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Abstract: In the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increase
food production while keeping pace with continued population growth. Conservation agriculture
(CA) has been proposed to enhance soil health and productivity to respond to this situation.
Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes and
management practices for CA conditions has been explored using remote sensing tools. They may play
a fundamental role towards overcoming the traditional limitations of data collection and processing in
large scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) and
multispectral indexes were evaluated for assessing maize performance under conventional ploughing
(CP) and CA practices. Eight hybrids under different planting densities and tillage practices were
tested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmanned
aerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution that
did not have any negative impact on the performance of the indexes. Most of the calculated indexes
(Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affected
by tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-images
related to canopy greenness performed better at assessing yield differences, potentially due to the
greater resolution of the RGB compared with the multispectral data, although this performance was
more precise for CP than CA. The correlations of the multispectral indexes with yield were improved
by applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels with
vegetation. The results of this study highlight the applicability of remote sensing approaches based
on RGB images to the assessment of crop performance and hybrid choice.
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1. Introduction

Traditional practices of land preparation involve soil tillage through moldboard ploughing to
soften the seedbed, ensure uniform germination, remove weed plants, and release soil nutrients
through mineralization and oxidation. However, this mechanical disturbance is leading to a decline in
organic matter, an increase of the loss of water by runoff, and, finally, to soil erosion [1]. Together with
increasing threats of climate change, the loss of soil and its fertility is expected to become more critical
for global agricultural production [2]. Over the next century, Sub-Saharan Africa (SSA) is expected to

Remote Sens. 2018, 10, 349; doi:10.3390/rs10020349 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7074-0774
https://orcid.org/0000-0002-1687-1965
http://dx.doi.org/10.3390/rs10020349
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 349 2 of 21

be particularly vulnerable due to the range of projected impacts: e.g., the multiple stresses and low
adaptive capacity of current cropping systems, as well as population increase [3]. Maize (Zea mays L.)
is the principal staple food crop in large parts of SSA and is usually grown in small-holder farming
systems under rainfed conditions. The limited availability of inputs is a leading factor that contributes
to low yields that in turn are not able to keep pace with the food demand [4]. Hence, one of the most
effective pathways for adaptation is to focus on breeding new varieties and also on changing crop
management [5–8].

In light of soil degradation, conservation agriculture (CA) practices have been proposed as
an alternative to tillage-based agriculture in SSA as a pragmatic solution to increasing production
while conserving the natural resource base [9]. CA is a set of core principles, including minimum soil
disturbance, permanent soil cover, and diversified crop rotations supported by integrated soil, crop,
and water management, which aims to reduce and/or revert many negative effects of conventional
farming practices [10]. Besides the control of soil erosion, CA has become increasingly popular as
the crop management system conserves soil moisture, reduces fossil fuel use, lowers costs and, once
established, increases yield permanently [11]. Recent literature has shown the potential of CA to
improve resilience against seasonal drought events and thereby reduce the risk of crop failure in
SSA [8,12–16]. However, most crop cultivars currently grown under CA have been developed under
conventional or full tillage conditions, and it is likely that relevant genetic adaptations of CA conditions
may have been removed during previous breeding efforts. Furthermore, large scale phenotyping
studies under zero-tillage conditions are missing.

For the selection of genotypes with high-performing yield components under CA, accurate
phenotyping tools capable of estimating yield at early crop stages are needed. During early growth
stages, environmental factors such as temperature or soil moisture have a vital influence on germination
rate, seedling vigor, and, consequently, on yield [17]. However, assessing those traits usually requires
destructive laboratory measurements and/or visual scoring assessments that are laborious under field
conditions. They are also prone to be subjective and incur additional associated costs.

Specialized sensors have become an important component for crop monitoring, particularly
for improving precision, efficiency, and throughput in phenotyping [18]. Remote sensing indexes
have largely demonstrated their various applications in agriculture, including yield prediction,
stress detection, and control of plant diseases under a wide range of growing and environmental
conditions [19]. The classical approach has involved the use of multispectral data for the development
of numerous vegetation indexes to measure biomass (e.g., Normalized Difference Vegetation Index,
NDVI), water content (e.g., Water Band Index, WBI), or pigment composition (e.g., Modified
Chlorophyll Absorption Ratio Index, MCARI) in yield studies. At present, the use of information
derived from RGB images (using red, green, and blue color bands) acquired with conventional digital
cameras represents a low-cost alternative. The images can be processed to convert RGB values into
indexes based on the models of Hue-Intensity-Saturation (HIS), CIELab, and CIELuv cylindrical
coordinate representations of colors [20]. Moreover, recent technological advances have led the
incorporation of these sensors into aerial based platforms, enabling the simultaneous characterization
of specific crop physiological traits for a larger number of plots, which may help to minimize the effect
of changing environmental conditions during critical sampling moments [18,21–24].

Alternative applications of remote sensing techniques include the measurement of canopy
temperature [25]. This can provide high-value information of the crop water status, since transpiration
is a principal factor reducing the leaf’s temperature. The use of thermal cameras has been proposed as
an easy approach in crop management, and in breeding it can replace other more laborious techniques
like the use of stable isotopes, which are costly, time-consuming, and require extensive laboratory
work [26]. Moreover, in case of C4 crops like maize, the usefulness of stable isotopes for breeding is
questionable [27]. The possibility of applying these methodologies in CA systems could be critical in
improving our knowledge and supporting the full implementation of crop phenotyping for CA in
developing countries.
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The aim of the present study was to evaluate the efficiency of a set of remote sensing indexes in
assessing the yield differences of different maize hybrids at early growth stages under conventionally
ploughed (CP) and zero-tillage (CA) conditions. Different categories of sensors were tested, including
RGB cameras (placed on an aerial platform as well as at ground level), alongside multispectral and
thermal cameras (both installed on the aerial platform) and an active sensor portable field spectrometer
designed to measure the NDVI at ground level. Additionally, canopy temperature, leaf chlorophyll
content, and dry matter isotopic composition were evaluated.

2. Materials and Methods

2.1. Site Description

The experiment was conducted at Domboshawa Training Centre (17◦37’S, 31◦10’E and
1560 m.a.s.l.), situated at the north-east of Harare (Zimbabwe), during the 2015/2016 crop season
(Figure 1). This site is characterized by moderately deep Arenosols and Luvisols under FAO
classification [28]. It has approximately 5% clay content and is derived from granite parent material [29].
The climate conditions correspond to the Zimbabwean agro-ecological region II [30], with generally
long dry periods (April to October), in which April to July is cool and August to October is warm.
This region receives an average rainfall of between 700 and 1000 mm and mean maximum daily
temperatures of 32 ◦C during summer.
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Figure 1. Landsat satellite (left) and CNES Airbus (right) images of the study area acquired using
Google Earth Pro. The photographs are from the 31st of December 2015. The image on the left shows the
location of the Domboshawa Training Center in Zimbabwe. The image on the right shows the field site.

