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Abstract: X-band marine radars can be exploited to estimate the sea state parameters and surface
current. However, to pursue this aim, they are set in such a way as to radiate a very short pulse to
exploit the maximum spatial resolution. However, this condition strongly limits the use of radar
as an anti-collision system during navigation. Consequently, a continuous change of radar scale
is needed to perform both the operations of waves and current estimations and target tracking
activities. The goal of this manuscript is to investigate the possibility of using marine radar working
in a medium pulse mode to estimate the sea state parameters and surface current, while assuring
suitable anti-collision performance. Specifically, we compare the capabilities of the X-band radar for
sea state monitoring when it works in short and medium pulse modes and we present the results
of a comparison based on data collected during two experimental campaigns. The provided results
show that there is good agreement about the estimation of wave parameters and the surface current
field that make us hopeful that, in principle, it is possible to use the medium pulse mode to achieve
information about sea state with a reasonable degradation.
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1. Introduction

Marine radars are usually deployed for surveillance purposes, i.e., for the detection and tracking
of targets to avoid possible collisions in shipping routes. The working frequencies for marine radars
are X-band (9.4 GHz) and S-band (3 GHz), with wavelengths of about 3 cm and 12 cm, respectively.

In recent decades, X-band marine radar has been also employed as a remote sensing tool for sea
state monitoring, not only on ships [1–6] but also in coastal areas [7–13]. The wavelength of X-band
radar signal is approximatively equal to the wavelength of ripples present on the sea surface when
a wind speed higher than 3 m/s is present. In this case, electromagnetic waves interact with the sea
waves of similar wavelength [14] and this interaction generates backscattered radar echoes [15].

However, the use of X-band marine radar for sea wave monitoring has two main drawbacks: (i) the
radar signal in X-band can be significantly attenuated by rainfall; and (ii) the effectiveness of the radar
for sea state monitoring is well assessed for short range, which is not suitable for navigation purposes.

As a solution to the first drawback, the use of a S-band radar has been proposed in [16] where it has
been shown that in the presence of rain, the use of a S-band radar provides performance comparable
to that provided by X-band radar in terms of the significant wave height estimation. This is possible
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because S-band radar signal is not significantly attenuated by rain since the involved electromagnetic
wavelengths are longer than those of X-band radar signals. Moreover, this implies that S-band radars
can cover wide areas with a radius from 6 to 12 nautical miles.

An alternative solution for the second drawback is proposed in this paper, wherein X-band radar
working in medium pulse mode is considered instead of that operating in short pulse mode.

By looking in detail, X-band marine radars operating at the two working modes radiate short
and medium pulses with typical time duration of about 60 ns and 250 ns, respectively. The short
pulse configuration allows sea state monitoring at a short range (up to 3 nautical miles) with a high
spatial resolution (for a 60 ns short pulse, a “theoretical” spatial resolution of about 10 m is achieved).
Therefore, the use of a short pulse is suitable for an accurate estimation of the sea state parameters
and allows detection of sea waves with short wavelength (about 20 m). Conversely, the medium pulse
configuration, whose performance in the estimation of sea state parameters is herein investigated,
allows, in principle, a spatial resolution of about 40 m and thus the detection of sea waves with a
minimum theoretical wavelength of about 80 m.

According to previous considerations, the choice of short or medium pulse mode is a trade-off
between the counteracting aims of surveillance/navigation (long range) and sea state monitoring
(short range).

The main contribution of this work is to provide a first proof of the feasibility of X-band radar
in medium pulse mode for sea state monitoring. In particular, we present an analysis that permits
assessment of the differences between the two pulse modes and analysis of the performance in the
medium pulse system mode. This analysis is performed through a comparison of the performance
achievable by means of the medium pulse mode and the short pulse mode, by processing data
collected during three measurement campaigns at Cape Granitola harbor (Sicily, Southern Italy).
These campaigns were carried out on 20 September 2015, 9 February 2017 and 2–3 April 2017.
During these campaigns, radar datasets were collected by alternating unevenly the short pulse mode
(62 datasets) and the medium pulse mode (48 datasets). The gathered datasets were processed by means
of the inversion strategy presented in [1,17,18], which is based on the “Local Method” procedure [9,10].
The performance of the adopted inversion strategy has already been evaluated in short pulse mode by
comparing the reconstructed bathymetric and surface current maps with the ground truth provided
by in situ measurements [7–10,19]. This previous analysis corroborated reports that the method can
provide robust and accurate reconstruction of the bathymetry and surface current map [8–10].

