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Abstract: This paper evaluates the use of precipitation forecasts from a numerical weather prediction
(NWP) model for near-real-time satellite precipitation adjustment based on 81 flood-inducing heavy
precipitation events in seven mountainous regions over the conterminous United States. The study is
facilitated by the National Center for Atmospheric Research (NCAR) real-time ensemble forecasts
(called model), the Integrated Multi-satellitE Retrievals for GPM (IMERG) near-real-time precipitation
product (called raw IMERG) and the Stage IV multi-radar/multi-sensor precipitation product
(called Stage IV) used as a reference. We evaluated four precipitation datasets (the model forecasts,
raw IMERG, gauge-adjusted IMERG and model-adjusted IMERG) through comparisons against Stage
IV at six-hourly and event length scales. The raw IMERG product consistently underestimated heavy
precipitation in all study regions, while the domain average rainfall magnitudes exhibited by the
model were fairly accurate. The model exhibited error in the locations of intense precipitation over
inland regions, however, while the IMERG product generally showed correct spatial precipitation
patterns. Overall, the model-adjusted IMERG product performed best over inland regions by taking
advantage of the more accurate rainfall magnitude from NWP and the spatial distribution from
IMERG. In coastal regions, although model-based adjustment effectively improved the performance
of the raw IMERG product, the model forecast performed even better. The IMERG product could
benefit from gauge-based adjustment, as well, but the improvement from model-based adjustment
was consistently more significant.

Keywords: GPM; IMERG; satellite precipitation adjustment; numerical weather prediction; heavy
precipitation; flood-inducing storm; complex terrain

1. Introduction

Accurate measurement of precipitation is a prerequisite for understanding related hydrologic
processes. The fact that precipitation is highly discontinuous in space and time presents challenges for
obtaining accurate spatio-temporal quantification of precipitation, especially over topographically-complex
regions, due to the variability and uncertainty introduced by orographic effects [1,2]. Generally, observed
gridded precipitation datasets can be generated by three approaches: gauge data interpolation, surface
radar network and satellite-based observation.

The accuracy of gauge interpolation depends largely on gauge density and measurement quality.
Gauge locations are not homogeneously distributed; there are more gauges at low elevations and
in densely-populated areas relative to mountainous terrain because of the higher costs of gauge
installation and maintenance over complex topography. Moreover, since gauge networks around
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the world are operated by different countries, the observations are less accessible due to different
data-sharing policies. Hence, gauge-based gridded precipitation datasets usually have coarse temporal
and spatial resolutions; most global products have monthly or daily time scales and 0.25◦ to 2.5◦ spatial
resolutions [3–6].

However, for meso-scale studies of such as extreme rainfall events and related floods, precipitation
products with higher spatial and temporal resolution are required. Although surface radar networks
provide fine resolution products, the data quality is limited in complex terrain due to severe beam
blocking and strong ground clutter [7–9]. In addition, considering the expensive operating and
maintenance costs, spatial coverages of radar networks are very limited especially in mountainous or
less populated regions.

Besides surface observations, techniques of satellite-based measurements have developed
rapidly over the past 30+ years [10]. As a result, a variety of satellite-based precipitation products
is now available with quasi-global coverage, including the Tropical Rainfall Measuring Mission
(TRMM) near-Real-Time Multi-satellite Precipitation product (3B42RT) [11], the National Oceanic
and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique
(CMORPH) [12], the Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks (PERSIANN) [13], the Global Satellite Mapping of Precipitation Microwave-IR
Combined Product (GSMaP) produced by the Earth Observation Research Center (EORC) of the Japan
Aerospace Exploration Agency (JAXA) [14,15] and products of Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) [16]. Many studies indicate that these
satellite products tend to underestimate heavy precipitation over mountainous regions [17–22].

Apart from single source datasets, products with combined data sources are available, as well.
Typically, gauge observations are incorporated into raw radar or satellite products to improve
accuracy [23–25]. In fact, most satellite products mentioned above have their gauge-adjusted
counterparts [11,16,26–28]. In general, gauge-adjusted satellite products are released weeks to months
after the observation time because of the delay of high quality gauge datasets, and the accuracy
largely depends on the spatio-temporal representativeness of the gauge networks. However, over
mountainous regions, which usually have sparsely-distributed gauge networks and temporally coarser
gauge observations, there are great uncertainties about the performance of gauge-adjusted satellite
precipitation products [20,22].

To address the aforementioned disadvantages of gauge-based adjustment, Zhang et al. [29]
developed a numerical model-based technique for satellite precipitation adjustment. This technique
is designed specifically for heavy precipitation events over topographically-complex regions, where
the raw satellite products considerably underestimate heavy precipitation [20,30] and can remedy the
negative bias without gauge data input. In addition, the model-adjusted product can be generated
in near-real-time, while gauge-adjusted products are only available several months later. Previous
studies [22,31–33] have successfully applied this technique to the raw CMORPH and GSMaP products
with model simulations for severe storms over the Alps, Andes, Appalachians, Rockies and mountains
in Taiwan.

