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Abstract: An appropriate model to correct thermal radiation anisotropy is important for the wide
applications of land surface temperature (LST). This paper evaluated the performance of three
published directional thermal radiation models—the Roujean–Lagouarde (RL) model, the Bidirectional
Reflectance Distribution Function (BRDF) model, and the Vinnikov model—at canopy and pixel scale
using simulation, airborne, and satellite data. The results at canopy scale showed that (1) the three
models could describe directional anisotropy well and the Vinnikov model performed the best,
especially for erectophile canopy or low leaf area index (LAI); (2) the three models reached the
highest fitting accuracy when the LAI varied from 1 to 2; and (3) the capabilities of the three models
were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure.
The analysis at pixel scale indicated a consistent result that the three models presented a stable effect
both on verification and validation, but the Vinnikov model had the best ability in the erectophile
canopy (savannas and grassland) and low LAI (barren or sparsely vegetated) areas. Therefore,
the Vinnikov model was calibrated for different land cover types to instruct the angular correction of
LST. Validation with the Surface Radiation Budget Network (SURFRAD)-measured LST demonstrated
that the root mean square (RMSE) of the Moderate Resolution Imaging Spectroradiometer (MODIS)
LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST
showed better spatial uniformity and higher angular correlation.

Keywords: land surface temperature (LST); directional thermal radiation; parametric model; MODIS;
AATSR

1. Introduction

Land surface temperature (LST) is an indispensable parameter of the land surface energy budget,
widely used in climate change, evapotranspiration, urban heat island studies, and other fields [1,2].
However, there are still several difficulties in providing accurate and harmonized LST datasets for
long-term Earth observation. Directionality of thermal radiation is such an obstacle, and is described
as temperature differences among different viewing geometries for the same ground object and
observation time [3,4]. Many experimental studies based on various platforms for various land
cover types have demonstrated that the temperature differences are significant and even reach
up to 15 K [5–11], dramatically reducing comparability of LSTs retrieved from multisensor data.
Therefore, quantification and correction of thermal radiation directional effects is an urgent and
meaningful undertaking.
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Previous efforts have developed several models to estimate directional anisotropy. For example,
Guillevic et al. extended the Discrete Anisotropy Radiative Transfer (DART) model to the thermal
infrared (TIR) domain to simulate the TIR radiative budget and upward spectral radiance of
heterogeneous canopies [12] and used the model to analyze directional viewing effects on satellite
LST products over sparse vegetation cover [13]. Working on the basis of the four-stream radiative
transfer formalism, Verhoef et al. developed the Scattering by Arbitrarily Inclined Leaves (4SAIL)
model which relates top-of-canopy thermal radiance directionality with the temperatures of sunlit and
shaded soil and sunlit and shaded leaves [14]. Duffour et al. demonstrated the capability of the Soil
Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model to simulate TIR directional
anisotropy [15] and then explored the driving factors of directional variability using the model [16].
The above-mentioned models are physics-based and can be used to obtain accurate simulated results
but have low computational efficiency. Moreover, they need too many spatial and temporal parameters
describing the land surface properties, which are difficult to measure. All of these shortcomings greatly
hinder their practical applications.

By contrast, parametric models are very attractive owing to their simplicity, robustness, and ability
to be applied in any spatial scale [17]. Relative studies are still rare and learn more or less from the
visible/near-infrared (VNIR) domain. Although physical meanings of radiation are somewhat different
compared with in the VNIR domain, sunlit/shaded elements also have different values resulting in
different temperatures in the TIR domain. Therefore, Lagouarde and Irvine adapted a reflectance
hotspot model to describe the thermal infrared directional signature by replacing the reflectance with
the surface temperature [8]. The model was validated using airborne measurements and the SCOPE
model, and produced a hopeful result [17]. With the same methodology, Peng et al. [18] identified
the most suitable kernel-driven Bidirectional Reflectance Distribution Function (BRDF) model for
fitting and extrapolating directional anisotropy using the airborne multi-angle thermal infrared dataset;
the model was also tested against the 4SAIL model [19]. Following the traditional structure of BRDF
models, Vinnikov et al. developed an empirical model based on a linear combination of emissivity and
solar kernels using one full year of simultaneous observations by two Geo-stationary Earth Orbit (GEO)
satellites at five Surface Radiation Budget Network (SURFRAD) stations [4]. Currently, the model is
the only one applied for angular correction of satellite-derived LSTs [20].

Field experiments can reveal thermal radiation directional features and provide valuable data
for model validation. There are various relevant experimental studies including ground-based [6,7],
tower-based [5,11], and airborne platforms [8,10,21]. However, each observation is only for a single
canopy with a fixed structure. Anisotropy data with a variety of situations is scarce and a large
simulated dataset is therefore required for extensive evaluation of parametric models [17]. At the pixel
scale, current studies mainly use GEO satellites to develop multi-angle datasets because of their high
temporal resolution [4,20,22]. In turn, the datasets have a very limited range of viewing angles, small
observation area, and complicated spatial heterogeneity. Low Earth Orbit (LEO) satellites observe
across the globe and their broader coverage may make up for the deficiency in their temporal resolution.
More importantly, LEO satellites have more rich viewing geometries and land cover types. Therefore,
multi-angle datasets developed using LEO satellites can provide more comprehensive validation
for models.

The main objective of this paper is to evaluate the performance of three directional thermal
radiation parametric models. At the canopy scale, a large anisotropy dataset generated by the 4SAIL
model and an airborne multi-angle dataset acquired by the Wideangle infrared Dual-mode line/area
Array Scanner (WiDAS) system are used as the reference. At the pixel scale, the first LEO satellite
multi-angle LST dataset established using Moderate Resolution Imaging Spectroradiometer (MODIS)
and Advanced Along-Track Scanning Radiometer (AATSR) products is applied to assess the models.
Section 2 describes the data including the synthetic, airborne, satellite, and SURFRAD datasets.
Section 3 shows the details of the three parametric models, while Section 4 presents the evaluations
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of the models. Section 5 displays the application of LST angular correction. Section 6 presents the
discussion, and conclusions are drawn in the last section.