2.2. Plant Materials and Experimental Design

Seven maize drought tolerant commercial hybrids (SC621, Pan53, 30G19, Zap55, Pristine601,
PGS61, and Zap61) and one drought-sensitive commercial control variety (SC513) were manually
planted on 14 December 2015 in plots of 23 m2 (5 × 4.6 m) with four lines per plot. Two differential plot
management regiments have been applied to the field since 2009 (Figure 2). One half was managed
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using no-tillage and the application of 2.5–3.0 Mg ha−1 of maize stover to all the plots. Rotation,
a critical component for CA, was not practiced in this trial. Weed control was done by applying
a combination of 2.5 L ha−1 of glyphosate, 3 L ha−1 of atrazine, and 1 L ha−1 of dual immediately after
planting, if there were weeds present. The other half was conventionally ploughed and without any
residue management.
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Figure 2. Map of the experimental design showing alternating High Density (HD) and Low Density
(LD) plots per replicate, with Conservation Agriculture (CA) on the left and Conventional Ploughing
(CP) on the right. Each square corresponds one plot dedicated to each of the different hybrids used.
Complete details of the experimental design are explained in Section 2.2.

Both cropping systems were fertilized twice equally with 200 kg ha−1 using Compound D (7:14:7)
as a basal NPK dressing and top dressed with ammonium nitrate (200 kg ha−1, 46% N) in a split
application four weeks and seven weeks after seeding. Maize plants seeded at different density
sub-treatments were applied: one low-planting density (44,444 plants ha−1) and one high-planting
density (53,333 plants ha−1). Each sub-treatment was repeated in three replicates in which varieties
were ordered in a completely randomized block design. A total of 96 plots were studied (2 agricultural
practices × 2 density conditions × 8 varieties × 3 replicates, 24 plots per growing conditions).

2.3. Agronomical Traits and Proximal (Ground) Data Collection

The crop was harvested at physiological maturity. Grain yield (Mg ha−1) and total above-ground
biomass (Mg ha−1) were determined as corresponding to the central 3.6 m of the two central rows
of each plot (6.48 m2), omitting the border plants. The harvest index was calculated as grain yield as
a portion of total biomass.

Proximal (ground) data was collected 45 days after sowing on 28 January 2016 when the hybrids
reached the stage of 4 to 6 leaves. Leaf chlorophyll content (LCC) was measured using a Minolta
SPAD-502 portable chlorophyll meter (Spectrum Technologies Inc., Plainfield, IL, USA). For each plot,
five leaves were selected randomly (being the last fully expanded leave within a plant) and were
measured in the middle portion of the lamina and averaged. The Normalized Difference Vegetation
Index was determined at ground level using a portable spectrometer (GreenSeeker handheld crop
sensor, Trimble, Sunnyvale, CA, USA) by passing the sensor over the middle of each plot at a constant
height of 0.5 m above and perpendicular to the canopy (NDVI.g).
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One RGB picture was taken per plot, holding the camera at 80 cm above the plant canopy in
a zenithal plane and focusing near the center of each plot. The conventional digital camera used
was an Olympus OM-D (Olympus, Tokyo, Japan), a digital single lens mirrorless camera with an
image sensor size of 17.3 × 13.0 mm of 16-megapixel (MP) resolution. The images were saved in JPEG
format with a resolution of 4608 × 3072 pixels. As the plots were too big for a single photograph,
three different images samples were taken of each central row.

RGB images were subsequently analyzed using a version of the Breedpix 2.0 software
(Jaume Casadesús, https://bio-protocol.org/e1488, IRTA, Lleida, Spain) adapted to JAVA8 and other
RGB image analyses together integrated as freely available CIMMYT MaizeScanner plugin within FIJI
(https://imagej.net/Fiji and https://github.com/George-haddad/CIMMYT). This software enables
the extraction of RGB vegetation indexes in relation to different color properties [20]. Essentially,
the indexes are based on either the average color of the entire image, in diverse units related to its
“greenness”, or on the fraction of pixels classified as green canopy relative to the total number of pixels
in the image. In HIS color space, the Hue (H) component describes the color value itself by traversing
the visible spectrum in the form of an angle between 0◦ and 360◦. Derived from the Hue portion of
HIS color space, Green Area (GA) and Greener Area (GGA) analyze the proportion of green/yellow
and green pixels in the image. GA is the percentage of pixels in the image in the hue range from 60◦ to
180◦, that is, from yellow to bluish green. Meanwhile, GGA is somewhat more restrictive, because the
range of hue considered by the index is from 80◦ to 180◦, thus excluding the yellowish-green tones.
Additionally, those two indexes are used to formulate the Crop Senescence Index (CSI), which provides
a scaled ratio between yellow and green vegetation pixels [31], as follows:

CSI =
(GA − GGA)

GA
× 100

In the CIELab color space model, dimension L* represents lightness, and the green to red range is
expressed by the a* component, with a more positive value representing a purer red, and conversely
a more negative value indicating a greener color. Meanwhile, blue to yellow is expressed by the b*
component, in which the more positive the value the closer it is to a pure yellow, whereas the more
negative the value the closer it is to blue. Similarly, in the CIELuv color space model, dimensions u*
and v* are perceptually uniform coordinates, in which the visible spectrum starts with blue at the
bottom of the space, moving through green in the upper left (mostly scaled by v*) and out to red in the
upper right (mostly scaled by u*) [32].

2.4. Aerial Data Collection

Furthermore, aerial measurements were acquired during the same visit as the ground data
using an unmanned aerial vehicle (UAV) (Mikrokopter OktoXL 6S12, Moormerland, Germany) flying
under manual remote control at an altitude of 30 m (Figure 3). Two flights were performed; on one
flight only, the RGB digital camera was mounted, and the other included both the multispectral and
thermal cameras.

