following subsections. The method was implemented in Matlab r2016b using custom functions part of
which were included in the Digital Forestry Toolbox [29].

0 1 Pr > Prmin

Pr

STEP 3
Build similar

shape ensemble

STEP 4
Compute shape

probability

STEP 5
Filter points by 

thresholding probability

STEP 2
Compute upper
crown features

STEP 1
Initial

Segmentation

Shapes 1..N

Figure 2. Main steps used to compute shape probability and subsequently filter the initial segment shape.
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3.2. Step 1-Initial Segmentation

A 0.4 m resolution raster Canopy Height Model (CHM) is first derived from the classified 3D
point clouds (for the three sample sites). The CHM is smoothed using a Gaussian 6 × 6 lowpass filter.
Tree top (local maxima) detection is then performed using a variable radius (r) convolution window
defined by a function of the pixel metric height (h):

r(h) = 0.5 + 0.25 · ln(max
h

(h, 1)) (2)

The local maxima are merged and the highest point is retained, if separated by less than the 3D
adjacency distance defined by function dadj(h):

dadj(h) = min
h

(0.5 + 0.5 · ln(max
h

(h, 1)), 4) (3)

The choice of a logarithmic variable radius in Equations (2) and (3) is based on the
observed relationship between upper crown radius and tree height in the region of interest.
However, this relationship may vary significantly between forest types [30] and other variable radius
functions such as those proposed in [31–33] may be used in place of Equations (2) and (3) .

The detected local maxima (cf. Figure 3a) are subsequently used as markers (i.e., seed points) in
watershed segmentation [25–27] to label individual tree crowns (cf. Figure 3b). The CHM labels are
then assigned to their nearest 3D points, to obtain a 3D labeled point cloud. The presence of partial tree
crowns would bias the shape probability estimates. Thus, segments located within 10 m of the edge of
the point cloud are excluded. For the same reason, the segmentation parameter values (regardless of
the segmentation algorithm) should be set to avoid over-segmentation.

(a) (b)

Figure 3. (a) Tree top detection results with variable size convolution window. (b) Raster CHM
segmentation obtained with the marker controlled watershed algorithm.

3.3. Step 2-Computing Upper Crown Features

In order to compare and group tree shapes in step 3, a set of descriptive features is required.
Thus, the total height h, upper crown (i.e., points located in the upper 15% of the crown) convex volume
v and median return intensity i (normalized by the [0.05, 0.95] quantile range) are computed for each
segment. These upper crown features were chosen because for trees with a conical shape, they are less
affected by poor segmentation than features that describe the lower parts of segments (cf. Figure 4a).
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(a) (b)

Figure 4. (a) The total height (h), the 3D convex alpha shape (in red) volume (v) and the median
intensity (i) of points located in the top 15 % of the tree crown are used as features because they are less
affected by poor segmentation. (b) The single region 3D alpha shape (outlined in blue) derived from
the point cloud segment.

3.4. Step 3-Building Shape Ensembles (Grouping Similar Segments)

First, the XYZ point coordinates of each segment i are normalized so that the segment origin is
vertically aligned with the tree top:

XYZ(i)
norm = XYZ(i) − J · XYZ(i)

root (4)

where:

N is the number of points in segment i;

XYZ(i)
norm is a N × 3 matrix containing the normalized 3D point coordinates of segment i;

XYZ(i) is a N × 3 matrix containing the original 3D point coordinates of segment i;

XYZ(i)
root is a 1 × 3 matrix containing the root coordinate of the segment i (i.e., the projection of the

tree top on the terrain model);
J is a N × 1 vector of ones.

This coordinate normalization is required to overlay (stack) all shapes within an ensemble.
Then, the single region 3D alpha shape [28] (cf. Figure 4b) of each segment is computed and any holes
in the shape are filled. Subsequently, ensembles (cf. Figure 5) are constructed by grouping segments
which share similar geometric and radiometric features (computed at step 2). Formally, given a
segment i with total height hi, upper crown convex volume vi and upper crown median intensity ii,
all segments j with j ∈ [1− Nsegments] which fulfill the criteria listed in Table 3 form the ensemble i.

Table 3. Criteria used to create ensembles (groups) of similar segments.

Feature Criteria

Total height hi − 0.5 ≥ hj ≤ hi + 1.15
Upper crown convex hull volume vi ≥ vj ≤ 1.2 · vi

Upper crown median intensity ii − 0.2 · irange ≥ ij ≤ ii + 0.2 · irange

The tolerances in terms of height, upper crown volume and median intensity differences used
when matching segments are set empirically. There is a trade-off between these margins and the
ensemble sizes. Tighter tolerances result in smaller ensembles and thus larger datasets are needed to
reach the minimum required ensemble sizes.
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(a) (b)

Figure 5. Example of an ensemble containing 69 overlaid segments with similar features. Dense point
areas indicate high shape probability. (a) Side view (b) Top view.