In this paper, we apply the evaluation of Zhang et al.’s [29] model-adjustment technique to the
latest near-real-time satellite precipitation product (IMERG) by incorporating an ensemble precipitation
forecast dataset produced by NCAR [34]. The study focuses on a large number of flood-inducing
storms that occurred in mountainous areas over the conterminous United States (CONUS) and is
unique relative to past studies in that it contrasts model-adjustment performance characteristics across
different complex terrain domains (coastal vs. inland) and uses model precipitation forecasts for
near-real-time adjustment of satellite precipitation datasets.

Section 2 provides information about the study regions and precipitation datasets, while Section 3
explains the methodology of model-based satellite adjustment and data evaluation. Section 4 presents
results and a brief discussion of findings from previous publications related to this topic. Section 5
presents conclusions and thoughts for future study.
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2. Study Regions and Datasets

2.1. Study Regions

The selection criteria for study regions considered both terrain complexity and annual
precipitation amounts. We picked study regions from major mountain ranges in the CONUS:
the Appalachians, Rocky Mountains, Olympic Mountains, Pacific Coast Ranges, Cascade Range and
Sierra Nevada. Each region was composed of multiple counties with complex terrain and relatively
high annual precipitation. Four of the regions (Figure 1, Regions (a), (b), (c), and (d)) were along
the Pacific coastline, where the climate is heavily influenced by the ocean and characterized by wet
winters and dry summers. The other three (Figure 1, Regions (e), (f), and (g)) were inland regions with
continental climates. Regional elevation maps are shown in Figure 2.
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USGS Shuttle Radar Topography Mission (SRTM, https://lta.cr.usgs.gov/SRTM). Data are available at
https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/North_America/.

The Western Washington region (Figure 2a) covers the Olympic Mountains and the windward
side of the North Cascade Range. The terrain has elevations ranging from 500 to 1500 m a.s.l. and
several volcanoes reaching significantly higher altitudes than the rest of the mountains. This region
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is characterized by an oceanic climate with mild temperatures in all seasons. It has relatively dry
summers, and most precipitation occurs in winter, spring and fall. The annual average precipitation
varies roughly from 1500 to 3300 mm in higher altitude areas. On the western slopes of the Olympic
Mountains, annual precipitation can exceed 4000 mm, which makes this region the rainiest in
the CONUS.

The Western Oregon region (Figure 2b) is composed of the Pacific Coast Ranges, the windward
side of the Central Cascade Range, the Northern Klamath Mountains and Willamette Valley.
The elevations of most mountainous areas range from approximately 500 to 1500 m a.s.l. Like Western
Washington, Western Oregon has an oceanic climate, with very wet winters and dry summers.
The overall annual average precipitation in Western Oregon’s complex topography ranges between
1200 and 3000 mm, which is slightly lower than in Western Washington.

The study region of Northern and Central California (Figure 2c) covers the Southern Klamath
Mountains, the Coast Ranges, the windward side of the Southern Cascade Range, the Sierra Nevada
and the Great Valley. This region is characterized by extremely steep topographic gradients from the
valleys to the mountains. The elevation ranges from approximately 400 to 2300 m a.s.l., while a small
portion of the Sierra Nevada exceeds 3000 m a.s.l. Most of the precipitation occurs in mountainous
areas. The northwestern part of this region has annual average precipitation between 1300 and
3000 mm, while other mountains in the region have less, ranging from 800 to 2300 mm.

The Southern California study region (Figure 2d) is smaller than the others. It includes the
Peninsular Ranges and part of the Transverse Ranges. Elevations in most mountainous areas range
from 200 to 2000 m a.s.l. Like the above three coastal regions, this region is under maritime influence,
but the climate is much drier and hotter. Annual average precipitation ranges from approximately
200 to 700 mm.

The study region of Northern Idaho and Western Montana (Figure 2e) is an inland area covering
part of the Middle Rocky Mountains. Elevation gradually increases from north to south and ranges
roughly from 1000 to over 3800 m a.s.l. where Borah Peak is located. This region is dominated by a
continental and subarctic climate with annual precipitation ranging from 500 to 1400 mm.

The Central Colorado region (Figure 2f) is located in the Southern Rocky Mountains. It is between
the Continental Divide and western boundary of the Colorado Plains and includes Colorado’s most
populated area (Front Range). The topography of most of this region is very complex, with elevations
ranging between 1500 and 4300 m a.s.l. Similar to the Idaho and Montana region, Central Colorado
has a continental or subarctic climate, but it has less precipitation. Annual average precipitation ranges
between 350 and 800 mm.

