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Abstract: This paper proposes a synthetic aperture radar (SAR) automatic target recognition (ATR)
method by target reconstruction based on attributed scattering centers (ASCs). The extracted ASCs
can effectively describe the electromagnetic scattering characteristics of the target, while eliminating
the background clutters and noises. Therefore, the ASCs are discriminative features for SAR ATR.
The neighbor matching algorithm was used to build the correspondence between the test ASC
set and corresponding template ASC set. Afterwards, the selected template ASCs were used to
reconstruct the template image, whereas all the test ASCs were used to reconstruct the test image
based on the ASC model. A similarity measure was further designed based on the reconstructed
images for target recognition. Compared with traditional ASC matching methods, the complex
one-to-one correspondence between two ASC sets was avoided. Moreover, all the attributes of the
ASCs were utilized during the target reconstruction. Therefore, the proposed method can better
exploit the discriminability of ASCs to improve the ATR performance. To evaluate the effectiveness
and robustness of the proposed method, extensive experiments on the moving and stationary target
acquisition and recognition (MSTAR) dataset were conducted under both the standard operating
condition (SOC) and typical extended operating conditions (EOCs).

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); attributed scattering
center (ASC); target reconstruction

1. Introduction

With its all-weather, all-day, and high-resolution capabilities, synthetic aperture radar (SAR) has
been widely applied in both military and civilian applications. Automatic target recognition (ATR) is
one of key steps in SAR image interpretation, which has been studied intensively in past decades [1].
Generally, a SAR ATR method involves two parts: feature extraction and classification. Feature
extraction aims to find low-dimensional representations for the original SAR images. Meanwhile,
the extracted features should maintain the discriminability of the original image. Therefore, the
efficiency and effectiveness of a SAR ATR method is closely related to the extracted features. Various
features have been applied to SAR ATR, which can be generally divided into three categories. The
first one is the geometrical features, which describe the physical sizes and target shape. Park et al.
constructed 12 discriminative features based on the binary target region for target recognition [2].
In [3], the Zernike moments were extracted from the binary target region for target recognition. The
elliptical Fourier series were used as the outline descriptors for SAR targets in [4]. A matching scheme
for the binary target regions was proposed in [5] for SAR ATR. The shadow in SAR images was
classified by Papson et al. for target recognition with good performance [6]. We call the second
category “projection features”. These features are extracted by projecting the original SAR image to
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low-dimensional manifolds using some transformation algorithms. Typical methods for extracting the
projection features are principal component analysis (PCA) [7], linear discriminant analysis (LDA) [7],
and non-negative matrix factorization (NMF) [8,9], among others. Mishra applied PCA and LDA
to SAR feature extraction with application to SAR ATR and compared their performances [7]. NMF
has been employed for target recognition of SAR images in [8,9]. Some manifold learning methods
have also been used for SAR feature extraction, with good ATR performances [10–12]. The last one
is the scattering center features. SAR sensors collect the electromagnetic scattering characteristics of
the target, which can be represented as some local phenomenon in SAR images (i.e., the scattering
centers) [13]. As a typical representative, the attributed scattering centers (ASCs) were demonstrated
to be very effective for SAR ATR because they provide rich, physically relevant descriptions for the
target [14–23]. Chiang et al. built the correspondence between two ASC sets using the Hungarian
algorithm and evaluated their similarity by the posterior probability [17]. Tang et al. proposed a
sequential matching algorithm for the ASC sets based on the Karhunen–Loeve (KL) features [18]. In [18],
the Hopcroft–Karp (HK) algorithm was employed to solve the ASC matching problem. Ding et al.
focused on the similarity evaluation between two ASC sets by exploiting the structural information
contained in the ASC set [20–22]. In [23], Zhou et al. propose a region-to-point matching method
based on the 3D global scattering center model, thus avoiding the direct matching of two scattering
center sets. In the classification stage, different classifiers were adopted to determine the target
label based on the extracted features. With the fast development of machine learning techniques,
many advanced classifiers have been successfully applied to SAR ATR, such as the adaptive boosting
(Adaboost) [24], discriminative graphical models [25], support vector machines (SVM) [26,27], sparse
representation-based classification (SRC) [28–30], convolutional neural networks (CNN) [31,32], and
so on. Zhao et al. used SVM for SAR ATR and achieved much better performance than the traditional
template-based methods [26]. Inspired by face recognition [33], SRC has also been successfully applied
to SAR ATR with very good performance and robustness [28–30]. Because of the powerful classification
capability, different kinds of CNNs have been designed for SAR target recognition with notably high
effectiveness [31,32]. However, these classifiers may only adapt to features with uniform forms, for
example, PCA feature vectors of same dimensionality. Specifically, for the features with different forms
(e.g., the unordered ASCs), a similarity measure is often designed to evaluate the similarity between
the corresponding features. Then, the target type is determined based on the maximum similarity.