The paper is organized as follows. In Section 2, we describe the test site and a brief presentation
of the data processing that is provided. Section 3 is devoted to the presentation of the results provided
by the marine radar working in medium and short pulse modes, while a discussion about the achieved
performance is given in Section 4. Conclusions end the paper.

2. Materials and Methods

The data were collected by a wave radar system located at Cape Granitola harbor (Lat = 37◦34′19.70′′N;
Lon = 12◦39′33.45′′E), in Sicily (Italy) (see Figure 1). The system was installed on an ancient water
tank at the Istituto per l’Ambiente Marino Costiero (IAMC) of the Italian National Research Council
(CNR), at a height of 15 m above the sea level. The marine radar is equipped with a 9 feet (2.74 m) long
Consilium Selesmar antenna able to transmit electromagnetic pulses in X-band with a peak power of
25 Kw and includes an analog-to-digital (AD) converter, used for the received signal. For both pulse
modes, the radar signal was acquired in polar coordinate (range, azimuth) and after was interpolated
on a 1024 × 1024 pixels Cartesian grid with a pixel spacing of 4.48 m along both the spatial coordinates
(∆x, ∆y). The radar images were stored by using a 13-bit unsigned integer format. The single radar
dataset is composed of 64 radar images collected with a time step of 2.39 s between two successive
images. The time step corresponds to the antenna rotation time (∆t).

Table 1 summarizes the working parameters of the radar system. The estimation of the surface
current and the sea-state reconstruction was achieved by means of the inversion scheme described
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in [7–10]. The core of the reconstruction strategy is the Normalized Scalar Product (NSP) approach [18]
able to estimate the surface current and bathymetry jointly.
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Figure 1. Point (R) indicates the position of the wave radar system in Cape Granitola site and the
triangle indicates the meteorological station of the network SIAST.

Table 1. Parameters of the radar survey.

System Parameter
Values

Short Pulse Mode Medium Pulse Mode

Pulse duration 60 ns 250 ns
Spatial resolution ~10 m ~40 m

Antenna rotation period (∆t) 2.39 s 2.39 s
Spatial image spacing (∆x and ∆y) 4.48 m 4.48 m

Minimum range 250 m 250 m
Maximum range 2296 m 2296 m

Processed images number for a sequence (N) 64 64
Antenna height above sea level ~15 m ~15 m

View angular sector 110◦ 110◦

In particular, the NSP method is based on the maximization of the normalized scalar product
between the amplitude of the radar spectrum, here denoted with
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where
〈∣∣∣FI

(
k, ω

)∣∣∣, G
(

k, ω, U, h
)〉

denotes the scalar product between the functions FI(·), and PFI

denotes the power of FI(·). Let us observe that G(·) has a unitary power.
In the present work, we estimate only the surface current whereas the bathymetry of the

investigate area is assumed known and provided by a previous measurement campaign [20].
The bathymetric map is depicted in Figure 2.
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Figure 2. Bathymetry map of the investigated area.

The knowledge of surface current is a key point in the inversion procedure to extract the linear
components of the gravity waves from the image spectrum. In fact, an incorrect estimation of the sea
surface current leads to an incorrect spectral filtering, with a detrimental effect on the estimation of the
sea state parameters in terms of wave period, wavelength, wave direction of the dominant waves and
significant wave height [18].

In [7,8], the authors proposed the “Local Method”, which improved the original version of
the NSP method [18], with the aim to reconstruct spatially inhomogeneous current and sea surface
current fields. Such a method relies on the spatial partitioning of the investigated region into partially
overlapping patches, within which the local estimation of the surface current is performed [21].

The reconstructed sea surface current is exploited to define the Pass-Band (PB) filter, whose output
is the useful sea signal cleaned by the noise, FPB

(
kx, ky, ω

)
. Afterwards, the 3D sea-wave spectrum is

obtained from this filtered radar spectrum through an equalization step based on the radar Modulation
Transfer Function (MTF) [17]; see Equation (3).

Fw
(
kx, ky, ω

)
= γ·MTF·FPB

(
kx, ky, ω

)
(3)

where γ is a calibration factor, obtained by exploiting data provided by external sensor such as wave
buoy, while the MTF is defined as for the sea state monitoring in the coastal area in front of Giglio
Island [7,19] and reported in Equation (4).