3.5. Step 4-Computing Shape Probability

The shape probability is defined as the number of times a point was included in the alpha shapes
of the ensemble divided by the ensemble size N (i.e., number of matching segments), as illustrated
in Figure 6. For each set of points P0 which form a segment, the shape probability Pr(P0 ⊆ S0..N) is
given by:

Pr(P0 ⊆ S0..N) =

∑N
i=0 P0⊆Si

N if N ≥ Nmin

0 otherwise
(5)

where:

Si is the alpha shape of segment i;
S0..N is the set of N alpha shapes with features similar to S0;
N is the number of segments in the ensemble i;
Nmin is the minimum number of segments per ensemble required to compute a reliable shape
probability (10 was used here).

Thus, regions which are common to many alpha shapes in the ensemble obtain higher probability
scores than regions that are only visible in few segments.

3.6. Step 5-Filtering

The points from the initial segments can be filtered by applying a threshold (Prmin) to the shape
probability. The filtered point subset is defined by:

IF(Pri) =

{
1 if Pri ≥ Prmin

0 otherwise
(6)

where:

IF is the indicator function which produces the filtered point subset;
Pri is the shape probability associated with each point in segment i;
Prmin is the minimum probability required to retain a point in the segment.

An optimal value of Prmin can be set by visually examining the effect of applying different
threshold values to a (height stratified) sample of the segments.



Remote Sens. 2018, 10, 335 9 of 16

Not a subset (⊈)

Subset (⊆)

P0 ⊆ S 0 P0 ⊆ S 1 P0 ⊆ S 2 P0 ⊆ S N

0 1

Alpha shape (Si)

Figure 6. Each point cloud segment P0 is overlaid with the S0..N alpha shapes of similar segments
(including itself). Regions of the point cloud segment which occur more frequently inside S0..N obtain
a higher shape probability. Thus, inconsistencies between the shapes in the ensemble can be detected.

4. Results

In this section, we apply the proposed method to the described study site and evaluate its
performance in terms of tree detection rate and 3D shape delineation accuracy.

4.1. Validation Metrics

The unfiltered (initial) and filtered shapes were compared to the manually delineated reference
shapes. The delineation performance (cf. Figure 7) was evaluated (for detected trees only) in terms
of recall r (Equation (7)), precision p (Equation (8)), F-score F (Equation (9)) and Intersection over
Union IoU. The IoU metric was applied to assess the point pattern overlap IoUp (Equation (10)),
the volumetric (3D) overlap IoUv (Equation (11)) and the horizontal areal (2D) overlap IoUa

(Equation (12)). IoUv is defined as the ratio of the intersection 3D alpha shape volume vI over
the union 3D alpha shape volume vU (cf. Figure 7). The value of α is set by computing the single
region alpha shape of the union point set. The same α value is subsequently used when computing the
intersection alpha shape. Similarly, IoUa is defined as the ratio of the intersection 2D alpha shape area
aI over the union 2D alpha shape area aU (cf. Figure 7). The correct detection rate (d) was computed as
the proportion of segments with a delineation IoUp > 0.5 (i.e., a segment is considered to be detected if
more than half of its points overlap with the reference points).

r =
nTP

nTP + nFN
(7)

p =
nTP

nTP + nFP
(8)

F = 2 · p · r
p + r

(9)

IoUp =
nTP

nTP + nFN + nFP
(10)
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IoUv =
vI
vU

(11)

IoUa =
aI
aU

(12)

False Positive (FP)

False Negative (FN)

True Positive (TP)

3D / 2D Union alpha shape

3D / 2D Intersection alpha shape

Reference shape

Side view (3D) Top view (2D) 

Segment
points

Figure 7. Individual segment delineation accuracy. The reference shape (in gray) represents the extent
of the manually delineated tree. For visualization purposes, the boundaries of the union (in orange)
and intersection (in blue) alpha shapes are spatially separated from the points. In reality, the alpha
shape boundary passes though the boundary points.

Recall indicates if the delineation tends to include all the tree points, precision indicates the
fraction of included points that are correct and F score is a composite (harmonic mean) of both metrics.
The pointwise (IoUp), volumewise (IoUv) and areawise (IoUa) IoU scores indicate how well the tested
shape overlaps with the reference shape. The volumewise IoU (IoUv) and areawise IoU (IoUa) are
sensitive to the spatial point distribution (which defines the shape) while the pointwise IoU (IoUv) is
more sensitive to the number of overlapping points.