In this study, a SAR ATR method is proposed based on the ASCs. The previous ATR methods using
ASCs have several defects. First, it is a complex and difficult problem to build a precise one-to-one
correspondence between two ASC sets. The reasons can be analyzed from two aspects. On one hand,
the precise matching of two ASC sets involves much computation, which will restrict the real-time
processing capability of the ATR system. On the other hand, the two ASC sets may include different
numbers of ASCs. As a result, there are possible outliers during the matching, which increase the
difficulty and complexity of building the correspondence. Second, the previous methods do not make
full use of all the attributes of the ASCs. For example, only the spatial positions and amplitude were
used in [18,20]. So, the discriminability of the ASCs may not be exploited fully. Third, the similarity
evaluation is also complex. As a consideration of the outliers and impreciseness during the matching,
the similarity measures designed in the previous methods often have complex forms. The proposed
method tries to handle the aforementioned defects. At first, a neighbor matching algorithm was used
to build the correspondence between two ASC sets extracted from the test image and corresponding
template image, respectively. The positions of the test ASCs were taken as the baseline points, and
those template ASCs in a certain neighborhood were selected. Then, the selected template ASCs were
used to reconstruct the target characteristics based on the ASC model. Meanwhile, all the test ASCs
were used to reconstruct the test image. Finally, a simple but effective similarity measure was defined,
based on the basic idea of image correlation, to evaluate the similarity between the reconstructed
images for target recognition. The similarity measure comprehensively considers the consistency and
discrepancy between the two reconstructed images.
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Figure 1 illustrates the technical flowchart of the proposed method. In detail, the template
database selects the corresponding template samples according to the estimated azimuth of the test
sample. Afterwards, the ASC sets of the test and template samples are extracted and matched using
the neighbor matching algorithm. The template images are reconstructed based on the selected ASCs,
whereas the test image is reconstructed based on all the test ASCs. Finally, the similarities are evaluated
based on the reconstructed images for target recognition. Compared with the previous works, the
proposed method has several outstanding advantages. First, an efficient and effective neighbor
matching algorithm is proposed to build the correspondence of two ASC sets. According to the general
idea of the proposed method, it is not necessary to build a precise one-to-one correspondence between
two ASC sets. The neighbor matching algorithm can efficiently build the correspondence between two
ASC sets and the selected ASCs can be used for the subsequent target reconstruction. Second, all the
attributes of the ASCs are used during the target reconstruction. The attributes of the test ASCs and
selected template ASCs are fully used when they are used to reconstruct the targets’ characteristics
based on ASC model. Thirdly, a simple but effective similarity measure has been designed to evaluate
the similarities between the test ASC set and different template ASC sets from different classes based
on the reconstructed images. On one hand, the reconstructed images can effectively eliminate the
background noises and clutters. Then, the true target characteristics can be compared. On the other
hand, the similarity measure based on the idea of image correlation is notably efficient.

The remainder of this paper is organized as follows. Section 2 describes the ASC model and the
extraction of ASCs. In Section 3, the main idea of the proposed target recognition method is presented.
Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR)
dataset [34] in Section 4 to comprehensively evaluate the proposed method. Conclusions are drawn in
Section 5 with some further discussions.
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2. Extraction of Attributed Scattering Centers

2.1. Attribute Scattering Center Model

The high-frequency radar backscattering of an object can be well modeled as the sum of responses
from individual scattering centers as follows [13].

E( f , φ; Θ) =
p

∑
i=1

Ei( f , φ; θi) (1)

For a single ASC, the backscattering field is described as a function of the frequency f and aspect
angle φ as Equation (2).