2. Data

2.1. Simulation Dataset

As a widely validated and used model, the 4SAIL model is deemed well suited for turbid
canopies [23]. Because the DART model is suitable for discrete canopies and the SCOPE model—a
combination of several models—uses precisely the 4SAIL model to simulate radiative transfer, we
chose the 4SAIL model as the data generator. The model divides the canopy into sunlit and shaded soil
and sunlit and shaded leaves to simulate top-of-canopy (TOC) thermal radiation for different viewing
angles. It can also analyze the influences of leaf area index (LAI), leaf inclination distribution function
(LIDF), and hotspot effect on TOC thermal radiation. For more information, readers can refer to the
paper that introduced the 4SAIL model [14].

We use the same input parameters as did Verhoef et al. [14], owing to the fact that the situation
was well validated with ground measurements. Different canopy structures are created by prescribing
four LIDFs (erectophile, spherical, plagiophile, planophile) and four LAIs (0.5, 1, 2, 4) with a hotspot
parameter of 0.05. For each of them, the viewing zenith angles (VZAs) vary from nadir to 60◦ and
viewing azimuth angles (VAAs) change from 0 to 360◦ in steps of 1◦. Thus, the simulated dataset is
composed of 16 cases and every case has 21,600 angle groups.

2.2. Airborne Dataset

Watershed Allied Telemetry Experimental Research (WATER) is a synthetic field experiment
aiming to improve the observability, understanding, and predictability of hydrological and related
ecological processes at watershed scale [24]. The campaign was conducted in the spring to summer
of 2008 on the Heihe River Basin in northwest China (Zhangye City, Gansu Province). The WiDAS
system is one of the major airborne sensors used in the WATER campaign, and has four charge-coupled
device (CCD) cameras in visible/near-infrared (VNIR) channels and two thermal cameras in the
mid infrared (MIR) and TIR channels [21]. These cameras can sequentially observe the surface with
a very short time interval (4 s) and a very high overlapping ratio (more than 85% in the MIR and TIR
channels) during the flight. Therefore, several sequential images mean that the same ground point can
be almost simultaneously observed at different angles. According to the design, there are a total of
seven zenith angles (between forward 40◦ and backward 40◦) for the same ground point in the MIR
and TIR channels. A multi-angular dataset can be obtained from the collections of the same ground
point in the sequential WiDAS images.

Images on 7 July 2008 were chosen to develop the multi-angle dataset owing to their high data
quality and clear sky. The solar zenith angle (SZA) and solar azimuth angle (SAA) in the study area
were about 22◦ and 230◦, respectively. Because the flight height was approximately 1.5 km above
the surface, the spatial resolutions of the MIR/TIR cameras and the VNIR images are approximately
7.9 and 1.25 m, respectively. Six homogeneous sites, including settlement, wheat, maize, orchard,
sea buckthorn, and bare soil [25], were selected for further evaluation. The number of images of each
site indicates the number of simultaneous observations for the same pixel. Owing to changes in the
VZA (and/or VAA), there is a temperature variation (Tdiff) for every pixel. The mean Tdiff varies from
1.4 K (maize) to 7.7 K (settlement). More detailed information can be found in Figure 1 and Table 1.
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Figure 1. Locations of six sites and their false color image (Site 1) from the charge-coupled device 
(CCD) camera and true images (Site 2–6) from a digital camera. 
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(°N) Land Cover LAI 
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UTC
(hh:mm:ss) 

Number  
of Images Mean Tdiff (K) 

1 100.264 38.559 Settlement \ 375 × 280 04:13:14–04:13:42 8 7.7 
2 100.245 38.515 Wheat 3.4 340 × 315 03:58:10–03:58:38 8 1.7 
3 100.247 38.512 Maize 4.2 310 × 260 03:58:10–03:58:34 7 1.4 
4 100.239 38.509 Orchard 2.4 330 × 320 03:58:26–03:58:54 8 3.9 
5 100.232 38.494 Sea buckthorn 1.9 315 × 245 03:59:14–03:59:42 8 2.9 
6 100.193 38.459 Bare soil \ 530 × 375 04:26:58–04:27:18 6 1.8 

Note that the symbol\is no data, LAI is leaf area index. 
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product is a geophysical product with 1 km spatial resolution at nadir for a swath. Every day, the 
MODIS LST has a maximum of four clear sky observations. Emissivity values in Bands 31 and 32 
were estimated by using the classification-based emissivity method [27] according to ‘static’ land 
cover types in the pixel. The generalized split-window algorithm is a viewing-angle-dependent 
algorithm in which six VZA subranges are divided to correct atmospheric and emissivity effects 
owing to the big scan angle (±65°) [26]. Radiance-based (R-based) validation indicated that the 
Collection 5 MODIS LST errors are within ±2 K (within ±1 K in most cases) for all the sites except 
for bare soil sites [28]. By adding two sets of coefficients separately for daytime and nighttime and 
adjusting the emissivity difference in Bands 31 and 32, the accuracy of bare soil pixels in the 
Collection 6 was improved [29]. AATSR LST products (ATS_LST_2P) were generated with another 
split-window algorithm from brightness temperatures measured at 11 and 12 μm for the nadir view 
of AATSR [30]. Coefficients of the algorithm depend on the land cover type, the fractional 
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Figure 1. Locations of six sites and their false color image (Site 1) from the charge-coupled device
(CCD) camera and true images (Site 2–6) from a digital camera.

Table 1. Specifications of the six sites.