The third inland region is located in the Southern Appalachians (Figure 2g). Specifically, it covers
all of the Blue Ridge Mountains and part of the Ridge-and-Valley Appalachians, which are two
physiographic provinces of the larger Appalachian range. Elevations of the mountainous areas range
from approximately 500 to 1700 m a.s.l. Although it has a humid subtropical and temperate oceanic
climate, we still count it as an inland region in this research because it includes no coastal area. Annual
average precipitation ranges from 1000 to 2500 mm with no significant seasonal differences.

2.2. Precipitation Datasets

2.2.1. Satellite-Retrieved Product

The IMERG precipitation product is available at 0.1◦/30-min resolution with quasi-global
coverage (60◦N–60◦S). The IMERG algorithm merges all available satellite microwave precipitation
estimates, the microwave-calibrated infrared (IR) satellite estimates, gauge analyses and other
precipitation estimators from the TRMM and GPM eras [16]. In the GPM era (starting in 2014), IMERG
is considered a more comprehensive precipitation product than those of the TRMM era (CMORPH,
TRMM Multi-satellite Precipitation Analysis (TMPA), PERSIANN, GSMaP). In the consideration of
observation data latencies, IMERG runs twice to provide quick estimates in near-real-time, which
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are the early run (~4-h latency, ftp://jsimpson.pps.eosdis.nasa.gov/data/imerg/early/) and late
run (~12-h latency, ftp://jsimpson.pps.eosdis.nasa.gov/data/imerg/late/). After about 2.5 months,
the IMERG final run (ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata) provides a research-level
product that is generated with more available satellite-based data and gauge data adjustment.

Since the research goal was to conduct near-real-time IMERG correction solely by the numerical
weather prediction (NWP) model, an NWP-based adjustment was applied to the IMERG Version 5B
Late run (~12-h latency) estimates (herein called raw IMERG-L). To compare the two adjustment
methods—NWP-based and gauge-based—we also included the IMERG Version 5B Final run
(~2.5-month latency) gauge-adjusted estimates (herein called gauge-adjusted IMERG-F) in the error
analyses discussed in this paper.

2.2.2. Numerical Weather Prediction

We extracted precipitation forecasts from NCAR’s experimental real-time ensemble prediction
system [34] (https://rda.ucar.edu/datasets/ds300.0/), which is a 10-member ensemble prediction
system that produces daily 48-h forecasts with 3-km horizontal grid spacing over the CONUS using
the Weather Research and Forecasting (WRF) model [35]. The ensemble data have been available
since April 2015. All ensemble members share the same physics and dynamics, which makes them all
equally likely to represent the “true” atmospheric state.

Schwartz et al. [34] evaluated the NCAR ensemble precipitation over the central and eastern
CONUS and showed that the ensemble generally produced reasonable amplitudes of precipitation
from the viewpoint of multi-month accumulation (7 April to 5 July 2015), while analyses of hourly
precipitation rates revealed over-prediction at higher rates (≥5.0 mm/h) and under-prediction at lower
rates. While Schwartz et al. [34] evaluated precipitation over an area with relatively lower elevation
than the study domains in this research, Gowan et al. [36] found the NCAR ensemble performed
well at high-altitude sites in the western United States. These collective results indicate that the
NCAR ensemble precipitation was potentially suitable for conducting model-based correction on the
underestimation of the raw IMERG-L product for heavy precipitation events in the case study areas.

2.2.3. NCEP Stage IV Product

For the reference precipitation data, we used the NCEP Stage IV precipitation dataset [23]
(https://data.eol.ucar.edu/dataset/21.093), which is a multi-sensor (radar and gauge) product
available over CONUS at approximately 4.7-km horizontal grid spacing. The final product is mosaicked
by observations from twelve National Weather Service (NWS) River Forecast Centers (RFCs). Stage IV
data are available in hourly, six-hourly and 24-hourly temporal resolutions. The six-hourly and
24-hourly products cover the entire CONUS, while the hourly product is not available in some of
the western coastal states, where four of the coastal case study regions are located. Moreover, the
hourly Stage IV product does not always include manual quality control from every RFC [37], but the
six-hourly product does. Therefore, this study used the six-hourly product to evaluate the various
precipitation estimates.

We note that Stage IV has less accuracy over the western mountainous states [37], where radar
coverage is relatively sparse [38], and the corresponding RFCs use a unique rainfall processing
algorithm named Mountain Mapper [39]. Nelson et al. [37] indicated underestimation in western
RFC’s analysis data, which is due to the application of the Mountain Mapper algorithm. To quantify
the underestimation, they showed bias ratios of Stage IV versus gauge data based on an 11-year period
(2002 to 2012). The three western RFCs—Northwest, California-Nevada and Colorado basin—have
seasonal bias ratios in the range of 0.78 to 0.82, 0.68 to 1.18 and 0.78 to 0.87, respectively. Consequently,
the results of this paper may be affected by the Stage IV accuracy in western regions. Nevertheless,
Stage IV is still used as reference data in this study because it is widely considered as the best gridded
precipitation dataset over the CONUS.