Ei( f , φ; θi) =Ai · (j
f
fc
)

αi

· exp(
−j4π f

c
(xi cos φ + yi sin φ))

· sin c(
2π f

c
Li sin(φ− φi)) · exp(−2π f γi sin φ)

(2)

where c is the propagation velocity of the electromagnetic wave and Θ = {θi} =

[Ai, αi, xi, yi, Li, φi, γi](i = 1, 2, · · · , p) denotes the attribute set of the ith ASC, in which Ai denotes the
amplitude; (xi, yi) are the spatial positions; αi represents the frequency dependence; Li and φi are the
length and orientation of a distributed ASC; and γi is the aspect dependence of a localized ASC.

The ASCs provide rich physically relevant descriptions for the whole target as well as the local
structures. In detail, the amplitude reflects the relative intensities of different ASCs. The positions
and length describe the spatial distribution of the ASCs, which can also reflect the target shape. The
frequency dependence directly relates to the curvature of the ASC such as a dihedral or trihedral.
Therefore, the ASCs are discriminative features for SAR ATR. In addition, the local descriptions
contained in the ASCs are beneficial for the reasoning under some extended operating conditions
(EOCs), where a part of the target is contaminated, such as configuration variance, partial occlusion,
and others.

2.2. ASC Extraction

Due to the complex form of the ASC model in Equations (1) and (2), the extraction of ASCs is
a difficult problem. Since the proposal of the ASC model, several algorithms have been developed
to improve the precision of ASC extraction [13,17,35,36]. In this study, the classical approximate
maximum likelihood (AML) algorithm was adopted for ASC extraction, which was demonstrated to
be effective on the measured SAR images (e.g., the MSTAR dataset). The detailed explanation and
derivation of the AML algorithm can be found in the relevant references [17,20]. The main steps of the
AML algorithm can be summarized as Algorithm 1.

Algorithm 1. AML algorithm.

Input: SAR image I, model order p, and residue threshold Tr.
1. Segment the region R around the highest peak by the watershed algorithm in I.
2. Initialize the parameters of the segment as θ0.
3. Optimize the parameters of the segment to estimate θe.
4. Reconstruct the image by θe and subtract the reconstructed image from I.
5. Repeat 1–3 to estimate the parameters of next ASC until the number of extracted ASCs reaches p or the
residue energy is less than Tr.
Output: The ASC set Θ.
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Figure 2 shows the reconstruction of a measured BMP2 SAR image from the MSTAR
dataset using the extracted ASCs. Figure 2a,b show the original image and reconstructed image,
respectively. Intuitively, the dominant target characteristics are maintained in the reconstructed image.
Quantitatively, the reconstructed image accounts for about 95% of the total energy of the centered
80 × 80 target region (assuming the target region is located at the rectangular region at the center of
the image). The reconstruction residues are mainly caused by the background noises as well as small
extraction errors. It is also notable that the extracted ASCs mainly convey the target’s characteristics,
which can effectively eliminate the background noises.
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3. Target Reconstruction for SAR ATR

3.1. Neighbor Matching

In practical applications, the ASC sets from the test image and its corresponding template image
often have different numbers of ASCs. As a result, it is a complex and difficult problem to build a
precise one-to-one correspondence between the two ASC sets. In this study, a neighbor matching
algorithm was used. The positions of the test ASCs were taken as the centers to form a binary region
combined by all the circles. When a template ASC is in the constructed binary region, it will be
selected, otherwise it will be discarded. The detailed procedure of neighbor matching is illustrated as
Algorithm 2.

Algorithm 2. Neighbor matching algorithm.

Input: Template ASC set A = [a1, a2, · · · , aM], test ASC set B = [b1, b2, · · · , bN ], neighbor radius R.
for i = 1 : M
1. Compute the Euclidean distance between the ai and bj(j = 1, 2, · · · , N) based on their spatial positions as
dj(j = 1, 2, · · · , N)

2. if min
j=1···N

(dj) ≤ R, ai is selected. Otherwise, it is discarded.

end
Output: The selected template ASC set As.