The RGB aerial images were obtained using a Lumix GX7 (Panasonic, Osaka, Japan) digital
mirrorless camera with an image sensor size of 17.3 × 13.0 mm using a 20 mm lens. Images were taken
at 16-MP and were saved in JPEG format, on this occasion with a resolution of 4592 × 3448 pixels.
For the multispectral data, a Tetracam micro-MCA (Tetracam Inc., Chatsworth, CA, USA) was used.
The camera consists of twelve independent image sensors and optics each with user configurable
filters of center wavelengths and full-width half-max band-with (450 ± 40, 550 ± 10, 570 ± 10,
670 ± 10, 700 ± 10, 720 ± 10, 780 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 40 nm),
and one sensor dedicated to calibration (Light Incident Sensor, ILS). That sensor uses micro-filters
housed in the ILS module behind a diffusor plate that corresponds to the same spectral characteristic of
the 11 downwards looking sensors, thus providing an accurate band-by-band reflectance calibration in
real-time. It captures 15.6-MP of image data as 12 × 1.3-MP images transferred to twelve separate flash

https://bio-protocol.org/e1488
https://imagej.net/Fiji
https://github.com/George-haddad/CIMMYT
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memory cards. The multispectral images acquired were aligned and calibrated to reflectance using
PixelWrench II version 1.2.2.2 (Tetracam, Chatsworth, CA, USA). Canopy temperature was measured
using a FLIR Tau2 640 (FLIR Systems, Nashua, NH, USA) with a VOx uncooled microbolometer
equipped with a TEAX Thermal Capture model (TEAX Tecnology, Wilnsdorf, Germany) for recording
of full resolution thermal video (640 × 520 pixels at 20 frames per second). The thermal images were
first exported using the TeAx ThermoViewer v1.3.12 (TeAx Technology, Wilnsdorf, Germany) to raw
16-bit TIFF format as Kelvin × 10,000 and converted to 32-bit temperature in Celsius using a custom
batch processing macro function in FIJI [33].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 21 
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Figure 3. Mikrokopter OktoXL 6S12 unmanned aerial platform equipped with the micro-MCA12
Tetracam multispectral sensor, showing the placement of the Incident Light Sensor (ILS) module
with white diffusor plate connected by a fiber optic cable to the top of the UAV facing upwards
while the other 11 multispectral sensors are positioned on a dual axis gimbal camera platform for
zenithal/nadir image capture. The RGB (Red-Green-Blue) and TIR (thermal infrared) cameras were
alternately mounted on the same gimbaled platform for image capture.

To obtain an accurate orthomosaic of the pre-processed aerial images from each sensor, a 3D
reconstruction was produced using Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg,
Russia, www.agisoft.com) [34]. A total of 30 overlapped images were needed for each orthomosaic.
Then, the procedure of cropping the plots was done using the open source image analysis platform
FIJI (Fiji is Just ImageJ; http://fiji.sc/Fiji), in which regions of interest were established at each plot
and then exported, taking care that exactly the same ground area was segmented for each plot across
all treatments. The RGB aerial exported plots were processed the same way as the ground images
as described previously in Section 2.3. For the formulation of the different multispectral indexes,
as detailed in Table 1, we developed a customized FIJI macro code. This macro code enabled the
calculation of the multispectral indexes through two different approaches: on the one hand, measuring
the mean value of the plot image of each band (plot measurements), and on the other hand, in order
to make more accurate measurements, we applied a threshold of NDVI values of 0.4–1 to focus the
measurements of all the indexes on only the pixels corresponding to maize and lower NDVI values
(<0.4) corresponding to bare-ground; other background image components were discarded. Therewith,
percentage of vegetation cover was estimated by the inverse of the implementation of the soil mask.
Finally, the thermal average temperature of the whole exported plots was also measured using FIJI.

www.agisoft.com
http://fiji.sc/Fiji
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Table 1. Indexes derived from the multispectral visible and near infrared bands. The wavelengths
used in the formulation of the indexes are adapted slightly based on the multispectral micro-MCA
Tetracam camera. * Note that for the PRI index, B550 is used instead of the original B531 by the cited
reference study.

Group Index Equation Wavelengths References

Broadband
Greenness

Normalized Difference Vegetation
Index (NDVI)

(B840 − B670)
(B840 + B670)

Red, NIR [35]

Soil Adjusted Vegetation Index (SAVI)
(B840 − B670)

(B840 + B670 + L)
Intermediate vegetation, L = 0.5

Red, NIR [36]

Optimized soil-adjusted vegetation
index (OSAVI)

(1 + 0.16)·(B780 − B670)
(B780 + B670 + 0.16)

Red, NIR [37]

Renormalized Difference Vegetation
Index (RDVI)

(B840 − B670)√
(B840 + B670)

Red, NIR [38]

Enhanced Vegetation Index (EVI)
2.5·(B840 − B670)

(B840 + (6·B670)− (7.5·R450) + 1)
Blue, Red,

NIR [39]

Light Use
Efficiency

Photochemical Reflectance Index
(PRI) *

(B550 − B570)
(B550 + B570)

Green [40]

Leaf
Pigments

Modified Chlorophyll Absorption
Ratio Index (MCARI) (B700 − R670) − 0.2·(B700 − B550)·

(
B700
B670

)
Green, Red,

NIR [41]

Chlorophyll Content Index (CCI)
(B550 − B670)
(550 + B670)

Green, NIR [42]

Transformed Chlorophyll Absorption
Ratio Index (TCARI) 3·(B700 − B670)− 0.2·(B700 − B550)·

(
B700
B670

)
Green, Red,

NIR [43]

TCARI
OSAVI

Green, Red,
NIR

Anthocyanin Reflectance Index 2
(ARI2) B840·

(
1

B550
− 1

B700

)
Blue, Red,

NIR [44]

Carotenoid Reflectance Index 2 (CRI2)
(

1
B550

− 1
B700

)
Blue, Red [45]

Water
Content Water Band Index (WBI)

(
B970
B900

)
Red, NIR [46]

2.5. Carbon and Nitrogen Stable Isotope Compositions

Similar leaves were sampled for LCC, carbon, and nitrogen measurements, and were subsequently
oven dried at 70 ◦C for 24 h and ground to a fine powder. Samples of approximately 0.7 mg of dry matter
and reference materials were weighed into tin capsules, sealed, and then loaded into an elemental
analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany) coupled with an isotope ratio mass
spectrometer (Delta C IRMS, ThermoFinnigan), operating in continuous flow mode. Measurements
were carried out at the Scientific Facilities of the University of Barcelona. The 13C/12C ratios (R) of
plant material were expressed in composition (δ13C) notation [47] as follows:

δ13C (‰) = [(Rsample/Rstandard) − 1] × 1000

in which sample refers to plant material and standard to Pee Dee Belemmite (PDB) calcium carbonate.
International isotope secondary standards of a known 13C/12C ratio (IAEA CH7, polyethylene foil,
IAEA CH6 sucrose and USGS 40 l-glutamic acid) were calibrated against Vienna Pee Dee Belemnite
calcium carbonate (VPDB) with an analytical precision of 0.1‰. The 15N/14N ratios of plant material
were also expressed in δ notation (δ15N) using international secondary standards of known 15N/14N
ratios (IAEA N1 and IAEA N2 ammonium sulfate and IAEA NO3 potassium nitrate), with analytical
precision of about 0.2‰. Furthermore, total carbon and nitrogen (%) were analyzed in the same
samples, and the C/N ratio was calculated.
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2.6. Statistical Analysis

Statistical analyses were conducted using the open source software, R and RStudio 1.0.44
(R Foundation for Statistical Computing, Vienna, Austria). Data for the set of physiological traits
were subjected to factorial completely randomized analyses of variance (ANOVAs) to test the effects
of growing conditions on the different traits studied. A bivariate correlation procedure was used to
calculate the Pearson correlation coefficients of the different remote sensing indexes against the grain
yield. Multiple linear regressions were calculated via a forward stepwise method with GY as the
dependent variable and the different indexes as independent parameters. The figures were also drawn
using the RStudio software.