ftp://jsimpson.pps.eosdis.nasa.gov/data/imerg/early/
ftp://jsimpson.pps.eosdis.nasa.gov/data/imerg/late/
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata
https://rda.ucar.edu/datasets/ds300.0/
https://data.eol.ucar.edu/dataset/21.093
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3. Methodology

3.1. Event Selection

The precipitation events we selected occurred between May 2015 and December 2016 (a 20-month
period). Since our research focused solely on flood-inducing storms, we first collected precipitation-
caused flood reports from the NOAA Storm Events Database [40] for that period for each study region.
We then identified precipitation events associated with these flood reports and eliminated coastal flood
reports from the study because, precipitation aside, coastal flooding usually depends greatly on storm
surge. We found a total of 523 precipitation-induced flood and flash flood reports for the seven study
regions and study period, associated with 81 heavy precipitation events. The event lengths vary from
24 to 120 h. Although the NCAR ensemble provides daily 48-h forecasts, we only use the first 24-h
forecasts for each event. In other words, events longer than 24 h employ the forecasts from two or
more different model runs.

3.2. IMERG Adjustment

Before applying the model-based adjustment to raw IMERG-L, the hourly NCAR ensemble
precipitation forecasts were summed to produce 6-hourly accumulations and upscaled from the
original (3-km) grid to the 0.1◦ IMERG grid. We performed the remapping procedure by assigning
model grid centers to each IMERG grid box. The average value of the NCAR model grid cells
collocated with a particular IMERG grid box represented the remapped model value on the IMERG
grid. We temporally aggregated the model and IMERG values at 6-hourly precipitation rates for
consistency with the Stage IV temporal resolution.

We adjusted raw IMERG-L precipitation values by matching the raw IMERG-L precipitation quantiles
with the model quantiles using a power-law function. Specifically, we computed precipitation quantile
values from all non-zero, 6-hourly precipitation rates of each dataset. To simplify the calculation, we used
only 5%, 10%, 15%, ..., 95% quantile values in the data fitting equation shown below,

Y = a × Xb, (1)

where X and Y represent the precipitation quantile values of raw IMERG-L and the model, respectively.
We estimated the parameters a and b by the least squares method. The adjustment was done at the
event scale, meaning a and b varied for each precipitation event. The quantile-quantile plot between
raw IMERG-L and the mean of NCAR ensemble model products (Figure 3a) shows that the raw
IMERG-L product has lower quantiles than the NCAR model in all study regions except Western
Oregon. Further error analysis in Section 4.1 will show that the raw IMERG-L product underestimates
over Western Oregon in terms of occurrence comparison at different precipitation thresholds, which is
due to the fact that the NCAR model estimates precipitation more frequently than the satellite product.
Figure 3b is a scatter plot of the values of parameters a and b for events in all regions. The parameter
values from events occurring in the same region tend to be grouped together. Moreover, events in
inland regions tend to have lower a values and higher b values, while events in coastal regions tend to
have higher a values and lower b values. This indicates that the model-based adjustment performs
differently for coastal and inland regions.

After data fitting, we applied the a and b values back to all raw IMERG-L precipitation rates by
Equation 1 again to produce model-adjusted IMERG-L data. The adjustment can change the precipitation
magnitude of the raw IMERG-L data, but cannot change the spatial pattern. Note that model precipitation
is a 10-member ensemble dataset. Each member was used in the adjustment separately. Eventually, a new
product was generated: model-adjusted IMERG-L ensemble precipitation.
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3.3. Data Evaluation

We evaluated precipitation estimates for each event at 0.1◦ horizontal grid spacing, meaning we
remapped Stage IV reference precipitation onto the IMERG grid by the same procedure we used for
model remapping. We compared four estimators (model ensemble, raw IMERG-L, gauge-adjusted
IMERG-F and model-adjusted IMERG-L ensemble precipitation) against the Stage IV reference
precipitation at 6-hourly/0.1◦ grid spacing. The results shown below are based on median values of
the model ensemble and the model-adjusted IMERG-L ensemble.

We quantitatively analyzed the 6-hourly precipitation rates using the Bias Ratio of frequency (BS),
Heidke Skill Score (HSS) [41] and Critical Success Index (CSI). These error metrics are derived from
the 2 × 2 contingency table representing the following four occurrence conditions:

A is counted when estimator ≥ threshold and Stage IV ≥ threshold (hits);
B is counted when estimator ≥ threshold and Stage IV < threshold (false alarms);
C is counted when estimator < threshold and Stage IV ≥ threshold (misses);
D is counted when estimator < threshold and Stage IV < threshold (correct rejections).