No. Long.
(◦E)

Lat
(◦N) Land Cover LAI Area (m × m) UTC (hh:mm:ss) Number

of Images
Mean

Tdiff (K)

1 100.264 38.559 Settlement \ 375 × 280 04:13:14–04:13:42 8 7.7
2 100.245 38.515 Wheat 3.4 340 × 315 03:58:10–03:58:38 8 1.7
3 100.247 38.512 Maize 4.2 310 × 260 03:58:10–03:58:34 7 1.4
4 100.239 38.509 Orchard 2.4 330 × 320 03:58:26–03:58:54 8 3.9
5 100.232 38.494 Sea buckthorn 1.9 315 × 245 03:59:14–03:59:42 8 2.9
6 100.193 38.459 Bare soil \ 530 × 375 04:26:58–04:27:18 6 1.8

Note that the symbol\is no data, LAI is leaf area index.

2.3. Satellite Dataset

We selected publicly available MODIS and AATSR products as the data sources to develop
a multi-angle LST dataset. MODIS LST products (MOD/MYD11_L2, collection-6) were retrieved with
the generalized split-window algorithm applied to two TIR bands (31 and 32) [26]. The Level 2 (L2)
product is a geophysical product with 1 km spatial resolution at nadir for a swath. Every day, the
MODIS LST has a maximum of four clear sky observations. Emissivity values in Bands 31 and 32 were
estimated by using the classification-based emissivity method [27] according to ‘static’ land cover types
in the pixel. The generalized split-window algorithm is a viewing-angle-dependent algorithm in which
six VZA subranges are divided to correct atmospheric and emissivity effects owing to the big scan angle
(±65◦) [26]. Radiance-based (R-based) validation indicated that the Collection 5 MODIS LST errors
are within ±2 K (within ±1 K in most cases) for all the sites except for bare soil sites [28]. By adding
two sets of coefficients separately for daytime and nighttime and adjusting the emissivity difference
in Bands 31 and 32, the accuracy of bare soil pixels in the Collection 6 was improved [29]. AATSR
LST products (ATS_LST_2P) were generated with another split-window algorithm from brightness
temperatures measured at 11 and 12 µm for the nadir view of AATSR [30]. Coefficients of the algorithm
depend on the land cover type, the fractional vegetation cover (FVC), the atmospheric water vapor,
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and the viewing angle. Because of the narrow swath width, the temporal resolution of AATSR LST is
about three days and the spatial resolution is 1 km. Unlike the case of MODIS LST, the land surface
emissivity is implicitly taken into account through the land cover type and FVC-dependent coefficients.
According to the results of comparisons between AATSR and in situ LST data over eighteen sites [31],
the AATSR LST approaches consistency within the target accuracy (2.5 K) during the day. During the
night, the accuracy cannot meet the target (1 K) but the overall error is lower than for the day.

Relevant auxiliary products include global geolocation products (MOD03/MYD03 and
ATS_NR_2P) which provide viewing and illumination geometries and a land cover type product
(MCD12Q1) which provides yearly land cover classification with a 500 m resolution. In order to be
consistent with the canopy scale, only the daytime observations with solar zenith angle (SZA) less than
90◦ were used in this paper. The establishment of the dataset involved five main steps: (1) LST quality
control; (2) spatial collocation; (3) temporal concurrence; (4) spatial homogeneity; and (5) systematic
difference removal.

• LST Quality Control

To ensure the availability of the dataset, only pixels with the highest quality were used in this
study. For MOD/MYD11_L2 products, the LST value is valid and the quality control (QC) flag is 0 [32].
For ATS_LST_2P products, the LST_uncertainty flag is less than 1 K and the QC flag is 16 [31].

• Spatial Collocation

We identify the same observation location of the two satellites by longitude and latitude. In this
paper, the threshold was set at 0.001◦. Given the pixel spatial resolution (1 km), the distance is
a reasonable value.

• Temporal Concurrence

This step is to check whether the spatially collocated pixels with the best quality are concurrent
in time. The interval of the MOD/MYD11_L2 product is five minutes, and that of the ATS_LST_2P
product is about 100 min. Therefore, we firstly divided the ATS_LST_2P products into the same
interval as the MOD/MYD11_L2 products. Then, the three nearest ATS_LST_2P products were chosen
to match for each MOD/MYD11_L2 product. In this way, the biggest possible time difference is 10 min.

• Spatial Homogeneity

To analyze the influence of land cover type on parametric models and further minimize location
matching errors, only pixels over relatively homogenous areas were selected. There are two filter
criteria, as follows.

(1) The pixel’s LST should not exceed a certain variability in a 5 × 5 moving window and the
standard deviation (STD) should be less than 1 K [33];

(2) If more than 23 pixels have the same land cover type as the centered pixel inside the 5 × 5
window, the centered pixel is considered to be in a “pure homogenous or quasi-homogenous
area” and should be retained [34].

• Systematic Difference Removal

Because of the intrinsic differences in LST retrieval algorithms and satellite sensors, there are still
some differences between the two LST products even with the same VZA. The difference is defined
as the system error and can be adjusted by a simple linear regression [20]. This step is similar to
an inter-comparison between MODIS and AATSR LST products. Firstly, matched pixel pairs with
aligned viewing geometries were selected by restricting the maximum relative difference in the secant
of the VZA to 0.01 [35]. Based on selected pixel pairs, we built linear regression models between the
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two LST products for each land cover type. Finally, we chose MODIS LST products as the true value
and normalized the AATSR LST.

After the above processing, we firstly established the LST multi-angle dataset at LEO satellite
scale. The dataset had 647,788 matched pixel pairs and included 14 International Geosphere- Biosphere
Programme (IGBP) land cover types (not including closed shrublands, urban and built-up areas, and
snow and ice). Just as Figure 2 shows, the ranges of SZA, VZA, and the relative azimuth angle (RAA)
are 20–89◦, 0–65◦, and 0–360◦, respectively. Compared with previous studies [4,20,22], the dataset has
higher spatial resolution, wider land cover types, and richer angular sampling. Therefore, it should be
able to provide more comprehensive analysis.
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Figure 2. Angular sampling of solar zenith angle (left panel), Moderate Resolution Imaging
Spectroradiometer (MODIS) (cyan dot in right panel), and Advanced Along-Track Scanning Radiometer
(AATSR) (green dot in right panel). In the right panel, the polar radius is the viewing zenith angle
(VZA) and the polar angle is the relative azimuth angle (RAA).