4.2. Performance

The detection metric and the median of each delineation metric (except F score) for different
values of Prmin are presented in Figure 8. The same metrics for Prmin = 0.25 are also reported in
Table 4 stratified by height category. Figure 9 provides boxplots of the delineation metrics. Figure 10a
illustrates the resulting probability map, Figure 10b provides examples of individual tree shape
probability and Figure 10c shows the resulting filtered segments.

A one-sided Wilcoxon signed-rank test was used to compare the delineation before and after
filtering with Prmin = 0.25. This test was chosen because the before/after delineation scores are
dependent and not normally distributed. In this test, the alternate hypothesis is that the score values
after filtering minus those before filtering come from a distribution with a median greater than 0. Using
a 0.5% (i.e., α = 0.005) significance level, the alternate hypothesis was accepted for all the delineation
scores except recall. In other words, these delineation scores were significantly higher after filtering.
The associated p-values of the comparison tests were p: 1.2176× 10−68, r: 1, F: 1.4491× 10−6, IoUp:
2.4291× 10−6, IoUv: 9.6308× 10−7, IoUa: 4.7761× 10−16.
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Figure 8. Sensitivity of the median validation scores to Prmin. Notice that the delineation scores are
undefined when the detection rate reaches 0.

Table 4. Comparison of detection and median delineation performance (before|after) filtering the
segments with Prmin = 0.25. Scores were rounded to the nearest second decimal. obs: number of
observations, d: detection rate, p: precision, r: recall, F: F-score, IoUp: pointwise intersection over
union, IoUv: volumewise intersection over union, IoUa: areawise intersection over union.

Detection d
Delineation

Height [m] Obs. p r F IoUp IoUv IoUa

0 ≥ h < 10 118 0.58 0.49 0.65 0.92 0.96 0.83 0.74 0.84 0.58 0.73 0.47 0.65 0.58 0.73
10 ≥ h < 20 182 0.57 0.51 0.60 0.93 0.94 0.81 0.71 0.81 0.55 0.69 0.48 0.64 0.53 0.71

h > 20 454 0.59 0.51 0.68 0.95 0.96 0.84 0.75 0.87 0.60 0.76 0.51 0.69 0.56 0.77

Overall 754 0.58 0.51 0.65 0.94 0.96 0.83 0.74 0.85 0.58 0.74 0.49 0.67 0.56 0.75

Figure 9. Boxplots of delineation scores before and after filtering the segments with Prmin = 0.25.
All the delineation scores except recall are significantly higher after filtering. It can also be noted that
the filtering reduces the score spread.
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(a)

(b)

(c)

Figure 10. (a) Shape probability map (high vegetation only). (b) Side (first row) and top (second row)
view of shape probability for six example segments. Notice that segment n◦3 has null probability.
This is explained by the fact it is a particularly high tree and there was an insufficient number of similar
trees to form a reliable ensemble. (c) Filtered segments using Prmin = 0.25.
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5. Discussion

The results indicate that the proposed method can produce an estimate of tree shape delineation
uncertainty. Shape probability at the point scale can be aggregated at the segment scale to produce a
mean or median shape probability providing information on individual segment shape uncertainty.

In the presented study case, when using Prmin values ranging from 0.1 to 0.6, the IoU scores are
improved with a peak at Prmin = 0.25. The precision score is increased and the recall score is reduced
for all values of Prmin. The detection rate is also reduced for all values of Prmin. This reduction in
detection rate is due to the definition which requires Ioup > 0.5 for a segment to be counted as a
correct detection. The better delineation scores obtained after filtering are due to the combined effect
of removing erroneous points and discarding segments with Ioup ≤ 0.5.

For practical applications over large areas, it is sufficient to compute ensembles based on a subset
of the area which includes most of the tree shape variability and a sufficient amount of redundant
shape examples. By thresholding the resulting shape probability, a set of tree shape templates are
produced. New segments (i.e., outside the sample area) can then be matched (i.e., using upper
crown features) and compared with their most similar shape template to produce an estimate of their
segmentation uncertainty.

The proposed ensemble based filtering method has several advantages. The segmentation/shape
uncertainty estimate can be improved by adding additional observations to the ensembles. The method
is adaptive because it does not rely on predefined allometric rules or 3D model templates.
Moreover, although marker controlled watershed was used to produce the segmentation, any other
automatic or manually delineated segments could be used instead in the first step. Finally, the method
does not require high ALS point densities.

The main drawbacks of the method are its dependency on specific coniferous tree shapes,
the need to use datasets with multiple examples of similar trees and the computational cost. Most of
the computation time is used to compute the single region alpha shapes (~23%) and the shape
probability inclusion tests (~74%). The total time to apply the method for the three sites used in
this study was ~30 min. This computation time may be reduced by sub-sampling the point cloud
(i.e., lowering density) and using fixed values of α when computing the alpha shapes.