Figure 3 presents an illustration of the neighbor matching when the radius is set as 0.3 m.
The test ASCs from a BMP2 image (shown in Figure 2a) are matched with the corresponding template
ASCs from BMP2. The matched template ASCs, unmatched template ASCs, matched test ASCs,
and unmatched test ASCs are represented by different markers. Notably, the radius R plays a very
important role in the neighbor matching. By changing the radius from 0.3 m to 0.4 m and 0.5 m, the
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corresponding matching results are shown in Figure 4a,b, respectively. In comparison with Figure 3,
a larger radius will result in more selections of the template and test ASCs. With the radius from small
to large, the neighbor matching is conducted from fine to coarse. At the radius of 0.5 m, only four
template ASCs are unmatched due to the local differences caused by noises, extraction errors, and
other factors. The neighbor matching results between the test ASC set and the corresponding template
ASC sets from T72 and BTR70 at the radius of 0.3 m are shown in Figure 5a,b, respectively. Compared
with the corresponding result of BMP2, it is clear that more template and test ASCs are unmatched
when the target class is not the right one. Therefore, the matching results can provide discriminability
for distinguishing different targets.
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3.2. Target Reconstruction for Recognition

The selected template ASCs were used to reconstruct a new image based on the ASC model in
Equations (1) and (2). In detail, the attributes of each selected template ASC were put into Equation (2)
to calculate its backscattering characteristics. Afterwards, the individual responses of all the selected
ASCs were combined as Equation (1). Finally, the total backscattering field was transformed into
the image domain using the same imaging algorithm as the original image [37]. Figure 6 shows the
reconstructed template images based on the matching results from BMP2, T72, and BTR70, as shown
in Figures 3 and 5a,b, respectively. When more template ASCs were selected, more details of the target
were present in the reconstructed image. Meanwhile, all the test ASCs were used to reconstruct the
test image, as shown in Figure 2. The main objective was to eliminate the background noises in the
original image. In addition, it is more reasonable to compare the reconstructed test image with the
reconstructed template image. By comparing Figure 2 with Figure 6, it is clear that the reconstructed
template image from the true class shares a much higher similarity with the reconstructed test image
than those from incorrect classes. Therefore, it is easier to make correct decisions on the target type
using the reconstructed images.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 17 
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A similarity measure was designed based on the reconstructed image for target recognition.
The image correlation between the reconstructed test image and reconstructed template image were
calculated as the preliminary similarity. Considering the outliers in the test ASC set, the proportion
of the matched test ASCs was also incorporated in the final similarity measure. Therefore, for the
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reconstructed test image IT and reconstructed template image IR, their normalized similarity was
computed as follows.

fs(IT , IR) = Cor(IT , IR) ∗
Ms

M
(3)

where Ms denotes the number of matched test ASCs; Cor(IT , IR) represents the image correlation
between two images, which is computed as Equation (4) [38].

r = max

 ∑x ∑y [IT(x, y)−m1][IR(x− ∆x, y− ∆y)−m2][
∑x ∑y [IT(x, y)−m1]

2[IR(x− ∆x, y− ∆y)−m2]
2
]1/2

 (4)

where m1 and m2 denote the mean pixel value of IT and IR, respectively; ∆x and ∆y are the shifts in
the x, y directions. In this study, it was assumed that the MSTAR images were well aligned, thus ∆x
and ∆y were set to be 0.

When the test ASCs were matched with the truly corresponding target class, more template ASCs
were selected and the reconstructed template image shared a higher correlation with the reconstructed
test image. Then, a higher similarity was produced by evaluating Equation (3). For the incorrect
classes, only a few template ASCs were selected, and the reconstructed template images tended to
share low similarity with the reconstructed test image. Therefore, the designed similarity measure is
discriminative to separate different classes of targets.

The procedure of the proposed target recognition method is shown in Figure 1. As it is a difficult
problem to define a proper radius, the neighbor matching was performed at several different radii,
from coarse to fine. At each radius, a similarity was obtained using Equation (3). Then, the averages of
all the similarities were employed as the final similarity between the test image and its corresponding
template image. In detail, the azimuth estimation method proposed in [24] was used to estimate the
azimuth of the test image. Due to the azimuthal sensitivity of SAR images [39], the corresponding
template samples could be effectively selected according to the estimated azimuth. Considering the
possible estimation errors, the template samples in the interval of [−3◦, 3◦] around the estimated
azimuth were all selected and their average similarity was adopted. The radius set for neighbor
matching was chosen to be {0.3 m, 0.4 m, 0.5 m} in this study, based on the resolution of MSTAR images
as well as the experimental observations.

4. Experiment

4.1. Data Preparation

The MSTAR dataset was used for experiments, as it is a famous benchmark for the evaluation
of SAR ATR methods. The dataset included the SAR images of 10 classes of military targets, whose
optical images are shown in Figure 7. The MSTAR images were collected by the X-band SAR sensors
with the resolution of 0.3 m × 0.3 m, covering the full azimuth angles. Table 1 showcases the template
and test sets, which were at the depression angles of 17◦ and 15◦, respectively.