2.4. SURFRAD Dataset

The SURFRAD was established in 1993 to support climate research with accurate, continuous,
long-term measurements of the surface radiation budget over the United States. A full year (2011) of
ground truth LSTs simultaneous with MODIS LSTs were calculated from observed upward (Fu) and
downward (Fd) wideband hemispheric infrared fluxes at the six SURFRAD stations listed in Table 2.
LST is computed using the traditional equation:

LST =

{
Fu − (1− ε)× Fd

σ·ε3−∞

}0.25
(1)

where σ is the Stefan–Boltzmann constant (5.670373 × 10−8) and ε3−∞ is the broadband surface
emissivity. The value ε3−∞ can be estimated from MODIS narrowband emissivities via the following
method [36]:

ε3−∞ = 0.0127 + 0.7852× ε29 − 0.0151× ε31 + 0.2139× ε32 (2)

where ε29, ε31, and ε32 are the narrowband emissivities at the MODIS 29, 31, and 32 bands, respectively.
In this study, MODIS emissivity products (MOD/MYD11B1) [32] were used to obtain the narrowband
emissivity. Unlike the MOD/MYD11A1 products, MOD/MYD11B1 products use a physics-based
day/night algorithm to dynamically retrieve emissivities at seven spectral bands and LSTs at a coarser
spatial resolution (5.6 km). Combining the narrowband emissivities, Fu, Fd, and Equations (1) and (2),
a SURFRAD LST dataset can be established.
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Table 2. Specifications of six Surface Radiation Budget Network (SURFRAD) stations.

Station Name Land Cover Long. (◦W) Lat (◦N) Number of Observations

Bondville, IL Cropland 88.373 40.051 52
Boulder, CO Bare soil 105.238 40.126 35

Fort Peck, MT Grassland 105.102 48.308 47
Goodwin Creek, MS Grassland 89.873 34.255 171

Penn State, PA Cropland 77.931 40.720 23
Sioux Falls, SD Grassland 96.623 43.734 68

3. Parametric Models

3.1. RL Model

Lagouarde and Irvine [8] validated the suitability of a parametric hotspot model proposed by
Roujean [37] for the optical domain to the TIR domain, referred to hereafter as the RL model. The RL
model describes thermal radiation directional anisotropy requiring two parameters, and is expressed
by the following equation:

∆T(θs, θv, ϕ) = ∆THS

[
e−k f − e−k fN

]
[
e−k fHS − e−k fN

] , (3)

∆T(θs, θv, ϕ) = T(θs, θv, ϕ)− TN , (4)

∆THS = THS − TN , (5)

f =
√

tan2 θs + tan2 θv − 2 tan θs tan θv cos ϕ, (6)

where θs, θv, and ϕ are the SZA, VZA, and RAA, respectively. Subscript N stands for nadir observation
and fN = tan θs. Subscript HS is a hotspot when the viewing direction coincides with the sun direction
and fHS = 0 [17]. Thus, Equation (3) can be rewritten as

∆T(θs, θv, ϕ) = ∆THS

[
e−k f − e−k tan θs

]
[
1− e−k tan θs

] . (7)

In the RL model, the function ∆T(θs, θv, ϕ) is used to estimate the anisotropy. The two parameters
are ∆THS, which governs the anisotropy at the hotspot, and k, which adjusts the shape of the variations
of anisotropy along with the VZAs.

3.2. BRDF Model

The BRDF model was firstly proposed to simulate bidirectional reflectivity under different viewing
angles. By replacing reflectivity with surface temperature in the RL model, the BRDF model was
updated to the TIR domain [18,19]. In this paper, we use the best-fitting kernel grouping of the
RossThick volume kernel and the LiSparseR geometry kernel; the formulation is as follows:

T(θv, θs, ϕ) = fiso + fvol ·kvol(θv, θs, ϕ) + fgeo·kgeo(θv, θs, ϕ) (8)

kvol(θv, θs, ϕ) =
(π/2− ξ) cos ξ + sin ξ

cos θv + cos θs
− π

4
(9)

cos ξ = cos θv cos θs + sin θv sin θs cos ϕ (10)

kgeo(θv, θs, ϕ) = O(θv, θs, ϕ)− sec θ′v − sec θ′s +
1
2
(1 + cos ξ ′) sec θ′v sec θ′s (11)

O =
1
π
(t− sin t cos t)

(
sec θ′v + sec θ′s

)
(12)
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cost =
h
b

√
D2 + (tan θ′v tan θ′s sin ϕ)2

sec θ′v + sec θ′s
(13)

D =
√

tan2 θ′v + tan2 θ′s − 2 tan θ′v tan θ′s cos ϕ (14)

cos ξ ′ = cos θ′v cos θ′s + sin θ′v sin θ′s cos ϕ (15)

θ′v = tan−1(
b
r

tan θv) (16)

θ′s = tan−1(
b
r

tan θs) (17)

where fiso, fvol , fgeo, kvol(θv, θs, ϕ), kgeo(θv, θs, ϕ) are the isotropic scattering kernel coefficient, the
volumetric kernel coefficient, the geometric kernel coefficient, the volumetric kernel, and the geometric
kernel, respectively; O is the overlap area between the view and solar shadows; superscript ′ stands for
effective angle adjusted for spheroidal shape of the crown; and the ratios h

b and b
r are the dimensionless

crown relative height and shape parameters, preselected as 2 and 1, respectively.