MTF ∝

{
k2 f or k > π/30

k−1.8 f or π/30 ≤ k
(4)
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So, defining the MTF allows us to mitigate the distortions introduced in the radar imaging
process [22–25]. It worth noting that in this measurement campaign, the same MTF has been adopted
for both the working modes.

Starting from the reconstructed 3D sea wave spectrum Fw
(
kx, ky, ω

)
, it is possible to compute

the (2D) directional spectrum and derived parameters, such as: peak wavelength (λp), peak direction
(θp) and peak period (Tp) of the dominant wave, and significant wave height Hs. In addition,
the wave radar system also allows the estimation of the mean spectral parameters, such as: mean
angular frequency (ωM), mean wavenumber (kM) as reported in Table 2. By the mean spectral
parameters, the mean period (TM), mean wavelength (λM) and mean direction (θM) can be retrieved [6].
The significant wave height Hs is computed through Equation (5) [17,26].

Hs = 4

√√√√∫
k,ω

Fw
(
kx, ky, ω

)
dkxdkydω (5)

Finally, the spatial-temporal sea wave sequence can be reconstructed from the 3D sea-wave
spectrum by exploiting the IFFT (Inverse Fast Fourier Transform) technique.

Table 2. Expression of the relevant mean spectra parameters.

Mean Parameters Definitions

ωM
2π
TM

=
∫ 2π

0

∫ ∞
0 f Fw( f , θ) d f dθ∫ 2π

0

∫ ∞
0 Fw( f , θ) d f dθ

kM
2π
λM

=
∫ 2π

0

∫ ∞
0 |k|Fw(k, θ) dk dθ∫ 2π

0

∫ ∞
0 Fw(k, θ) dk dθ

θM arctan(s0/c0)

c0
∫ 2π

0

∫ ∞
0 Fw( f , θ) cos θ d f dθ

s0
∫ 2π

0

∫ ∞
0 Fw(f, θ) sin θ d f dθ

3. Results

This section presents the results obtained from the analysis of the three datasets collected on
20 September 2015, 9 February 2017, and 2–3 April 2017. The radar datasets have been acquired
with a time delay of few minutes for the two working modes, and, as stated, each dataset includes
64 consecutive radar images.

The difference between short and medium pulse modes can be observed both in the space-time
domain and in the wavenumber-frequency domain; see Figure 3a,b. These figures depict a sample
radar image (space-time domain) for the short and medium pulse mode, respectively, and allow us
to observe a different spatial resolution. In particular, the radar image acquired with the short pulse
mode (pulse duration equal to 60 ns) exhibits a range resolution of about 9 m, which increases to 35 m
if the medium pulse of about 250 ns is used. In addition, Figure 3c,d compare the spatial and the
temporal variation of the backscattering intensities along a transect (at a fixed time instant) and at a
fixed location (at a fixed point) for two pulse modes, respectively.

Figure 4a,b depict the section of the 3D radar spectrum, along the wave propagation direction,
computed from the data referring to the short and medium pulse modes respectively.

Figure 5 shows a qualitative comparison between surface current fields estimated by the data
acquired in short (left panel) and medium (right panel) pulse mode (the two acquisitions are
subsequent). This figure allows observation of a good agreement between the estimated of sea surface
current intensity and direction provided by the two pulse modes. It is worth noting that the maps in
Figure 5 are shown with respect to the radar north, which is at a 237◦ relative to geographic north.
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Figure 5. Map of the sea surface current reconstructed under the short (left panel) and medium
(right panel) pulse mode.

To make a quantitative evaluation of the differences between the surface current fields estimated
with the two different pulse lengths and shown in Figure 5, we computed the mean standard deviation
(σ) and relative mean error (µ) of the intensity (I) and direction (θ) of the point-by-point difference
between the surface currents maps in short and medium pulse modes. These quantities are given in
Table 3.
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Table 3. Relative mean error and standard deviation of the intensity and direction of sea surface
currents maps difference between short and medium pulse modes.