Several prevalent SAR ATR methods were used for comparison, which are briefly described
in Table 2. In detail, SVM [26] and SRC [28] were used to classify the 80-dimension feature vectors
extracted by PCA. CNN [31] was directly performed on the original intensities for training and testing.
The ASC matching methods from [20] and [21] were also compared, denoted as “ASC1” and “ASC2”,
respectively. In the remainder of this section, the proposed method is first considered under standard
operating condition (SOC) on the 10 classes of targets. Afterwards, experiments conducted under
several typical EOCs (i.e., configuration variance, large depression angle variance, noise corruption,
and partial occlusion) will be discussed.
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Figure 7. Optical images of the 10 military targets. (a) BMP2; (b) BTR70; (c) T72; (d) T62; (e) BRDM2;
(f) BTR60; (g) ZSU23/4; (h) D7; (i) ZIL131; (j) 2S1.

Table 1. Template and test sets used in the experiments.

Depr. BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1

Template set 17◦ 233 (Sn_9563) 233 232 (Sn_132) 299 298 256 299 299 299 299
Test set 15◦ 195 (Sn_9563) 196 196 (Sn_132) 273 274 195 274 274 274 274

Table 2. Reference methods for comparison. SVM: support vector machine; SRC:
sparse representation-based classification; CNN: convolutional neural network; PCA: principal
component analysis.

Abbrev. Feature Classifier Ref.

SVM PCA features SVM [26]
SRC PCA features SRC [28]
CNN Original image intensities CNN [31]
ASC1 ASCs ASC matching method [20]
ASC2 ASCs ASC matching method [21]

4.2. Recognition under SOC

The template and test sets in Table 1 were used for the recognition experiment under SOC.
According to Table 1, the only difference between the test and template samples was a small depression
angle variance of 2◦. Table 3 showcases the confusion matrix of the proposed method. All 10 targets
could be recognized with PCCs (percentage of correct classification) over 98%, resulting in an average
of 99.04%.

Table 3. Recognition results of the proposed method under standard operating condition (SOC).

Class BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1 PCC (%)

BMP2 194 0 0 0 0 0 1 0 0 0 99.49
BTR70 0 196 0 0 0 0 0 0 0 0 100

T72 0 1 194 0 0 0 1 0 0 0 98.98
T62 0 0 0 271 0 0 2 0 0 0 99.27

BDRM2 0 0 1 0 271 1 1 0 0 0 98.91
BTR60 0 1 0 1 0 193 0 0 0 0 98.97
ZSU23/4 1 0 0 1 0 0 272 0 0 0 99.27

D7 0 0 0 1 1 0 0 272 0 0 99.27
ZIL131 0 3 0 0 0 0 1 0 270 0 98.54

2S1 0 0 0 1 0 0 0 0 1 272 99.27
Average 99.04
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The performances of different methods are compared in Table 4. Under SOC, the test samples
were quite similar with the template ones. As a result, all the methods achieved PCCs higher than 97%.
In comparison, CNN ranked first, owing to its excellent classification capability when the training
source is sufficient [28]. With a slightly lower PCC, the proposed method achieved the second-best
performance. Compared with the ASC1 and ASC2 methods, the proposed method outperformed them
with a notable margin. The main reason is that the proposed method makes full use of all the attributes
of ASCs during the target reconstruction, thus providing more discriminability for distinguishing
different classes of targets. The results demonstrate that the proposed method can better exploit the
discrimination capability of ASCs to improve the ATR performance.

Table 4. Comparison of different methods under SOC.

Method Proposed SVM SRC CNN ASC1 ASC2

PCC (%) 99.04 98.34 97.56 99.12 97.24 98.12

4.3. Recognition under EOCs

The various EOCs in the real-world scenarios are the main obstacles to the practical applications
of SAR ATR systems. Therefore, the designed ATR methods should be robust to different EOCs. In this
subsection, tests with the proposed method under several typical EOCs (i.e., configuration variance,
large depression angle variance, noise corruption, and partial occlusion) is discussed.