Each score is calculated at three thresholds. Threshold values varied for each region, depending
on local precipitation intensity. The equation for BS is:

BS =
A + B
A + C

, (2)

which shows an estimator’s bias for an entire study domain and a whole event, meaning BS is affected
by the overall estimation, but not the exact location and timing of rainfall. It has a perfect value of 1,
with below or above 1 representing under- or over-estimation, respectively.

The following equations are used to estimate the HSS:

PC =
A + D

A + B + C + D
, (3a)

F =
(A + B)(A + C) + (B + D)(C + D)

(A + B + C + D)2 , (3b)

HSS =
PC − F
1 − F

=
2(A × D − B × C)

(A + C)(C + D) + (A + B)(B + D)
, (3c)

PC is the percentage of correct estimates, and F is the fraction of correct estimates expected by chance.
Finally, HSS is defined as the percentage of correct estimates that has been adjusted by the number
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expected to be correct by chance. Spatial mismatches in rainfall patterns would affect HSS performance
and result in lower values. HSS values range from −∞ to 1, with 1 indicating a perfect set of estimation
and negative values indicating that the given estimation has fewer hits (H) than a random estimation.

Finally, the CSI score is defined as:

CSI =
A

A + B + C
, (4)

CSI measures the fraction of precipitation rates that were correctly estimated. It examines the accuracy
of the estimator without considering the correct rejections (D). CSI is sensitive to hits and penalized
for misses and false alarms, so it is a function of Probability Of Detection (POD) and False Alarm
Ratio (FAR). Unlike HSS, CSI is not affected by spatial mismatches in the rainfall patterns of different
products, which means it can provide an evaluation for overall precipitation occurrences. The range of
CSI values is from 0 to 1, with 1 as the perfect value.

To examine the performance of model-based IMERG adjustment in different topographic and
climatic conditions, we classified the study regions into two groups: Pacific coastal regions and inland
regions. Then, we analyzed the domain average event total precipitation estimation performance by
the Pearson correlation coefficient (CORR) and normalized root-mean-square-error (NRMSE),

NRMSE =

√
1
n ∑n

i=1

(
(Ei − 1

n ∑n
i=1 Ei)− (Si − 1

n ∑n
i=1 Si

)2

1
n ∑n

i=1 Si
, (5)

where n is number of events in each group and E and S are precipitation of the estimator and Stage IV,
respectively. NRMSE measures the random component of error after removing the bias. CORR reveals
the similarity of each estimator to Stage IV data.

4. Results and Discussion

4.1. Comparisons of Precipitation Rates

The seven study regions are discussed individually in this section. Figure 4 shows the error
statistics of the six-hourly precipitation rate in the Western Washington region. The BS, HSS and CSI
scores of all ten precipitation events occurring in this region are shown in boxplots, with three different
rain rate thresholds for all estimators.
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As the BS plot shows (Figure 4a), the raw IMERG-L product tended to underestimate the
number of occurrences at all three precipitation thresholds, while the model data tended toward slight
overestimation. The gauge-based adjustment did not improve IMERG performance; in fact, it enhanced
the underestimation. In contrast, the model-adjusted IMERG-L product showed considerable
improvement, with BS values much closer to one for all precipitation thresholds.

HSS values (Figure 4b) showed that model forecasts exhibited higher scores than the IMERG
estimates for all thresholds, and the raw IMERG-L score was relatively low. The performances of
the gauge-adjusted IMERG-F and model-adjusted IMERG-L products were similar to that of the raw
IMERG-L. This result indicated that neither IMERG adjustment could reduce the random component
of the error.

The CSI values (Figure 4c) for all estimators decreased as the rainfall threshold increased.
Although the CSI values of the raw IMERG-L and gauge-adjusted IMERG-F products were relatively
low, the model-adjusted IMERG-L product produced higher values, indicating that the model-based
adjustment effectively increased the percentage of correct estimates. Overall, the model-adjusted
IMERG-L performed better than all three IMERG-related products, although the NCAR model forecast
provided an even better estimation.