3. Results

3.1. Differences in Yield Parameters and Conventional Phenotyping Measurements within Growing Conditions
and Genotypes

Means of yield, biomass, and traits informing on the water and nitrogen status of the crop are
presented in Table 2. Grain yield was significantly greater under CA conditions (p < 0.0001), by almost
20% relative to the CP. Harvest index was also significantly higher, but no differences were found for
biomass between the two treatments. Concerning planting density, it did not affect any yield parameter.
Even so, the highest-yielding conditions were recorded at high-density CA plots (3.07 Mg ha−1 on
average), and the least on low-density CP plots (2.29 Mg ha−1). The genotypic variability for grain
yield (Table 3) was only significant under CA (p < 0.001) at high density conditions (p < 0.01).

ANOVA analysis showed no significant differences in LCC between management practices or
density levels. Meanwhile, canopy temperature showed a significant increase in plots grown under
CA (p < 0.05) and when the plant density was high (p < 0.001), although the increment was small.
Finally, neither the percentage of carbon nor nitrogen nor their isotopic signatures showed significant
changes across the different growing conditions.

3.2. The Effect of Conservation and Conventional Agricultural Practices and the Sensor Altitude on
Vegetation Indexes

The mean of the RGB and multispectral indexes for the ground and aerial images at each
growing condition are shown in Tables 4 and 5. There were no significant differences across the
indexes reported due to changes of planting density; mean data of low and high densities is not
presented. The differential tillage practices, however, affected all the RGB indexes for both sensor
levels (Table 4). Hue increased greatly from the CP to the CA (ground 20.22%/aerial 21.89%), and
its derived indexes GA and GGA also showed a similar rise of their values. Otherwise, the indexes
derived from the CIE-Lab and CIE-Luv reduced their values, particularly a* and u*. The height level
from which the indexes were measured (either from ground or the aerial platform) affected their
values at both agricultural practices conditions, except for the Saturation (Supplementary Table S1).
Differences were highly evidenced in the Hue and GGA values, which decreased greatly when
they were calculated from the aerial images in comparison to the ground images. Even considering
those differences, the correlations between the measurements from both platforms were very strong
in general, only showing low relationship coefficients with Intensity, Lightness, and the v* index.
Moreover, the correlations were higher at CP conditions in comparison with CA.



Remote Sens. 2018, 10, 349 9 of 21

Table 2. Effect of the tillage conditions and planting density conditions on the yield parameters (GY, Biomass and Harvest Index), leaf chlorophyll content (LCC), leaf
carbon and nitrogen concentration (C and N), leaf C/N ratio and the stable carbon (δ13C), and nitrogen (δ15N) isotopic composition. Values are means ± standard error.
Level of significance (p-value): *, p < 0.05; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional agriculture; LD, low density; HD, high density.

GY Biomass Harvest Index SPAD Temperature C δ13C N δ15N C/N

(Mg ha−1) (Mg ha−1) (◦C) (%) (‰) (%) (‰)

Treatment
CA 2.99 ± 0.10 2.66 ± 0.11 0.49 ± 0.01 42.71 ± 0.38 25.02 ± 0.10 45.8 ± 0.50 −11.98 ± 0.03 3.77 ± 0.04 0.52 ± 0.08 12.14 ± 0.06
CP 2.42 ± 0.14 2.50 ± 0.14 0.44 ± 0.01 42.24 ± 0.38 24.64 ± 0.15 44.64 ± 0.49 −11.93 ± 0.03 3.69 ± 0.04 0.59 ± 0.07 12.11 ± 0.05

p-value 0.000 *** 0.351 0.000 *** 0.395 0.017 * 0.097 0.287 0.161 0.518 0.673

Density
LD 2.61 ± 0.12 2.45 ± 0.12 0.47 ± 0.01 42.37 ± 0.36 24.59 ± 0.12 45.32 ± 0.58 −11.95 ± 0.03 3.74 ± 0.05 0.51 ± 0.07 12.13 ± 0.05
HD 2.81 ± 0.13 2.71 ± 0.13 0.46 ± 0.01 42.45 ± 0.40 25.14 ± 0.11 45.08 ± 0.41 −11.96 ± 0.03 3.72 ± 0.04 0.59 ± 0.08 12.12 ± 0.06

p-value 0.230 0.145 0.820 0.712 0.000 *** 0.724 0.922 0.760 0.453 0.988

Combinations
CA * LD 2.92 ± 0.13 2.59 ± 0.17 0.49 ± 0.01 42.61 ± 0.56 24.80 ± 0.13 46.64 ± 0.48 −11.97 ± 0.04 3.83 ± 0.04 0.53 ± 0.11 12.18 ± 0.07
CA * HD 3.07 ± 0.14 2.73 ± 0.15 0.49 ± 0.01 42.81 ± 0.52 24.32 ± 0.21 44.99 ± 0.85 −11.98 ± 0.04 3.72 ± 0.07 0.50 ± 0.12 12.10 ± 0.09
CP * LD 2.29 ± 0.19 2.31 ± 0.18 0.44 ± 0.01 42.14 ± 0.47 25.25 ± 0.13 44.1 ± 0.97 −11.94 ± 0.04 3.66 ± 0.08 0.49 ± 0.09 12.07 ± 0.08
CP * HD 2.55 ± 0.20 2.69 ± 0.21 0.44 ± 0.01 42.34 ± 0.61 24.99 ± 0.17 45.18 ± 0.08 −11.93 ± 0.05 3.72 ± 0.02 0.68 ± 0.11 12.14 ± 0.07
p-value 0.751 0.484 0.931 0.999 0.489 0.051 0.812 0.146 0.312 0.353

Table 3. Genotypic yield variability of the eight maize hybrids for each growing condition. Values are means ± standard error. Level of significance: **, p < 0.01.
Treatments: CA, conservation agriculture; CP, conventional agriculture; LD, low density; HD, high density.