3.3. Vinnikov Model

Vinnikov et al. [4] developed an empirical model (hereafter called the Vinnikov model) to normalize
surface temperature to the nadir direction by means of a statistical approach. It can be expressed by the
following simple equations:

T(θv, θs, ϕ)

T0
= 1 + A·ϕ(θv) + D·ψ(θv, θs, ϕ) (18)

ϕ(θv) = 1− cos(θv) (19)

ψ(θv, θs, ϕ) = sin(θv) cos(θs) sin(θs) cos(θs − θv) cos(ϕ) (20)

where T0 is the temperature at nadir; and 1, ϕ(θv), ψ(θv, θs, ϕ), A, and D are the isotropic
kernel, emissivity kernel, solar emissivity, emissivity kernel coefficient and solar emissivity
coefficient, respectively.

4. Evaluations and Results

4.1. Evaluation Using Simulations

Just as Section 3 shows, the three models do not use the same definition of thermal radiation
directional behavior. For convenient interpretation of results, we selected the definition of the RL model
which considers anisotropy as the temperature difference between nadir and off-nadir observations.
Therefore, the BRDF model becomes

∆T(θv, θs, ϕ) = fvol ·[kvol(θv, θs, ϕ)− kvol(0, θs, 0)] + fgeo·[kgeo(θv, θs, ϕ)− kgeo(0, θs, 0)], (21)

and the Vinnokov model becomes

∆T(θv, θs, ϕ) = T0·[A·ϕ(θv) + D·ψ(θv, θs, ϕ)]. (22)

For every canopy structure, ordinary least squares linear regression without the intercept was
used to fit the BRDF model and the Vinnikov model, and a nonlinear optimization procedure based on
the Nelder–Mead method [38] was used to solve the RL model. Figure 3 presents the performance of
the three parametric models in describing anisotropy based on the 4SAIL simulated dataset. Errors
for most records are in the range of [−0.1 K, 0.2 K] which indicates that the parametric models can
estimate directional behaviors well. The Vinnikov model has the best ability, with 94.25% errors within
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±0.1 K. Next is the BRDF model, for which 80.80% errors are within ±0.1 K. Then is the RL model,
for which the proportion is 75.60%. Moreover, the peak of the histogram is on the interval from 0 to
0.1 K and the trend slant to the right illustrates that the three models slightly overestimate surface
temperature. The proportions of positive errors of the RL, BRDF, and Vinnikov models are 73.48%,
62.89%, and 75.11%, respectively.
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Figure 4a–d show the anisotropy obtained using parametric models adjusted using 4SAIL under
different LIDFs. Obviously, the Vinnikov model can achieve a good accuracy for all LIDFs and
presents high robustness. Root mean square errors (RMSEs) for spherical, erectophile, planophile,
and plagiophile canopy are 0.09 K, 0.12 K, 0.11 K, and 0.10 K, respectively. For erectophile canopy,
the RL and BRDF models have terrible performance, with RMSEs of 0.67 K and 0.38 K, respectively.
For the other three LIDFs, there is a clear underestimation of anisotropy for large ∆T. In other words,
all parametric models cannot describe anisotropy on hotspots well. Relatively speaking, the BRDF
model has the best results.

In order to investigate the influence of LAI on parametric model fitting ability, we added LAIs
from 0.5 to 5 with a step size of 0.5. Relative RMSE (RRMSE) was also calculated to eliminate the
anisotropy differences between different LAIs. The result is shown in Figure 5. For erectophile and
spherical canopy, RMSEs and RRMSEs of the anisotropy fitting error maintained the same trend. As the
LAI increases, fitting errors firstly decrease and then increase. At a LAI of 0.5, the RMSE and RRMSE
of the Vinnikov model are clearly less than those of the other two models, suggesting that the Vinnikov
model has a prominent advantage at low LAI. For planophile and plagiophile canopy, the RMSEs
and RRMSEs do not stay the same when the LAI is less than 2. However, the RMSEs are small while
the RRMSEs are big, which indicates that the parametric models cannot give a good performance.
Therefore, regardless of the LIDFs, fitting effects firstly improve and then decline with increase in the
LAI, and the best performance mainly occurs when the LAI varies from 1 to 2. This phenomenon can
be explained by the fact that thermal radiation directional signatures are weak at very low and high
LAIs [14,16].

The RL model and the BRDF model extended from the VNIR domain can simulate shadowing
effects well [37,39]. The Vinnikov model has the emissivity kernel, which is an important difference
from the other two models. For low LAI and an erectophile LIDF canopy, the shadowing effect is
weak but the emissivity directionality is significant [14]; this may lead to a clearly better performance
from the Vinnikov model. On the other hand, the RL and BRDF models are based on the circular
crown assumption [37,39]. This feature may also restrict their ability on a low LAI and erectophile
LIDF canopy.
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Hu et al. [40,41] suggested that two different kernel groups be used for different LAIs to improve
the ability of the BRDF model. However, estimating the LAI accurately is not an easy task in practice
and would also bring more parameters into the model. Moreover, the RL model cannot be easily
inverted because of its exponential formula [41]. In some cases, a multidimensional unconstrained
nonlinear optimization procedure can even generate an unrealistic ∆T which has a clear physical
meaning. Based on robustness, simplicity, and the significant advantage for a low LAI and erectophile
LIDF canopy, we recommend using the Vinnikov model to simulate directional thermal radiation.

It should be noted that all analyses above using simulations are based on the 4SAIL model.
Evaluation results are therefore influenced by the accuracy of the 4SAIL model, which is a limitation
of this study. Moreover, the 4SAIL model is suitable for turbid canopy. Evaluation for performance
on discrete canopies, such as discontinuous savanna canopy using the modified geometric projection
(MGP) model [42] and sparse vegetation using the DART model [13], are intended as further work.