σI σθ µI µθ

9 February 2017
0.12 m/s 41.6◦ 0.01 m/s 4.6◦19:21 (short) 19:12 (medium)

2 April 2017
0.084 m/s 67.3◦ −0.05 m/s 21.5◦15:09 (short) 15:17 (medium)

3 April 2017
0.084 m/s 59.8◦ −0.1 m/s 3.7◦12:26 (short) 12:40 (medium)

Figure 6a,b depict the comparison of the surface current parameters in terms of mean intensity
and mean direction, computed over the whole field of view, for all considered dataset. The mean
current direction has been georeferenced with respect to geographic north.
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Upper panels of Figure 7 show the 2D directional spectra achieved from the reconstructed
sea-wave for the short (left panel) and medium (right panel) pulse mode, respectively; the comparison
between the 1D frequency spectra is depicted in the bottom panels of Figure 7.
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dominant wave, and significant wave height, estimated in both pulse modes, are shown in
Figures 8–10, respectively.
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4. Discussion

The results presented in Section 3 show that there is a good agreement between the sea state
parameters estimated in short and medium pulse modes. In particular, Figures 8 and 9 show that,
apart from few time points, the sea state parameters, in terms of mean wave direction (θM) and mean
wave period (TM) obtained from the data collected by using pulse modes show the same behavior.

The main discrepancies concern the estimation of intensity and direction of the sea surface current
as well as the estimation of the significant wave height (see Figures 6a,b and 10). These results can
be explained considering the different spatial resolution related to the two pulse modes. In fact,
from the radar image shown in Figure 3b one can clearly observe that the medium pulse mode,
due to the low spatial resolution, fails to discriminate sea waves when they approach the coast with
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respect to ones acquired in short pulse mode (see Figure 3a). This occurs because, if the water depth
decreases, the interaction of sea wave with the sea bottom gives rise to an increased wave height and a
decreased wavelength.

In addition, the “wave” acquired in medium pulse mode are wider and smoothed (see Figure 3c)
and have larger intensity (see Figure 3d) than those referred to in the short pulse mode. Hence,
the medium pulse mode is not able to capture phenomena characterized by a high spatial variability.

The above observations are coherent with the fact that, in the wavenumber-frequency domain,
the relevant spectral energy of the data acquired by using the short pulse mode is spread in a wider
wavenumber domain with respect to its counterpart related to the medium radar pulse (see Figure 4a,b).
The absence of spectral components at high wave numbers, when the radar is configured in medium
pulse mode, involves a slight over/under-estimation of the sea surface current intensity, which is
comparable with the sensitivity of the wave radar (see Figures 5 and 6a) [27].

This phenomenon can be also observed both in 2D directional spectra and in 1D frequency
spectra; see Figure 7. In particular, 2D directional spectra obtained in the short pulse mode have a
larger bandwidth along the wavelength direction with respect to the spectra associated with medium
pulse mode, while the 1D frequency spectra highlight the poor performance of the medium pulse in
capturing the higher spatial variability the sea wave phenomena.

It is worth noting that the data on 9 February 2017 and 2 April 2017 have been acquired in “gentle
breeze” sea conditions (Beaufort scale), i.e., significant wave height Hs < 1 m; see Figure 10. These sea
conditions involve a high level of clutter in the radar images and consequently a wave spectrum power
comparable to the noise spectrum power at low wavenumbers. In addition, the wave radar, installed at
Cape Granitola and adopted for the presented measurement campaigns, is affected by non-appropriate
tuning procedures, which degrades the radar images acquired both in medium and short pulse mode.
Consequently, a greater intensity of the 2D directional spectra is possible to observe especially for the
data acquired in “gentle breeze” sea conditions (see Figure 7).

The low sensitivity of the medium pulse mode in capturing the higher spatial variability of the sea
wave phenomena can be explained in term of theoretical frequency cutoff (fc) computed in the function
of minimum theoretical wavelength detectable in both pulses modes. Figure 11 shows the curves
of wave period (T) in the function of the bathymetry for theoretical values of minimum wavelength
(λmin) detectable in short (blue line) and medium (red line) pulse modes, together with the theoretical
curve of the deep-water cutoff (black dashed line). In particular, it is possible to obtain a theoretical
frequency cutoff equal to fc = 0.29 Hz (T = 3.4 s) and fc = 0.14 Hz (T = 7.1 s) for the short and medium
pulse mode, respectively. Consequently, the medium pulse mode has a low sensitivity for detecting
sea state with wave period lower than of 7 s.
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Before discussing the discrepancy concerning the significant wave height Hs, it is worth noticing
that the radar image, acquired by the wave monitoring system, is not the direct representation of
the sea surface due distortion occurring in the electromagnetic scattering phenomenon. In particular,
the intensity of the received signal is mostly related to the electromagnetic backscattering of the sea
surface rather than to the sea wave elevation [17,23]. Accordingly, the function Fw

(
kx, ky, ω

)
retrieved

from the analysis of the radar data represents a “scaled version” of the actual sea wave spectrum.
Therefore, a calibration stage is required; see Equation (3).