Figure 5 shows the results of the analysis of 16 heavy precipitation events in the Western Oregon
region. The raw IMERG-L exhibited underestimation (Figure 5a). While the model-based adjustment
effectively moderated the negative biases, the gauge-based adjustment had no impact on the raw
IMERG-L product. In fact, the gauge-adjusted IMERG-F showed no improvement for any error
metric (BS, HSS or CSI). Meanwhile, the model forecast was consistently superior to the three IMERG
products at lower precipitation thresholds (2 and 4 mm/6 h) for all error metrics, while at the high
threshold (8 mm/6 h), the performance of the model-adjusted IMERG-L was comparable to that of the
model forecast.
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Results for the North and Central California region (Figure 6) were based on 17 heavy precipitation
events. BS values of the raw IMERG-L product continued to exhibit severe underestimation (Figure 6a).
Unlike in the Washington and Oregon regions, the gauge-based adjustment in this region did improve
the precipitation estimates. Meanwhile, the model-based adjustment performed even better, especially
at the 8 mm/6 h threshold, where the median BS value was very close to one. The advantage
of model-based adjustment could also be found in the HSS and CSI (Figure 6b,c). Overall, the
model-adjusted IMERG-L had not only higher HSS and CSI median values, but also narrower score
value ranges than the other two IMERG products. Still, although the model-adjusted IMERG-L proved
superior to the other IMERG products, the model forecast showed the overall best performance for all
error metrics in this region.
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Southern California (Figure 7) is the last coastal study region discussed here. Given the relatively
dry climatic conditions of this area, only seven flood-inducing precipitation events were identified.
Similar to the above three coastal regions, the raw IMERG-L product was shown to be the least
accurate estimator, with apparent underestimations (Figure 7a), and the model forecast performed
the best for all error metrics. Nevertheless, unique to this region was the slightly better performance
of the gauge-based adjustment relative to that of the model-based adjustment for BS, HSS and CSI,
even though both adjustments appeared to be more accurate than the raw IMERG-L. Moreover, the
comparison of BS plots across all four coastal regions showed Southern California with the greatest
raw IMERG-L underestimation, and the two adjustment methods were unable to improve IMERG to a
reasonable level.
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With regards to inland areas, five flood-inducing precipitation events were included in the error
metrics for the Northern Idaho and Western Montana region (Figure 8). The raw IMERG-L product
exhibited underestimation, and the model forecast had BS values mostly around one (Figure 8a). At the
1 and 2 mm/6 h thresholds, the gauge-based adjustment shrank the BS range, but the median BS values
remained similar, indicating no improvement, while the model-adjusted IMERG-L product exhibited
substantial improvement. At the 4 mm/6 h threshold, the gauge-adjusted IMERG-F increased BS
values, but still had a wide value range, while model-adjusted IMERG-L exhibited underestimation,
but with a narrower value range. HSS and CSI plots (Figure 8b,c) showed similar error characteristics
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in the comparison among the four estimators. Basically, the two adjusted IMERG products performed
comparably to the model forecast at high thresholds and were less accurate at lower thresholds.
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Figure 8. Error statistics of precipitation rate in Northern Idaho and Western Montana Region. (a) Bias
Ratio of frequency (BS), (b) Heidke Skill Score (HSS) and (c) Critical Success Index (CSI).

The Central Colorado region had nine precipitation events included in the analysis (Figure 9).
As in all the above regions, the raw IMERG-L showed severe underestimation for all rain rate thresholds
(Figure 9a). Gauge-based adjustment had very limited impact on the IMERG product; thus, the error
scores showed no substantial improvement. Comparison of the BS, HSS and CSI metrics indicated
that the model-adjusted IMERG-L product was superior to any of the other estimators, including the
model forecast. In fact, the model forecast in this region had a general trend of overestimation and
relatively low performance in terms of HSS and CSI values.
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Seventeen precipitation events were analyzed in the Southern Appalachians region (Figure 10),
with results similar to those for the Colorado region; the raw IMERG-L tended to underestimate for all
rain rate thresholds, and the model-adjusted product had the best HSS and CSI (Figure 10b,c). The BS
of the model forecast was comparable to that of the model-adjusted IMERG-L (Figure 10a). A possible
explanation for the disagreement between the HSS/CSI and BS scores is that the model successfully
predicted the domain average rainfall intensity, but with the wrong spatial patterns.
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Overall, for all study regions, the raw IMERG-L product exhibited the poorest performance of
rain rate estimation. Both model- and gauge-based adjustments reflected the effectiveness of IMERG
correction. Table 1 compares the two adjustments over coastal regions in terms of the number of events
that are improved, exhibit no change or worsened by the adjustments. The model-based adjustment
outperforms the gauge-based adjustment with BS and CSI, but not with HSS. Over inland regions
(Table 2), IMERG-L benefited more from model-based adjustment than from gauge-based adjustment
for all statistical scores. The best-performing product varied under different topographic and climatic
conditions. In coastal regions, the model forecast was superior to the two adjusted IMERG (IMERG-F
and model-adjusted IMERG-L) products, especially for lower rain rates, while the performance of
these products was better than or comparable to that of the model forecast over inland regions.

Table 1. The impact of model- and gauge-based adjustments on 6-hourly precipitation over coastal regions.

Coastal Regions (50 Events) Model-Based Adjustment Gauge-Based Adjustment

Percentage of Event (%) BS HSS CSI BS HSS CSI

Improved 64 52 60 62 58 50
Neutral 8 28 26 4 30 32

Worsened 28 20 14 34 12 18

Table 2. The impact of model- and gauge-based adjustments on 6-hourly precipitation over inland regions.