4.2. Evaluation Using Airborne Data

As mentioned in Section 2.2, the least number of simultaneous observations for the same pixel is
6. Therefore, we can fit the three models for every pixel and then evaluate their performances. For
two different observations T1 and T2, the RL model can be expressed as

T1 − T2 = ∆THS


[
e−k f1 − e−k tan θs1

]
[
1− e−k tan θs1

] −

[
e−k f2 − e−k tan θs2

]
[
1− e−k tan θs2

]
 (23)

the BRDF model turns out to be

T1 − T2 = fvol ·[kvol(θv1 , θs1 , ϕ1)− kvol(θv2 , θs2 , ϕ2)] + fgeo·
[

kgeo(θv1 , θs1 , ϕ1)− kgeo(θv2 , θs2 , ϕ2)
]

(24)

and the Vinnikov model becomes

T1 − T2 = A·[T2·ϕ(θv1)− T1·ϕ(θv2)] + D·[T2·ψ(θv1 , θs1 , ϕ1)− T1·ψ(θv2 , θs2 , ϕ2)] (25)

where subscripts 1 and 2 denote different observations. Similar to in the simulation evaluation,
ordinary least squares linear regression without the intercept was used to solve the BRDF model and
the Vinnikov model, and a nonlinear optimization procedure was used to calculate the RL model.
As Figure 6 shows, the RRMSEs of the six sites are approximately 2–6% and the RMSEs are less than
1 K (except for Site 1), which also illustrates that the three models can simulate directional anisotropy
well. Similar to the findings from the simulations, there is a clear tendency of the Vinnikov model to
perform better than the BRDF model, and the BRDF model is better than the RL model. Synthesizing
the RMSE and RRMSE, we find that the fitting accuracy decreases from herb plants (wheat and maize),
to woody plants (sea buckthorn and orchard), to bare soil, to settlement. The performance on bare
soil of the parametric models is poor, which is consistent with the low LAI case from the simulations.
It is worth noting that wheat and maize have a higher LAI (see Table 1) but a better fitting accuracy
than sea buckthorn and orchard, which is inconsistent with the result from simulations. Sea buckthorn
and orchard have more complex canopy structures, such as plant height, plant spacing, and even
three-dimensional structure, which is more significant for settlement. The canopy parameters can also
exert an influence on thermal radiation anisotropy [9,11,42] and therefore restrict the capability of the
three parametric models.

4.3. Evaluation Using Satellite Data

Along with at the canopy scale, parametric models were calibrated for each land cover type at the
pixel scale. Then, all LSTs were corrected to nadir observation using calibrated models. We selected the
root mean square differences (RMSD) between MODIS and AATSR LST as the assessment index
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for model evaluation. A low RMSD means high comparability between the two products and
good performance of the parametric model. The evaluations were conducted in two different ways:
verification and validation. The LST multi-angle dataset was randomly divided into two parts in
which one was 2/3 of the total and the other was 1/3. We used the 2/3 dataset to verify the models
and obtain coefficients. Then, the coefficients are applied as reference and the remaining 1/3 dataset
was used to validate the parametric models.

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 

 

1 1 2 2

1 2

tan tan

1 2 tan tan
1 1

s s

s s

k kkf kf

HS k k

e e e e
T T T

e e

θ θ

θ θ

− −− −

− −

    − −    − = Δ − 
    − −        

 (23) 

the BRDF model turns out to be 

1 1 2 2 1 1 2 21 2 1 2 1 2( , , ) ( , , ) ( , , ) ( , , )vol vol v s vol v s geo geo v s geo v sT T f k k f k kθ θ ϕ θ θ ϕ θ θ ϕ θ θ ϕ   − = ⋅ − + ⋅ −     
(24) 

and the Vinnikov model becomes  

1 2 1 1 2 21 2 2 1 2 1 1 2( ) ( ) D ( , , ) ( , , )v v v s v sT T A T T T Tϕ θ ϕ θ ψ θ θ ϕ ψ θ θ ϕ   − = ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅     
(25) 

where subscripts 1 and 2 denote different observations. Similar to in the simulation evaluation, 
ordinary least squares linear regression without the intercept was used to solve the BRDF model and 
the Vinnikov model, and a nonlinear optimization procedure was used to calculate the RL model. As 
Figure 6 shows, the RRMSEs of the six sites are approximately 2–6% and the RMSEs are less than 1 K 
(except for Site 1), which also illustrates that the three models can simulate directional anisotropy 
well. Similar to the findings from the simulations, there is a clear tendency of the Vinnikov model to 
perform better than the BRDF model, and the BRDF model is better than the RL model. Synthesizing 
the RMSE and RRMSE, we find that the fitting accuracy decreases from herb plants (wheat and 
maize), to woody plants (sea buckthorn and orchard), to bare soil, to settlement. The performance on 
bare soil of the parametric models is poor, which is consistent with the low LAI case from the 
simulations. It is worth noting that wheat and maize have a higher LAI (see Table 1) but a better 
fitting accuracy than sea buckthorn and orchard, which is inconsistent with the result from 
simulations. Sea buckthorn and orchard have more complex canopy structures, such as plant height, 
plant spacing, and even three-dimensional structure, which is more significant for settlement. The 
canopy parameters can also exert an influence on thermal radiation anisotropy [9,11,42] and therefore 
restrict the capability of the three parametric models. 

 
Figure 6. RRMSE of anisotropy fitting error for each site using the airborne dataset. 

4.3. Evaluation Using Satellite Data 

Along with at the canopy scale, parametric models were calibrated for each land cover type at the 
pixel scale. Then, all LSTs were corrected to nadir observation using calibrated models. We selected the 
root mean square differences (RMSD) between MODIS and AATSR LST as the assessment index for 
model evaluation. A low RMSD means high comparability between the two products and good 
performance of the parametric model. The evaluations were conducted in two different ways: 
verification and validation. The LST multi-angle dataset was randomly divided into two parts in which 

Figure 6. RRMSE of anisotropy fitting error for each site using the airborne dataset.