4.3.1. Configuration Variance

Due to the physical differences and structural modifications, a certain target may have had several
different configurations [12]. The template set could only contain a special configuration, but the test
images could have different configurations. Table 5 showcases the template and test sets used for
the examination under configuration variance. For BMP2 and T72, the configurations for testing are
not contained in the template set. Figure 8 shows the optical and SAR images of four configurations
of T72 tank. It can be observed from the optical images that the four configurations have some
locally structural modifications on the turret, fuel drums, among others. Table 6 presents the detail
recognition results of the proposed method under configuration variance. All the configurations for
testing can be classified with the PCCs over 94%, resulting in an average of 96.61%. The average
PCCs of different methods are compared in Table 7. With the highest PCC, the proposed method
is validated to be most robust to configuration variance. In addition, the ASC matching methods
showed better performances than SVM, SRC, and CNN, mainly owing to the advantages of ASCs.
As shown in Figure 8, only some local structures of the target were modified and the majority of the
ASCs maintained stable under configuration variance. Therefore, by building the correspondence
between two ASC sets, the local variations can be sensed, thus improving the robustness. For the
proposed method, the stable ASCs under configuration variance can be selected and used for target
reconstruction and their discriminability can be better maintained.

Table 5. Dataset of different configurations.

Depr. BMP2 BDRM2 BTR70 T72

Template set 17◦ 233 (Sn_9563) 298 233 232 (Sn_132)

Test set 15◦, 17◦
428 (Sn_9566)
429 (Sn_c21) 0 0

426 (Sn_812)
573 (Sn_A04)
573 (Sn_A05)
573 (Sn_A07)
567 (Sn_A10)
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Table 6. Recognition results of the proposed method under configuration variance. PCC: percentage of
correct classification.

Class Serial No. BMP2 BRDM2 BTR-70 T-72 PCC (%)

BMP2
Sn_9566 410 13 4 1 95.79
Sn_c21 417 5 4 3 97.20

T72

Sn_812 13 1 1 411 96.48
Sn_A04 15 8 0 550 95.99
Sn_A05 12 2 2 557 97.21
Sn_A07 8 2 10 553 97.21
Sn_A10 12 5 0 550 97.00

Average 96.61

Table 7. PCCs of different methods under configuration variance.

Method Proposed SVM SRC CNN ASC1 ASC2

PCC (%) 96.61 94.12 93.64 94.65 95.12 95.67

4.3.2. Large Depression Angle Variance

The test SAR images were collected at different depression angles with the template set.
Considering that SAR images with large depression angle variance may have notably different
appearances [40], it is crucial that the ATR methods keep robust under this condition. As showcased
in Table 8, the SAR images of 2S1, BRDM2, and ZSU23/4 at 30◦ and 45◦ depression angles were
tested, while their images at 17◦ depression angle were used as the template set. Figure 9 shows the
SAR images of 2S1 at different depression angles. The detailed recognition results of the proposed
method under large depression angle variance are presented in Table 9. At 30◦ depression angle, the
performance of the proposed method still maintained at a high level over 98%. However, when the
depression angle changed to 45◦, the average PCC decreased sharply to 73.93%. As shown in Figure 9,
the SAR image at 30◦ depression angle shared much more similar characteristics with the template
SAR image at 17◦ than that at 45◦.
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Table 8. Dataset with large depression variance.

Depr. 2S1 BDRM2 ZSU23/4

Template set 17◦ 299 298 299

Test set
30◦ 288 287 288
45◦ 303 303 303Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 17 
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Table 9. Recognition results of the proposed method under large depression variance.

Depr. Class
Results

PCC (%) Average (%)
2S1 BDRM2 ZSU23/4

30◦
2S1 282 2 4 97.92

98.15BDRM2 1 284 2 98.95
ZSU23/4 2 5 281 97.57

45◦
2S1 199 73 31 65.68

73.93BDRM2 18 227 58 74.92
ZSU23/4 12 45 246 81.19

Table 10 compares the performances of different methods. With the highest PCCs at both
depression angles, the proposed method achieved the best robustness to large depression angle
variance. The methods using ASCs performed better than others. The reasons can be analyzed from
two aspects. On one hand, the ASCs only describe the electromagnetic scattering characteristics in
the target region. For the global features (e.g., the PCA features or image intensities), the shadow was
also considered. As shown in Figure 9, the shadows from images with large depression angle variance
have notably different shapes. Therefore, the use of shadow may present some confusing information,
which will worsen the ATR performance. On the other hand, similar to the condition of configuration
variance, the large depression angle variance will cause local variations of the target while some local
ASCs can maintain stable. Therefore, the ASCs are more discriminative features for SAR ATR under
large depression angle variance. In the proposed method, the stable template ASCs were selected and
used for target reconstruction. Then, the test image still shared the largest similarity with its truly
corresponding class.
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Table 10. Comparison with reference methods under different depression angles.