Inland Regions (31 Events) Model-Based Adjustment Gauge-Based Adjustment

Percentage of Event (%) BS HSS CSI BS HSS CSI

Improved 74 58 58 61 52 52
Neutral 3 35 32 10 32 29

Worsened 23 6 10 29 16 19

4.2. Comparisons of Event Total Precipitation

To illustrate the spatial rainfall distribution of each dataset, we show event total precipitation
maps for three events (Figure 11). First, the typical characteristics of each product in coastal
regions are shown by a 42-h event that occurred in Northern and Central California, beginning
on 15 October 2016, at 18:00 UTC (Figure 11, top row). Taking the Stage IV product as a reference,
the model forecast captured all major rain bands in this area with reasonable magnitude, which
supports the finding that the model had the best performance in rain rate error metrics over coastal
regions. Although the raw IMERG-L product had severe underestimation, it accurately captured the
northwestern rain band. Meanwhile, the rain band in the Sierra Nevada was not captured correctly.
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The model-based adjustment was effective in dealing with the underestimation of precipitation over the
northwestern corner, but it could not improve the estimation for Sierra Nevada because the adjustment
is sensitive only to magnitude correction. The gauge-adjusted IMERG-F product did not show enough
improvement, either.

The second event occurred in central Colorado on 7 May 2015, at 18:00 UTC, and lasted for three
days (Figure 11, middle row). The model prediction was fairly accurate with regard to the overall
rainfall magnitude, but the most intense precipitation was erroneously located at the northeastern
corner of the domain, while Stage IV showed intense rain over the southeastern part. In contrast,
although the raw IMERG-L product largely underestimated the rainfall magnitude, it captured the
correct location of the intense rain. After the model-based adjustment, the IMERG-L product achieved
the best estimation of the four estimators.

The model precipitation location issue arose in the Southern Appalachians, as well (Figure 11,
bottom row). This was a two-day event starting on 29 September 2016, at 00:00 UTC. As with the
Colorado event, the model predicted rainfall intensity well from the domain average perspective,
but with the wrong spatial distribution of precipitation. The raw IMERG-L product showed severe
underestimation again, but with correct spatial distribution of precipitation. The model-adjusted
IMERG-L product had the best performance, taking advantage of rainfall intensity from the model
and spatial distribution from the raw IMERG-L.
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Figure 11. Event total precipitation maps for selected storms. Top panel: event in Northern and Central
California (start at 15 October 2016 18:00 UTC, 42-h length). Middle panel: event in Central Colorado
(start at 7 May 2015 18:00 UTC, 84-h length). Bottom panel: event in Southern Appalachians (start at
29 September 2016 00:00 UTC, 48-h length).

Statistics for the domain-average event-total precipitation validated the findings from the rain
maps (Table 3). We classified the mountainous heavy precipitation events into two groups: coastal
region (50 events) and inland region (31 events). Then, we calculated the CORR and NRMSE with
respect to reference Stage IV data. The raw IMERG-L product exhibited the lowest CORR and
the highest NRMSE for both the coastal and inland regions. The two IMERG adjustment methods
effectively improved the pure satellite product. Comparison between the two methods showed that
the model-based adjustment was always superior to the gauge-based adjustment, with the exception
of coastal region CORR, for which the performance was the same. Taking model forecast data into
account, the model performed better than the model-adjusted IMERG-L product for coastal region
events. For inland region events, however, the model-adjusted IMERG-L was more accurate than
the model itself. This may be due to the fact that the model tended to erroneously place intense



Remote Sens. 2018, 10, 642 14 of 17

precipitation over inland regions, while the raw IMERG-L product was more likely to have difficulty
capturing rain band structures over coastal regions, but generally showed correct spatial distributions
over inland regions.

Table 3. Statistics of domain average event total precipitation. CORR, Pearson correlation coefficient.

Coastal Regions (50 Events) Inland Regions (31 Events)
CORR NRMSE CORR NRMSE

Model 0.981 0.19 0.844 0.323
Raw IMERG-L 0.916 0.444 0.609 0.629

Gauge-adjusted IMERG-F 0.961 0.277 0.754 0.377
Model-adjusted IMERG-L 0.961 0.255 0.863 0.28

4.3. Discussion: Comparison to Previous Studies

The technique of model-based satellite adjustment was first introduced by Zhang et al. [29] and
demonstrated on five heavy precipitation events over the European Alps and Massif Central. The raw
CMORPH product largely underestimated high rain rates, while the WRF simulations provided
reasonable overall rainfall magnitudes. Results based on the limited storms from that study showed
that the technique efficiently reduced the underestimation of high rain rates, thus providing an
improved product.

After the successful first attempt in middle-latitude regions, a more comprehensive study
examined the technique in three tropical mountainous regions (Colombian Andes, Peruvian Andes and
Taiwan) from 81 storm cases [33]. The raw and gauge-adjusted CMORPH and GSMaP products were
involved. As expected, raw CMORPH and GSMaP exhibited severe underestimation in all regions,
and the bias was more significant at higher rain rates. Improvements of gauge-based adjustment were
shown to be limited, possibly due to the sparse gauge network incorporated in the satellite adjustment.
Meanwhile, WRF model-adjusted products outperformed either the gauge-based adjustments or the
WRF model itself. The adjustments for higher rain rates were more effective than low rain rates.