Further improvements could involve classification and separation of deciduous and coniferous
trees, before running the algorithm. This separation step could be accomplished using ALS data alone
using intensity (leaf-off), opacity (leaf-off) and/or shape features, for example with the approach
described in [34]. The method is conditioned by the segmentation algorithm employed in step 1.
In the current implementation, marker controlled watershed segmentation is used, thus points located
in crown intersection regions cannot be allocated to a tree with certainty. This limitation could
be improved by using a more sophisticated segmentation algorithm working at the inner crown
level. Additional features could be included to improve the segment grouping step. These could
include RGB or multispectral indices (e.g., from multiple wavelength LiDAR), geometric features
(e.g., crown base height, convexity, surface area, projected area, etc.). In particular, the addition of
crown base height (which can be estimated for example with the approach used in [35]) to the list of
grouping features used at step 3 could possibly improve the shape uncertainty estimate beneath the
crown base. In addition, since it is assumed that coniferous trees exhibit approximate vertical radial
symmetry, additional shape instances could be generated artificially by simply rotating the segments
around the vertical (Z) axis. Finally, the alignment of segments could be improved by using a more
elaborated co-registration algorithm. The segmentation and filtering procedure could theoretically be
repeated and detected trees removed at each iteration until no more detectable trees were left in the
point cloud. Finally, the method may also be employed to automatically create 3D tree shape templates
which can be used in other processing routines.
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6. Conclusions

When working at the individual tree scale, knowing which tree segments are reliable
is fundamental to correctly interpret derived characteristics (e.g., diameter, biomass, species).
However, the problem of directly estimating ITC shape segmentation error (outside validation areas)
has not been thoroughly addressed by the forest remote sensing community. In this article, we have
studied how the ensemble learning framework can be used to estimate shape probability at the point
level for coniferous forests (spruce and fir). Based on this shape probability, it was shown that a range
of minimum probability thresholds can be applied to filter the initial segmentation and produce more
reliable tree shapes.
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Abbreviations

The following abbreviations are used in this manuscript:

ALS Airborne Laser Scanning
CHM Canopy Height Model
DBH Diameter at Breast Height
FN False Negative
FP False Positive
GNSS Global Navigation Satellite System
IoU Intersection over Union
ITC Individual Tree Crown
RGB Red-Green-Blue
TIN Triangular Irregular Network
TP True Positive

References

1. Maltamo, M.; Næsset, E.; Vauhkonen, J. (Eds.) Forestry Applications of Airborne Laser Scanning.
In Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2014; Volume 27.

2. Waser, L.T.; Boesch, R.; Wang, Z.; Ginzler, C. Towards Automated Forest Mapping. In Mapping Forest
Landscape Patterns; Springer: New York, NY, USA, 2017; pp. 263–304.

3. Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.;
Gobakken, T. Lidar Sampling for Large-Area Forest Characterization: A Review. Remote Sens. Environ. 2012,
121, 196–209.

4. Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.;
Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D
Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci.
Remote Sens. 2016, 54, 5011–5027.

5. Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and
Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333.

6. Eysn, L.; Hollaus, M.; Lindberg, E.; Berger, F.; Monnet, J.M.; Dalponte, M.; Kobal, M.; Pellegrini, M.;
Lingua, E.; Mongus, D.; Pfeifer, N. A Benchmark of Lidar-Based Single Tree Detection Methods Using
Heterogeneous Forest Data from the Alpine Space. Forests 2015, 6, 1721–1747.

http://www.waldbau-sylviculture.ch
http://p3.snf.ch/project-136827


Remote Sens. 2018, 10, 335 15 of 16

7. Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkänen, J.; Solberg, S.; Wang, Y.; Weinacker, H.;
Hauglin, K.M.; et al. Comparative Testing of Single-Tree Detection Algorithms under Different Types of
Forest. For. Int. J. For. Res. 2012, 85, 27–40.

8. Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.;
Hirschmugl, M.; Morsdorf, F.; et al. An International Comparison of Individual Tree Detection and Extraction
Using Airborne Laser Scanning. Remote Sens. 2012, 4, 950–974.

9. Yin, D.; Wang, L. How to Assess the Accuracy of the Individual Tree-Based Forest Inventory Derived from
Remotely Sensed Data: A Review. Int. J. Remote Sens. 2016, 37, 4521–4553.

10. Swetnam, T.L.; Falk, D.A. Application of Metabolic Scaling Theory to Reduce Error in Local Maxima Tree
Segmentation from Aerial LiDAR. For. Ecol. Manag. 2014, 323, 158–167.
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