Method
PCC (%)

30◦ 45◦

Proposed 98.15 73.93
SVM 96.88 63.01
SRC 96.42 64.74
CNN 97.02 63.68
ASC1 97.34 70.24
ASC2 97.62 71.36

4.4. Noise Corruption

There are plenty of noises in real-world scenarios from the background environment, radar system,
and others. Therefore, the robustness to noise corruption is also a highly desired merit of an ATR
method. To test the performance of the proposed method under noise corruption, different levels of
additive white Gaussian noises (AWGN) [41,42] were added to the original test samples in Table 1
according to the preset signal-to-noise ratio (SNR) defined as follows.

SNR(dB) = 10 log10

H
∑

h=1

W
∑

w=1
|r(h, w)|2

HWσ2 (5)

where r(h, w) denotes pixel intensities of the original MSTAR image and σ2 is the variance of AWGN.
Figure 10 shows the noisy images at different SNRs.
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The noisy test samples were classified by different methods based on the original template
samples (see Table 1) and their performances are plotted in Figure 11. With the highest PCC at each
SNR, the proposed method achieved better robustness than others. The good performance of the
proposed method benefits from the advantage of ASCs as well as the proposed classification scheme.
On one hand, the ASC extraction can effectively eliminate the background noises, as shown in Figure 1.
In addition, the AML algorithm indeed takes the noises into consideration during the ASC extraction,
so it still worked robustly under noise corruption. This is also the reason why the ASC1 and ASC2
methods achieved higher PCCs than SVM, SRC, and CNN at SNRs lower than 5 dB. On the other
hand, the target reconstruction in the proposed method fully exploits the noise-robust ASCs to further
improve the recognition performance.
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4.5. Partial Occlusion

The target may be occluded by the obstacles in the background environment. Then, only a part of
the target characteristics will be present in the captured SAR image. As a simulation, the occluded
SAR images were generated by removing a certain proportion of the original target region from eight
directions according to the occlusion model in [15,42]. Figure 12 shows the occluded SAR images
from eight different directions at the occlusion level of 20%. By classifying the occluded test samples
based on the original template set, the average PCCs of different methods from all the eight directions
are compared in Figure 13. It is clear that the average PCCs of all the methods decreased sharply
with the deterioration of partial occlusion. In comparison, the proposed method achieved the best
performance under partial occlusion. In addition, the PCCs of the ASC1 and ASC2 methods surpassed
those of SVM, SRC, and CNN when the occlusion level exceeded 30%. When the target was partially
occluded, only a part of the local structures were discriminative for target recognition. As the local
descriptors, the ASCs were more capable of handling this condition than the global features, such as
PCA features or image intensities. For the proposed method, the remaining ASCs could still be selected
for target reconstruction. Hence, the test image tended to share the largest similarity with its truly
corresponding class.
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5. Conclusions

This paper proposes a target recognition method of SAR images based on ASCs. A neighbor
matching algorithm was first designed to build the correspondence between the test and template
ASC sets with high efficiency. Then, the target reconstruction was performed to reconstruct the
original test image and template image based on the ASC model. A similarity measure was designed
for the reconstructed images for application to target recognition. The neighbor matching could
efficiently find the association between the two ASC sets and the target reconstruction could fully
exploit the discriminability of the ASCs to improve the ATR performance. Based on the experimental
results on the MSTAR dataset, several conclusions can be drawn as follows. First, the ASCs are very
discriminative features for SAR ATR under both SOC and various EOCs. Second, the proposed method
can better exploit the discriminability of ASCs with higher efficiency and effectiveness than traditional
ASC matching methods. Third, the proposed method can achieve better performance than several
state-of-the-art SAR ATR methods, which demonstrates its superior effectiveness and robustness.

Future works can be conducted from two aspects. On one hand, a more robust ASC extraction
method should be developed to improve the precision and efficiency. On the other hand, the similarity
measure for the reconstructed images should be further researched to improve the effectiveness
and robustness.
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