The result is shown in Figure 7. Firstly, removing system error can dramatically decrease the
RMSD between two LST products and angular correction can further improve their comparability.
Whether verification or validation, models have the same results, which indicates that the three
parametric models are stable. For most land cover types, the three models have similar effects.
However, in the deciduous broadleaf forest (land cover Class 4), savannas (land cover Classes 8 and 9),
grassland (land cover Class 10), cropland (land cover Class 14) and barren or sparsely vegetated (land
cover Class 16), the Vinnikov model is better than the other two models. This result is consistent with
results from the canopy scale that the Vinnikov model has the best ability in dealing with erectophile
canopy (savannas and grassland) and low LAI (barren or sparsely vegetated).
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5. Application

From the above analysis, we conclude that the Vinnikov model can obtain more accurate and
robust results at both canopy and pixel scales. For this reason, we applied this model to LST angular
correction. The LST is extremely dependent on the viewing and illumination geometries, topography,
and land cover type [22]. Because of the spatial homogeneity step during the development, the LST
multi-angle dataset at LEO satellite scale mainly consists of relatively flat and homogeneous pixels [35].
Therefore, topography is not considered in this study. For each land cover type, the coefficients A and
D in Equation (18) can be obtained through an ordinary least squares linear regression method using
the LST multi-angle dataset.

From Table 3, one can see that the values of A are negative. There is a decrease in emissivity as
the VZA increases, and the feature of emissivity will lead to a higher LST value retrieved for fixed
emissivity [34]. Therefore, A is negative so that the emissivity kernel can reduce this effect. For land
cover Classes 4, 8, 9, 10, 14, and 16 where the Vinnikov model has better performance, there are relatively
bigger absolute values of A, suggesting a more significant emissivity effect. Using Spinning Enhanced
Visible and Infrared Imager (SEVIRI) and MODIS LST products over four years, Ermida et al. [20]
pointed out that positive values of D contribute to a decrease of the LST when VZAs deviate from
nadir, except for the hotspot effect. However, coefficient D is negative for land cover Classes 0, 1, 4,
7, and 16. For bare soil (Class 16), there may be no hotspot effects owing to weak shadowing effects.
For other land cover classes (Classes 0, 1, 4, and 7), hotspot effects may not have been observed due to
insufficient resamples. The two cases can lead to the maximum LST appearing in nadir and a negative
D. Moreover, evergreen broadleaf forest (Class 2), woody savannas (Class 8), savannas (Class 9) and
cropland/natural vegetation mosaic (Class 14) have a relatively bigger D (≥0.004), and grassland
(Class 10) and bare soil (Class 16) have a relatively smaller D (±0.0005). This result is consistent with
that of Ermida et al. [20] that there is a more significant shadowing effect on the heterogeneous area
characterized by tree (or tall shrubs) coverage than on the homogeneous areas (bare ground or highly
dense forests). Ermida et al. also analyzed the relationship between topography and percentage of tree
cover (PTC) and D pixel-by-pixel benefit from enormous matched points. We do not have the relative
PTC data and cannot conduct a more detailed analysis; this is a limitation in our study.

Table 3. Specification of the Vinnikov model for different land cover classes.

Land Cover
Class A D Number

of Points
RMSE

(K)
Land Cover

Class A D Number
of Points

RMSE
(K)

0 −0.0067 −0.0015 18,073 0.85 8 −0.0178 0.0044 33,697 1.14
1 −0.0068 −0.0002 3284 0.72 9 −0.0175 0.0045 59,706 1.35
2 −0.0173 0.0046 47,542 0.91 10 −0.0228 0.0005 78,303 1.62
3 −0.0102 0.0034 15,485 0.79 11 −0.0115 0.0024 22,325 0.87
4 −0.0214 −0.0023 5602 0.98 12 −0.0184 0.0022 40,985 1.44
5 −0.0093 0.0016 34,211 0.86 14 −0.0279 0.0041 32,568 1.57
7 −0.0045 −0.0078 5612 0.84 16 −0.0209 −0.0005 250,395 1.42

Firstly, we applied the Vinnikov model and coefficients in Table 3 to the MODIS LST at SURFRAD
stations. Before the angular correction to nadir observation, the MODIS LST was lower than the
SURFRAD-measured LST, and the RMSE and bias were 2.47 K and−2.05 K, respectively (see Figure 8a).
After angular correction, the MODIS LST was improved effectively and the RMSE and bias decreased
to 1.58 K and −0.39 K (see Figure 8b).

Then, the MODIS LST at 08:00 on 25 June 2011 (UTC) was used to exemplify the performance of
the Vinnikov model. Figure 9a displays the MODIS LST before angular correction and Figure 9b is
the result of LST correction to nadir. A comparison of Figure 9b with Figure 9a shows that the spatial
variations in the LST after angular correction appeared to be more uniform than those in the LST before
angular correction. Figure 9c presents differences between the LST before and after angular correction,
which range from 0 to 5 K. Because the effects of SZA and RAA are very small in a swath of MODIS,
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only VZAs are shown (Figure 9d). A comparison of Figure 9c with Figure 9d indicates that the LST
differences are highly related to the VZA.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 19 
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6. Discussion

By using a SCOPE-simulated anisotropy dataset with six LAIs (0.5, 1, 1.5, 2, 3, 5) and four hotspot
parameters (0.01, 0.05, 0.1, 0.5) for spherical LIDF, Duffour et al. [17] compared the RL model and
the Vinnikov model. They revealed that the RL model is more efficient than the Vinnikov model
at simulating TIR anisotropy, particularly close to the hotspot. Except for the differences between
4SAIL and SCOPE, there are two main reasons for this slight inconsistency. Firstly, the foci of the
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two studies are different. Duffour et al. [17] paid attention to different hotspot effects while we account
for different LIDFs. For the same canopy structure, as Figure 5a shows, the RL model is better than the
Vinnikov model when the LAI is greater than 2; this is consistent with the results of Duffour et al. [17].
Secondly, as a purely empirical model, the Vinnikov model does not consider the ‘distance’ between
the sun and view directions (Equation (2) for the RL model and Equation (14) for the BRDF model).
Failure to consider such a term may severely limit the Vinnikov model’s ability to simulate the hotspot
anisotropy [17]. However, the hotspot effect in the TIR domain is not conclusive. Duffour et al. [16]
indicate that (1) literature about the hotspot effect essentially deals with the VNIR domain, and values
reported display a large range of variation; (2) experimental data are too scarce to be fully confident
about the hotspot effect that may be assigned in TIR; (3) the hotspot effect can be set from several
definitions. For these reasons, we do not analyze the sensitivity of the parametric models to the hotspot
effect by prescribing different hotspot parameters as did Duffour et al. [17].