As far as the short pulse mode is concerned, the calibration stage has already been carried out
during previous campaigns [27,28]. In this paper, we use the calibration factor γ adopted in [27,28] to
estimate the significant wave height Hs by using both short and medium pulse modes; see Figure 10.

The two estimated Hs have the same behavior, apart a multiplicative factor, and this difference is
due to the different power radiated by the radar in the two considered pulse modes. In fact, the radar
transmits a greater power in the medium pulse mode (see Figure 3d) and this translates into a larger
radar spectrum intensity and in a larger Hs. This suggests the adoption of a new calibration factor for
the medium pulse, which is equal to the calibration factor of the short pulse mode multiplied by a given
factor. In particular, for the adopted wave radar system, this multiplicative factor is 0.65. This value
has been obtained as the ratio between the mean power intensity received in short and medium pulse
mode. Consequently, this calibration factor can be used for future acquisitions in medium pulse mode
without a further calibration step, if the radar data acquired in the short pulse mode are available
and calibrated.

Indeed, by computing in such a way γ, we achieve a good agreement between the two pulse
modes, as shown by Figure 10, wherein the red crosses represent the Hs values referred to the medium
pulse mode with the new calibration factor.

For completeness of the results, the mean and standard deviation of all mean spectral parameters
retrieved during each measurement campaign have been computed and reported in Table 4.

Table 4. Mean and standard deviation of the mean sea state spectral parameters obtained for each
measurement campaign.

TM (Short) TM (Medium) θM (Short) θM (Medium) Hs (Short) Hs (Medium)

20 September 2015

Mean 9.0 s 9.0 s 266◦ 270◦ 2.3 m 2.3 m
St dev 0.2 s 0.2 s 2◦ 1.5◦ 0.2 m 0.2 m

9 February 2017

Mean 10 s 10 s 252◦ 261◦ 0.5 m 0.7 m
St dev 0.02 s 0.04 s 19◦ 15◦ 0.2 m 0.1 m

2 and 3 April 2017

Mean 8.7 s 8.6 s 262◦ 266◦ 0.9 m 0.8 m
St dev 1.1 s 1.1 s 14◦ 14◦ 0.3 m 0.2 m

Table 4 and Figure 8 show that the mean wave direction is about 270◦ for all the considered period.
This phenomenon can be explained by considering Figure 12, which shows the polar graphic of the
density of the wind direction observed in the Cape Granitola site during the years 2015 and 2017. In fact,
in this area for most part of the year, the wind blows from the NN-NW-NE (see Figure 10) and the mean
wind direction differs from the direction of dominant waves due to the phenomenon of refraction,
which causes rotation of about 30◦ to the waves that approach the coast [29]. The wind data were
provided by the meteorological station of the network SIAS (Servizio Informativo Agrometeorologico
Siciliano) of Mazara del Vallo, at about 13 km far from the experiment site (see Figure 1) (data available
at http://www.sias.regione.sicilia.it/frameset_rete_new.htm).

http://www.sias.regione.sicilia.it/frameset_rete_new.htm
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5. Conclusions

In this manuscript, we have presented a proof of feasibility of sea state monitoring from data
collected in medium pulse mode. To evaluate the reliability of sea state parameters and surface current
fields retrieved from data collected in medium pulse mode, we have compared them with estimations
provided by data collected in short pulse mode, which are considered as ground-truth.

By means of the “Local Method” procedure, we have processed the radar data acquired during
three different measurement campaigns. The surface current estimations achieved under the two
pulse modes exhibit small discrepancies, which are comparable with the sensitivity of the wave radar.
On the other hand, as far as sea state parameters are concerned, the results obtained with the data
collected in medium pulse mode have the same behavior of those referred to in the short pulse mode.

A specific focus has been given to significant wave height estimation, where a calibration factor,
obtained as the ratio between the mean power intensity received in short and medium pulse mode,
was exploited for the medium pulse data.

The analysis here presented is encouraging and made us confident that effective sea state
monitoring is possible to obtain, at least for the tested conditions, when medium pulse mode
is exploited.

However, due to the limited amount of data and environmental conditions considered in this
work, further field tests are needed and are addressed as further work. These tests will allow us to
continue with the performance comparison and be sure that the medium pulse mode can be adopted
for effective sea state monitoring. Specifically, we are carrying out further study activity (already
under way) regarding a performance analysis in a more systematic way by considering long-term
observations under different sea state conditions and the comparison of the two pulse modes during
the navigation.
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