CA CP LD HD

SC513 2.50 ± 0.18 1.52 ± 0.19 2.12 ± 0.34 1.90 ± 0.20
SC621 2.32 ± 0.18 2.60 ± 0.39 2.54 ± 0.19 2.38 ± 0.40
PAN53 3.26 ± 0.13 2.71 ± 0.36 2.82 ± 0.23 3.16 ± 0.33
30G19 2.52 ± 0.15 2.12 ± 0.34 2.22 ± 0.26 2.42 ± 0.29
Zap55 3.72 ± 0.18 3.03 ± 0.39 3.23 ± 0.36 3.52 ± 0.31

Pristine 601 3.16 ± 0.26 2.02 ± 0.37 2.19 ± 0.39 2.98 ± 0.34
PGS61 3.23 ± 0.25 2.61 ± 0.29 2.76 ± 0.25 3.07 ± 0.34
Zap61 3.24 ± 0.29 2.74 ± 0.53 2.95 ± 0.51 3.03 ± 0.35

p-value 0.001 ** 0.147 0.155 0.007 **
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Table 4. Effect of tillage practices and placement of the sensors (ground versus aerial) on the RGB indexes. These indices are defined in Materials and Methods. Values
are means ± standard error. Level of significance (p-value): ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional agriculture.

Intensity Hue Saturation Lightness a* b* u* v* GA GGA CSI

Ground
CA 0.37 ± 0.00 48.04 ± 0.97 0.19 ± 0.00 44.01 ± 0.23 −4.44 ± 0.28 20.14 ± 0.35 3.59 ± 0.42 22.91 ± 0.36 0.26 ± 0.01 0.24 ± 0.01 8.83 ± 0.60
CP 0.36 ± 0.00 39.96 ± 0.91 0.25 ± 0.00 42.81 ± 0.19 −1.27 ± 0.38 23.13 ± 0.24 9.12 ± 0.57 24.79 ± 0.21 0.19 ± 0.01 0.18 ± 0.01 6.48 ± 0.46

p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.002 ***

Aerial
CA 0.49 ± 0.00 38.25 ± 0.75 0.19 ± 0.00 54.96 ± 0.35 −0.54 ± 0.32 24.21 ± 0.13 11.67 ± 0.54 28.10 ± 0.14 0.22 ± 0.01 0.15 ± 0.01 32.87 ± 1.19
CP 0.49 ± 0.00 31.38 ± 0.49 0.25 ± 0.00 55.25 ± 0.48 4.99 ± 0.39 28.77 ± 0.27 22.2 ± 0.76 31.34 ± 0.27 0.16 ± 0.01 0.10 ± 0.01 42.43 ± 2.41

p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Table 5. Effect of tillage practices (CA versus CP) and the application of the soil mask (plot measurements versus vegetation measurements) on the multispectral
indexes. These indexes are defined in Materials and Methods. Values are means ± standard error. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Treatments: CA, conservation agriculture; CP, conventional agriculture.

Vegetation NDVI.g NDVI SAVI OSAVI RDVI EVI PRI MCARI CCI

Plot
CA 66.25 ± 0.93 0.55 ± 0.01 0.42 ± 0.01 0.27 ± 0.01 0.34 ± 0.01 4.19 ± 0.10 0.54 ± 0.01 0.16 ± 0.00 19.54 ± 0.47 0.08 ± 0.01
CP 72.30 ± 1.04 0.48 ± 0.01 0.38 ± 0.01 0.25 ± 0.01 0.31 ± 0.01 3.85 ± 0.11 0.39 ± 0.01 0.13 ± 0.00 16.89 ± 0.38 −0.01 ± 0.01

p-value 0.000 *** 0.000 *** 0.006 ** 0.031 * 0.013 * 0.026 * 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Vegetation
CA 0.66 ± 0.01 0.45 ± 0.01 0.55 ± 0.01 6.85 ± 0.11 0.88 ± 0.02 0.21 ± 0.00 32.16 ± 0.66 0.27 ± 0.01
CP 0.62 ± 0.01 0.44 ± 0.01 0.53 ± 0.01 6.68 ± 0.11 0.74 ± 0.01 0.19 ± 0.00 31.74 ± 0.61 0.20 ± 0.01

p-value 0.001 ** 0.343 0.049 * 0.263 0.000 *** 0.000 *** 0.624 0.000 ***

TCARI TCARI/OSAVI ARI2 CRI2 WBI

Plot
CA 36.40 ± 0.67 0.42 ± 0.01 0.47 ± 0.01 0.01 ± 0.00 0.94 ± 0.01
CP 35.68 ± 0.74 0.47 ± 0.02 0.73 ± 0.01 0.01 ± 0.00 0.93 ± 0.00

p-value 0.461 0.030 * 0.000 *** 0.000 *** 0.558

Vegetation
CA 46.75 ± 0.82 0.33 ± 0.01 0.23 ± 0.02 0.00 ± 0.00 1.01 ± 0.01
CP 50.15 ± 1.10 0.38 ± 0.01 0.51 ± 0.02 0.01 ± 0.00 0.99 ± 0.00

p-value 0.012 * 0.001 ** 0.000 *** 0.000 *** 0.06
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Excluding WBI and TCARI and the vegetation measurement of SAVI, RDVI, and MCARI, all the
vegetation indexes based on multispectral data could distinguish the plots where different agricultural
practices were applied (Table 5). The indexes considered as indicators of green biomass, like NDVI
(both ground and aerial), SAVI, or OSAVI, exhibited a large increase (p < 0.050) in their values at the
CA plots in comparison with CP. Contrary to this, CA showed a significant decrease (p < 0.001) in
the percentage of vegetation cover (CA 66.25%/CP 72.30%). Indexes more related to leaf pigments,
like PRI or MCARI, were also significantly higher under CA compared with CP, but it was much less
pronounced. Conversely, the stress index ARI2 decreased significantly (p < 0.0001) from the CA to
the CP. The application of soil mask, to direct the multispectral measurements to only the vegetation,
resulted in significant variation in vegetation index values. The mean values of the green biomass
and the vegetation pigments indexes both increased regardless of tillage conditions; the differences
between the two growing conditions was much less severe than when they were measured at the
whole plot level. In comparison with measurements made by GreenSeeker, raw NDVI measurements
taken with the UAV were slightly lower, while those where NDVI was calculated through the mask
were higher. The relationships between the measurements of NDVI at both platform levels were
robust, but the correlation using the masked values were stronger (Supplementary Table S1). Moreover,
these correlations were higher under CP conditions as compared with CA.