The quality of reference datasets plays a vital role in the evaluation of parametric models.
The 4SAIL model and the WiDAS dataset have been successfully applied to many relevant studies,
i.e., directional thermal radiative simulation [14,43], LST angular normalization [44], and component
temperature separation [21,45]. For the pixel scale, the LEO satellite LST multi-angle dataset in the
study is the first of its kind. On the one hand, similar to the previous GEO satellite LST multi-angle
dataset [4,20,22], the LEO satellite LST multi-angle dataset has the following uncertainties: (1) The
emissivity uncertainty. The MODIS LST uses a fixed emissivity and the AATSR LST uses the land
cover type and FVC to implicitly consider the emissivity. The land emissivity has directional behavior
which is also influenced by the FVC and cavity effects [34,46]. Although the retrieval algorithms of
MODIS LST and AATSR LST are viewing angle dependent, the emissivity anisotropy has not been
fully considered. Moreover, emissivity differences between the two LST products can also affect the
coefficients of the parametric models [20]. However, the difference cannot be analyzed quantitatively
using the LEO satellite LST dataset because the AATSR LST lacks explicit emissivities. (2) The LST
uncertainty. The uncertainty has various sources, i.e., the difference in observation areas at different
viewing angles, the LST variation between two different observation times, and atmospheric correction
errors. Generally, these uncertainties would become higher and have more significant influence with
higher LSTs. On the other hand, unlike in previous studies, the model evaluation is based on the land
cover type rather than the pixel. Differences within the same land cover type can also increase the
uncertainty of the dataset.

In this study, five steps were set for establishment of the dataset. Among them, spatial collocation
and temporal concurrence are used to reduce temporal–spatial differences between the two LST
products; spatial homogeneity is used to reduce differences within the same land cover type; and
LST quality control and systematic difference removal are used to reduce atmospheric and emissivity
effects. Comparison results at the pixel scale are agreeable with the canopy scale. Parameters A and D
show features identical to those in the findings of Ermida et al. [20]. All the results suggest that the
LEO satellite LST multi-angle dataset is valid for analyzing the parametric models.

Nevertheless, there are still two intrinsic defects owing to data characteristics. The first one is
the angular asymmetry between the MODIS LST and the AATSR LST. Unlike MODIS LSTs for which
VZAs are from 0 to 65◦, the range of VZAs of AATSR LSTs is only from 0 to 22.5◦. Therefore, all linear
regression models for system error correction are, in theory, only appropriate for the small angle range
of AATSR LSTs. This angular asymmetry may affect the results of the above evaluation. However,
it is impossible to assess the impact subject to AATSR characteristics. Secondly, MCD12Q1 is a yearly
land cover type product. There are different thermal radiation directional signatures during different
seasons and growing periods even for the same land cover type [22]. Unfortunately, the seasonal effect
cannot be assessed using the MCD12Q1 product, which is another limitation of this study. One solution
for solving these problems is to apply new satellite products—for example, using LSTs with large
scanning angles and daily surface type products from visible infrared imager radiometer sensors
(VIIRSs) or other possible satellites in joint polar satellite systems (JPSSs).
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7. Conclusions

This paper evaluated the performance of three parametric directional thermal radiation
models—the RL model, the BRDF model, and the Vinnikov model—at canopy and satellite scale
using different data sources. Specially, at canopy scale, two different datasets were used: one was
an extensive simulated dataset which consisted of 16 different canopy structures by prescribing
4 LIDFs and 4 LAIs; the other was an airborne multi-angle dataset including settlement, wheat, maize,
orchard, sea buckthorn, and bare soil derived from WiDAS images. The evaluation showed that
the Vinnikov model had the best accuracy and robust ability, particularly for erectophile canopy or
low LAI. The accuracies of the three models firstly improved and then declined with increasing LAI,
and the best performance occurred for LAI between 1 and 2. The three models could not describe
the hotspot anisotropy very well and were also restricted by other parameters, such as plant height,
plant spacing, and three-dimensional structure. At pixel scale, the first LEO satellite LST multi-angle
dataset was established by combining MODIS and AATSR products. Whether in verification or
validation, the three models presented a stable effect. However, the Vinnikov model had the best result
in the erectophile canopy (savannas and grassland) and low LAI (barren or sparsely vegetated) areas,
which was consistent with the results at the canopy scale. For this reason, we calibrated the Vinnikov
model according to different land cover types to correct the MODIS LST product. Validation using
SURFRAD-measured LSTs indicated that angular correction could reduce the RMSE of 0.89 K and bias
of 1.66 K, respectively. In addition, the corrected result showed better spatial uniformity and higher
angular correlation.

The three parametric models are based more or less on the knowledge of directional behavior of
the VNIR domain. Indeed, sunlit/shaded elements have different radiations, resulting in different
temperatures in the TIR domain. However, thermal radiation has inertia effects and the temperature
differences have a certain lag with the moving sun, which is distinct from the VNIR domain. Though
the three parametric models each present a good performance in this study, inertia effects still require
further research and interpretation. In addition, validations of the three parametric models for
discontinuous savanna canopy and sparse vegetation using unmanned aerial vehicle multi-angle
observations or using new LEO satellites will be conducted in future work.
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