Aside from the above mid- and low-latitude applications, there were two studies focusing on
CONUS mountain ranges. One of them examined six extreme events induced by hurricane landfalls
in the Southern Appalachians [32]. Again, raw CMORPH underestimated all events. Improvements
were comparable between WRF model- and gauge-adjusted products. In order to evaluate the
impact of satellite adjustment on flood simulations, a hydrological model ran for 20 basins over
the study region and showed considerable improvements on the runoff outputs simulated by adjusted
CMORPH products.

Nikolopoulos et al. [31] focused on a single extreme rainfall event that occurred in September 2013,
in Colorado. Model forecasts produced by the Regional Atmospheric Modeling System and Integrated
Community Limited Area Modeling System (RAMS-ICLAMS) were utilized to adjust raw CMORPH,
TRMM 3B42RT and weather radar (Multi-Radar Multi-Sensor (MRMS)) estimates. The adjustments
were applied by two different procedures: (i) mean field bias and (ii) the adjustment technique herein.
Both procedures provided improvements to raw satellite and radar products, with the latter one
performing better in terms of random error and correlation.

These previous studies have focused on products during the TRMM era. In the GPM era, the new
IMERG products are expected to be extensively used in many applications. In addition, an important gap
in past studies was the use of NWP analysis (with the exception of [31]) vs. forecasts that is needed for
applications with near-real-time IMERG products. The current study used the NCAR real-time ensemble
forecasts for this purpose and demonstrated improvements based on a large number of flash flood
events over complex terrain areas in the CONUS. We are encouraged by the results that the model-based
adjustment technique can provide improvements to the state-of-the-art IMERG products, especially by
the fact that the model-adjusted product outperformed the gauge-adjusted one, which is consistent with
the findings of previous studies applied to CMORPH and GSMaP across global mountainous areas.
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Combining our studies so far, the technique of model-based satellite precipitation adjustment
has been examined over mountainous areas around the world with different terrain complexity
and climatic conditions. Results show that the model-adjusted products outperform, or at least
are comparable to, the gauge-adjusted products for all high-resolution satellite datasets examined.
Moreover, the model-based adjustment requires no gauge network and much less processing time.
The results are promising for future applications of model-based satellite precipitation adjustment
over mountainous areas, especially for areas lacking ground observations. To successfully apply
the technique, there are two prerequisites: (i) the raw satellite data capture the relative spatial and
temporal variabilities of precipitation (i.e., no significant surface contamination effects on satellite
precipitation detection); and (ii) the model provides relatively accurate precipitation outputs in terms
of overall magnitude (not necessarily location).

5. Conclusions

The primary objectives of this study were, first, to examine the feasibility of an ensemble model-
based IMERG adjustment technique and, second, to compare the performances of the model-adjusted
IMERG-L, a gauge-adjusted IMERG-F and the model itself. Major conclusions are summarized below.

The raw IMERG-L product consistently underestimated heavy precipitation in all study regions
over the CONUS, while the rainfall magnitudes exhibited in the NCAR real-time model forecast were
fairly accurate. From the perspective of spatial distribution, the raw IMERG-L product was more likely
to have difficulty capturing rain band structures over coastal regions, but generally showed correct
spatial distributions over inland regions. On the other hand, the model tended to erroneously place
intense precipitation over inland regions.

In general, the model-based adjustment could successfully increase the raw IMERG-L precipitation
magnitude without changing its spatial pattern and, ultimately, provided a more accurate product than
the raw product. While the IMERG-F product could benefit from gauge-based adjustment, as well,
the improvement from model-based adjustment was consistently more significant, except in the
Southern California region. Comparison between the model forecast and the model-adjusted IMERG-L
product showed that the former performed even better than the latter for coastal region events.
For inland events, however, the model-adjusted IMERG-L was more accurate than the model itself.

As described in the IMERG technical document [16], the final gauge-adjusted IMERG-F product
usually has a 2.5-month latency before it is publicly available. On the other hand, the model-adjusted
IMERG-L precipitation can be produced concurrently with the raw IMERG-L, as it requires no gauge
observations and is based on NWP model forecasts. Moreover, given that the model-adjusted IMERG-L
product performs consistently better than its gauge-adjusted counterpart, it is safe to conclude that
model-based adjustment is a feasible technique to improve the quality of the near-real-time IMERG-L
product for mountainous heavy precipitation events.

Since the precipitation events in this research were all flood-inducing storms, future studies can
focus on the hydrological processes of related flood events. The three IMERG products analyzed here
can be used to force a hydrological model and simulate runoff for corresponding basins to evaluate
error propagation.
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