3.3. Performance of Remote Sensing Index as Predictors of Grain Yield

To test the accuracy of remote sensing indexes for assessing differences in yield, correlations
are presented for grain yield against indexes. RGB indexes measured on the CP plots, regardless of
height level of image taking; Hue and its derived indexes were the ones that correlated best with grain
yield. Indeed, nearly all aerial indexes worked very similarly as the ground indexes, showing almost
identical correlation coefficients (Table 6). Only b* and v* correlations varied considerably, going from
low (ground) to extremely strong (aerial) correlations. On the other hand, even though these indexes
performed much better under the conventional practices, some significant and strong correlations
could be found under CA. For both ground and aerial levels, those indexes related to the greenness of
the vegetation color, as Hue, GA, GGA, a*, and u* were best correlated to yield.

Likewise, as happened with the RGB, multispectral indexes performed better when assessing
yield at the conventional tillage conditions (Table 7). However, in this case CA conditions showed
much lower correlations in comparison with the RGB derived indexes. Under CP conditions, NDVI
and its optimized indexes (SAVI, OSAVI and RDVI) were very closely related to GY, but the strongest
correlation was found with the combination of two indexes, TCARI/OSAVI (R = −0.779, p < 0.0001).
For both tillage conditions, CA and CP, the application of the soil mask helped to improve the
correlation between indexes related to the light use efficiency (PRI) and to the leaf pigments (TCARI)
and grain yield.

In terms of density conditions, both RGB and multispectral indexes worked slightly better
with higher plant densities compared to the low-density conditions. Moreover, a deeper analysis of
the results showed that the best conditions in which to correlate the remote sensing indexes was the
combination of high density planting at the CP plots. Under these conditions, most of the R2 coefficients
were near or even higher than 0.800.

The ability of remote sensing indexes assessing grain yield was further tested by multivariate
linear models (Table 8). All the equations presented were obtained using four or less indexes, all of them
measured from the UAV. The best predictive equation was achieved using CP data, explaining 75.6%
of the variation in yield. Besides this, the equation derived from the CA plots could only explain 35.1%
of yield variation. Equations derived from the high-planting density conditions predicted yields more
efficiently than low density conditions (65.4 and 52.6%, respectively).
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Table 6. Regression coefficients of the relationships between the RGB-indices, measured at ground and aerial levels, with grain yield. These indices are defined at
section Material and Methods. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional
agriculture; LD, low density; HD, high density.

Intensity Hue Saturation Lightness a* b* u* v* GA GGA

Ground
measurements

Tillage

CA −0.065 0.484 *** −0.317 * −0.021 −0.509 * −0.226 −0.544 *** −0.137 0.487 *** 0.507 ***
CP 0.503 *** 0.741 *** −0.478 *** 0.568 *** −0.742 *** −0.206 −0.717 *** 0.157 0.777 *** 0.783 ***

Planting density

LD 0.342 * 0.597 *** −0.483 *** 0.366 * −0.633 *** −0.350 * −0.623 *** −0.152 0.660 *** 0.662 ***
HD 0.361 * 0.754 *** −0.509 *** 0.410 ** −0.785 *** −0.326 * −0.771 *** −0.100 0.767 *** 0.767 ***

Combinations

CA * LD −0.054 0.422 * −0.386 −0.032 −0.498 * −0.310 −0.539 ** −0.213 0.511* 0.513 *
CA * HD −0.054 0.580 ** −0.247 0.020 −0.570 ** −0.138 −0.585 ** −0.052 0.493 * 0.528 **
CP * LD 0.419 * 0.622 −0.304 0.456 * −0.596 ** −0.032 −0.567 ** 0.218 0.627 ** 0.636 ***
CP * HD 0.565 ** 0.827 *** −0.594 ** 0.671 *** −0.850 *** −0.318 0.830 *** 0.176 0.894 *** 0.898 ***

Aerial
mesurements

Tillage

CA −0.393 ** 0.548 *** −0.149 −0.363 * −0.567 *** −0.265 −0.554 * −0.145 0.562 *** 0.561 ***
CP −0.776 *** 0.754 *** −0.719 *** −0.777 *** −0.796 *** −0.818 *** −0.812 *** −0.794 *** 0.784 *** 0.798 ***

Planting density

LD −0.555 *** 0.614 *** −0.495 *** −0.565 *** −0.651 *** −0.606 *** −0.658 *** −0.617 *** 0.653 *** 0.664 ***
HD −0.627 *** 0.684 *** −0.440 ** −0.631 *** −0.739 *** −0.667 *** −0.751 *** −0.697 *** 0.776 *** 0.786 ***

Combinations

CA* LD −0.468 * 0.582 ** −0.292 −0.444 * −0.600 ** −0.395 −0.594 ** −0.296 0.578 ** 0.572 **
CA * HD −0.360 0.519 ** −0.105 −0.331 −0.544 ** −0.262 −0.533 ** −0.116 0.545 ** 0.557 **
CP * LD −0.606 ** 0.577 ** −0.649 *** −0.610 ** −0.654 *** −0.694 *** −0.674 *** −0.662 *** −0.662 ** 0.633 ***
CP * HD −0.907 *** 0.881 *** −0.793 *** −0.906 *** −0.900 *** −0.920 *** −0.913 *** −0.905 *** 0.916 *** 0.920 ***
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Table 7. Regression coefficients of the relationships between the multispectral-indices, measured at ground and aerial levels, with grain yield. These indices are defined
at section Material and Methods. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional
agriculture; LD, low density; HD, high density.

Vegetation
area NDVI.g NDVI SAVI OSAVI RDVI EVI PRI MCARI CCI TCARI TCARI/OSAVI ARI2 CRI2 WBI

Plot
measurements

Tillage
CA −0.386 ** 0.490 ** 0.361 * 0.389 ** 0.379 ** 0.390 ** 0.368 * 0.435 ** 0.215 0.355 * 0.094 −0.334 * −0.321 −0.299 * 0.116
CP −0.727 *** 0.812 *** 0.751 *** 0.729 *** 0.747 *** 0.734 *** 0.676 *** 0.697 *** 0.105 0.710 *** −0.454 ** −0.785 −0.479 0.066 0.412 **

Planting density
LD −0.592 *** 0.740 ** 0.577 *** 0.477 *** 0.532 *** 0.493 *** 0.488 *** 0.641 *** 0.127 0.610 *** −0.253 −0.671 *** −0.549 *** −0.372 * 0.269
HD −0.737 *** 0.795 ** 0.750 *** 0.748 *** 0.753 *** 0.749 *** 0.714 *** 0.713 *** 0.495 *** 0.731 * −0.285 −0.755 *** −0.500 *** −0.26 0.364 *

Combinations
CA * LD −0.38 0.464 * 0.298 0.281 0.289 0.285 0.251 0.398 0.108 0.327 0.006 −0.379 −0.483 * −0.359 0.065
CA * HD −0.393 0.526 * 0.402 0.481 * 0.444 * 0.475 * 0.528 * 0.473 * 0.415 0.397 * 0.143 −0.367 −0.263 −0.19 0.284
CP * LD −0.602 ** 0.793 ** 0.630 *** 0.582 ** 0.614 ** 0.590 ** 0.490 ** 0.617 ** −0.079 0.589 ** −0.445 * −0.726 *** −0.478 * 0.033 0.622 **
CP * HD −0.850 *** 0.850 *** 0.860 *** 0.847 *** 0.858 *** 0.849 *** 0.830 * 0.780 *** 0.363 0.818 *** −0.587 ** −0.869 −0.488 * 0.141 0.443 *

Vegetation
measurements

Tillage
CA 0.383 ** 0.390 ** 0.395 ** 0.396 ** 0.29 0.456 ** 0.13 0.344 * 0.072 −0.234 −0.38 −0.390 ** 0.107
CP 0.767 *** 0.664 *** 0.731 *** 0.673 *** 0.507 *** 0.729 *** −0.323 * 0.738 −0.641 *** −0.785 *** −0.695 −0.643 *** 0.445 **

Planting density
LD 0.617 *** 0.358 * 0.489 *** 0.384 ** 0.333 * 0.620 *** −0.234 0.599 *** −0.516 *** −0.704 *** −0.608 −0.533 *** 0.238
HD 0.791 *** 0.717 *** 0.768 *** 0.723 *** 0.640 *** 0.801 *** −0.062 0.803 *** −0.562 *** −0.752 *** −0.74 −0.740 *** 0.503 ***

Combinations
CA * LD 0.324 0.257 0.273 0.254 0.175 0.328 −0.021 0.245 −0.097 −0.404 −0.307 −0.248 0.011
CA * HD 0.468 * 0.579 ** 0.543 * 0.577 ** 0.388 0.614 ** 0.222 0.541 ** 0.131 −0.238 −0.609 −0.658 *** 0.344
CP * LD 0.650 *** 0.489 *** 0.588 *** 0.505 * 0.245 0.613 ** −0.402 0.596 ** −0.610 ** −0.732 *** −0.614 −0.517 ** 0.444 *
CP * HD 0.866 *** 0.788 *** 0.837 *** 0.793 *** 0.702 ** 0.828 *** −0.374 0.854 *** −0.787 *** −0.874 *** −0.763 −0.738 *** 0.582 **
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Table 8. Multilinear regression (stepwise) of grain yield (GY) as dependent variable and the remote
sensing traits (RGB and multispectral vegetation indexes) measured from the unmanned aerial vehicle
as independent variables. These indexes are defined at section Material and Methods. R2, determination
coefficient; RSE, Residual Standard Error.

Equation R2 RSE p-Value

Conservation GY = −4.37 + 0.11·Lightness + 9.23·GA − 0.04·MCARI 0.351 0.521 0.000

Portion of variance
Lightness 0.237

GA 0.164
MCARI 0.159

Conventional GY = 16.56 −0.36·b* − 16.28·SAVI + 2.06·RDVI − 0.02·TCARI/OSAVI 0.757 0.491 0.000

Portion of variance

b* 0.237
SAVI 0.164
RDVI 0.159

TCARI/OSAVI 0.195

Low density GY = 5.36 − 0.26·b* + 10.21·OSAVI − 13.99·CCI 0.516 0.609 0.000

Portion of variance
b* 0.203

OSAVI 0.166
CCI 0.147

High density GY = 0.517 + 6.44·GGA + 3.14·OSAVI 0.654 0.531 0.000

Portion of variance
GGA 0.353

OSAVI 0.300

4. Discussion

4.1. Implications of Growing Conditions on Yield Parameters

Conservation agriculture practices have been proposed as potential systems to increase crop
yield, [1,2,48,49]). As can be seen in our results, CA plots out-yielded conventional agriculture.
Positive responses to CA are principally the result of the interacting effect of soil characteristics
and climate [1]. One of these benefits is attributed to the water-harvesting effects of minimum-tillage
practices [50,51]. Underwater limited conditions increased soil moisture, leading to comparably higher
yields under CA [9]. We did not report any water data in our study but indirectly derived these through
sensors that measure related parameters. We attributed significant differences in plot temperature due
to residue cover under CA. It is very likely that the residue cover, even though it helps to maintain the
humidity of the top-layers of the soil, dries faster than the soil and thus presents a higher temperature
than both soil and vegetation. Also, better water availability of CA should have been reflected in
a significant decrease in the carbon isotopic composition of the leaves of this C4 species in comparison
with CP agriculture plots due to a decrease of the leakiness of the bundle-sheath cells or by an increase
of the Ci/Cc as a consequence of an increase of the photosynthetic capacity [27]. Therefore, due to the
fact that the trial has been running under CA since 2009, yield improvements were likely not related
due to increased soil moisture or decreased temperature but due to a long-term improvement in soil
health and fertility.

Since crop management has led to a considerable increase in yield, changes in genotype may be
an option to make use of the enhanced yield potential provided by this environmental factor. While the
literature related to CA is mostly focused on crop management, the study of the genetic crop adaptation
is limited and usually concludes that the interaction between the tillage practice and the genotype is
absent [7,52–54]. Crops have been grown on conventional tillage for many years and genes governing
the adaptation to CA either have been lost over time through untargeted selection or have become
redundant [55]. However, the varieties used in this experiment only showed significant differences in
yield under CA, not under conventional agriculture management (CP). This may suggest the existence
of some traits linked to tillage with a direct effect on improving yield. Herrera et al. (2013) [56]
conclude that traits associated with emergence (early vigor) and resistance to diseases may increase
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genotype performance under CA. Thus, these results reinforce the need to further evaluate genotypic
performance of varieties developed and selected in CP and test them under no-tillage conditions.

4.2. Comparative Performance of the Vegetation Indexes at Determining Differences in Grain Yield under CP
and CA Conditions

RGB imaging and processing have become a major tool for phenotyping, and its ability to
determine plant performance in terms of biomass and yield has been demonstrated again in this study.
The indexes that performed better in assessing differences in yield were the ones more related to
canopy greenness (such as a* or GGA) and thus to vegetation cover [20]. Therefore, elevated values of
these indexes, driven by higher biomass levels, help to anticipate higher yields even at early growing
stages [57]. Just like RGB, the multispectral indexes that are more sensitive to the green biomass
(e.g., NDVI) and its reformulations such as the SAVI, OSAVI, and RDVI were the best correlated with
GY. Those indexes contain information from the red reflectance region [35,37,38], which increases with
a reduction of the biomass density, making them ideal for identifying differences in vigor at early
growing stages.

Other multispectral indexes that worked well in assessing differences in GY were PRI and
TCARI/OSAVI. The Photochemical Reflectance Index (PRI) is a spectral index increasingly used
as an indicator of photosynthetic efficiency [58], because it is closely related to ∆F/Fm’ [59,60].
Low PRI values reflect a lower light use efficiency of PSII that will finally be translated in a yield
loss. Meanwhile, the Transformed Chlorophyll Absorption in Reflectance Index (TCARI), based on
the Modified Chlorophyll Absorption in Reflectance Index (MCARI), is a depth measure of the
chlorophyll absorption at 670 nm relative to the reflectance at 550 and 700 nm [43]. This pigment
index did not correlate with yield until the background was corrected and normalized with the OSAVI.
The TCARI/OSAVI ratio is an index very sensitive to changes in chlorophyll content but very resistant
to the variations in LAI at the same time [43].

Although significant results were obtained, these indexes did not perform equally when assessing
yield differences within the different tillage growing conditions. The strengths of the indexes’ (both RGB
and multispectral) correlations against yield were much lower in CA compared with CP. The reason
for this is assumed to be the added noise derived from the crop residue coverage of the soil.
According to the FAO definition, the soil surface has to be covered at least by 30% to qualify as
CA in principle [61], which may have influenced remote sensing readings under CA. Due to this
fundamental difference between CA and CP, it is difficult to segregate the biomass from the plant
and residue cover. The application of an NDVI mask on the multispectral images effectively reduced
background reflectance and increased their correlations statistically, although the improvements were
minor (Figure 4). Indexes linked to the pigment content such as the CCI, ARI2, and CRI2 benefited most
from the use of a soil mask. As can be seen in Figure 5, even with its distinct color, the CA background
influenced the images mildly and supported the assessment of vegetation area, particularly in RGB
images that are based on the portion of green pixels of the image.

Meanwhile, the use of the near-infrared (NIR) region by some spectral indexes, which greatly
decreases its reflectance over soil, helps to increase the sensibility to the canopy cover [62]. Despite
these appreciations, the RGB-based indexes GA and GGA outperformed NDVI and the rest of spectral
indexes at predicting GY under CA conditions. The far higher resolution of the RGB compared
with the multispectral images may be the critical factor here when working from an aerial platform
(Figure 2) [33,57].
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4.3. Platform Proximity Effects on the Performance of the Vegetation Indexes Assessing Grain Yield Differences

The possibility to incorporate remote sensing methodologies onto unmanned aerial based
platforms enables the characterization of a larger number of plots in much less time, helping to
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minimize the effect of the changing environmental conditions during the sampling [18]. Moreover,
aerial photographs facilitate the coverage of the whole plot (which usually is not possible for the
images taken at ground level, particularly with tall crops such as maize). Yet, the altitude of the sensor
from the canopy of the crop has a negative effect on the resolution of the images when using cameras
with the same resolution (16-megapixels with both airborne and ground). While the RGB images
collected from the UAV only reached a resolution of 825 × 1210 pixels per plot, the spatial resolution
of the images taken from the ground was of 4608 × 3072 pixels per plot. Despite this loss of resolution,
aerial indexes performed very similarly or even better than the ground measurements. This may
also help to explain why the ground to aerial correlation for the RGB data was higher in CP than
in CA, especially if the added background complexity of CA requires higher spatial resolution for
accurate quantification. Limited resolution due to the height level can also constrain the performance
of NDVI. Our results show how the use of an active sensor (i.e., with its own source of light), such as
the GreenSeeker at ground level, helped to improve the correlation with GY in comparison with the
NDVI formulation from the aerial images, although this improvement was rather small. This may be
due to the improved normalization of the light and other environmental conditions while using field
sensors that take some time to cover all of the study plots.

5. Conclusions

Conservation agriculture management practices had a positive effect on increasing yields as
compared to conventional ploughed system. These results may help support the adoption of CA to
combat declining yields that affect SSA agriculture. Henceforth, in order to fully exploit the yield
potential, future efforts should focus on the study of the impact of the genotype selection for a particular
management system (e.g., Genotype x Environment x Management interaction). The main point of
field phenotyping is to understand the genotypic responses and dissect that traits associated with
a better performance under CA as a management system. Thus, further work is required before
breeding programs invest resources into a whole new management system.

The use of remote sensing technologies, as presented here, would be increasingly useful for
large-scale phenotyping studies. The results suggest, even at early crop growth stages, that the different
RGB and multispectral indexes have the potential to effectively assess yield differences under CA
conditions, even if their performance is lower than under CP conditions. This is assumed to be mainly
due to the residue cover effect on the measurements; however, applying a soil (and stover) mask to the
images could help in overcoming this technical problem, which may be best accomplished by the fusion
of high resolution RGB with multispectral and/or thermal data or by employing advanced image
segmentation algorithms not explored in this study. Nevertheless, the performance of the RGB indexes
in predicting yield was less affected by tillage conditions than the multispectral indexes. The indexes
that best correlated with yield were mostly related to the greenness of the canopy vegetation, such as
the RGB indexes GA and a*, and the multispectral indexes NDVI and RDVI. Finally, the platform
proximity effect on the image resolution did not have a negative impact on the performance of the
indexes, reinforcing the usefulness of UAV and its associated image processing for high throughput
plant phenotyping studies under field conditions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/2/349/s1,
Table S1: Regression coeficients (r) and P-value from ANOVA for the relationships between the remote sensing
indexes measured at ground against the same indexes measured at aerial level within the conservation (CA),
conventional (CP) and the combination of both conditions. These indexes are defined in detail in the Material and
Methods. GA, Greener Area; GGA, Greener Green Area; NDVI, Normalized Difference Vegetation Index.
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Abbreviations

The following abbreviations are used in this manuscript:

SSA Sub-Saharan Africa
RGB Red-Blue-Green
CA conservation agriculture
CP conventional ploughed
NDVI Normalized Difference Vegetation Index
UAV unmanned aerial vehicle
GY grain yield
HIS Hue-Intensity-Saturation
GA Green Area
GGA Greener Area
CSI Crop Senescense Index
CIMMYT International Maize and Wheat Improvement Center
m.a.s.l. meters above sea level
CP-OES Inductively Coupled Plasma Optical Emission Spectroscopy
LCC leaf chlorophyll content
PRI Photochemical Reflectance Index
SAVI Soil Adjusted Vegetation Index
MCARI Modified Chlorophyll Absorption Ratio Index
WBI Water Band Index
RDVI Renormalized Difference Vegetation Index
EVI Enhanced Vegetation Index
ARI2 Anthocyanin Reflectance Index 2
CRI2 Carotenoid Reflectance Index 2
TCARI Transformed Chlorophyll Absorption in Reflectance Index
OSAVI Optimized Soil-Adjusted Vegetation Index
∆F/Fm’ Effective fluorescence quantum yield
NIR near-infrared.
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