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Abstract: Deep neural networks (DNNs) face many problems in the very high resolution remote
sensing (VHRRS) per-pixel classification field. Among the problems is the fact that as the
depth of the network increases, gradient disappearance influences classification accuracy and the
corresponding increasing number of parameters to be learned increases the possibility of overfitting,
especially when only a small amount of VHRRS labeled samples are acquired for training. Further,
the hidden layers in DNNs are not transparent enough, which results in extracted features not being
sufficiently discriminative and significant amounts of redundancy. This paper proposes a novel
depth-width-reinforced DNN that solves these problems to produce better per-pixel classification
results in VHRRS. In the proposed method, densely connected neural networks and internal
classifiers are combined to build a deeper network and balance the network depth and performance.
This strengthens the gradients, decreases negative effects from gradient disappearance as the network
depth increases and enhances the transparency of hidden layers, making extracted features more
discriminative and reducing the risk of overfitting. In addition, the proposed method uses multi-scale
filters to create a wider neural network. The depth of the filters from each scale is controlled to
decrease redundancy and the multi-scale filters enable utilization of joint spatio-spectral information
and diverse local spatial structure simultaneously. Furthermore, the concept of network in network is
applied to better fuse the deeper and wider designs, making the network operate more smoothly.
The results of experiments conducted on BJ02, GF02, geoeye and quickbird satellite images verify the
efficacy of the proposed method. The proposed method not only achieves competitive classification
results but also proves that the network can continue to be robust and perform well even while the
amount of labeled training samples is decreasing, which fits the small training samples situation
faced by VHRRS per-pixel classification.

Keywords: remote sensing; image per-pixel classification; densely connected neural network; internal
classifier; multi-scale filters; network in network

1. Introduction

In per-pixel classification of very high resolution remote sensing (VHRRS) images, each pixel is
assigned a corresponding label representing the category to which it belongs. It can be used to generate
classification results with homogeneous regions and reveal abundant information for land cover and
can be considered the basis of many applications, such as object extraction and contour detection [1–3].

However, the increasing resolution of remote sensing images results in increased intra-class
variance and marginal changes in inter-class variance [4], which causes classification difficulties.
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Therefore, the key for better VHRRS per-pixel classification is to acquire the most significant and unique
features for each class. In general, two feature extraction approaches exist: handcrafted [5–9] and deep
learning-based [10–12]. In the deep learning-based approach intrinsic and hierarchical features are
learned automatically from raw data. This often produces better results than the handcrafted based
approach [13], which requires the laborious involvement of experts with a priori knowledge in feature
design and selection.

In order to apply deep learning to effectively extract features from VHRRS images and obtain
better classification results, we designed a novel deep learning network with particular focus on
its depth and width. The expressiveness of a network increases with its depth; however, as the
depth increases gradient disappearance may occur and decrease classification accuracy. Further,
per-pixel VHRRS classification lacks opening sources for labeled samples. A small amount of labeled
training data because of insufficient labeled samples can cause problems such as overfitting in deeper
networks, which affects the network’s performance. Many researchers have employed residual
networks (ResNets) [14] to solve these problems. For example, Pohlen et al. [15] used a ResNet
for semantic segmentation of street scenes. Mou et al. [16] fused a ResNet with an end-to-end
conv-deconvnet to deal with hyperspectral image classification. Lee et al. [17] used a ResNet to
solve the deep network training problem and achieved satisfactory results with a small amount of
labeled data.

Although ResNets have been proven to be effective, they exhibit problems during application.
For example, a ResNet connects input and residual feature maps by summation in the skip connection
stage, which might clog the flow of information [18]. Huang et al. [19] randomly dropped out layers
to increase the extensiveness of a ResNet, which also proved that there is significant redundancy
in the network. Further, a ResNet generates numerous feature maps in each layer and too many
parameters to be trained may make training more difficult. If the features could be fully reutilized,
only a small amount of feature maps would be needed, which would reduce redundancy and the
number of parameters, thereby preventing overfitting. The connection between input and output
layers can also be reduced to make each layer accept the inputs from all previous layers, in order to
reduce the influence of gradient disappearance while maintaining the same expression capacity of the
network, making deeper networks perform better classification. However, such a densely connected
network (DenseNet) is not commonly used in VHRRS per-pixel classification.

DenseNet strengthens the features and gradients of each layer by using the top classifier to
supervise all layers through feature connection. However, the top classifier is prone to assess the
effectiveness of sum of input features for the final layer; the effectiveness of features from each hidden
layer is less enhanced or validated. Springenberg et al. [20] proved that the features extracted by
a convolutional neural network (CNN) are not sufficiently discriminative. Therefore, adopting extra
classifiers for the hidden layers can increase its transparency [21], enhance its feature discrimination
from hidden layers and contribute to reducing gradient disappearance.

Besides deepening, widening the network can also result in a better network for feature extraction.
Various researchers have widened the network by increasing the number of filters. For example,
AlexNet [22], VGG-16, VGG-19 [23] used the network to generate hundreds of feature maps. However,
too many filters may be a burden for the next layer [24] and may cause redundancy. The network
width is not limited to the number of the filters; it can be interpreted as the diversity and richness
presented by the network. For instance, Soriano A et al. [25] employed several detectors (classifiers)
and use multi-decision fusion to widen the structure to get better results. Diverse information from
multi-detectors contributed to the increase of performance for the final classification. From remote
sensing image perspective, the fine resolution of VHRRS images provides diversified low-level
features that can be unveiled to provide detailed spatial information. The spectral information of
VHRRS images provide inherent general and discriminative features that are often used to unveil the
nature of ground objects. For this reason, several researchers have used multiple-stream networks to
increase the diversity of features and consequently widen the networks. For example, Tao et al. [26]
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constructed a two-stream network using panchromatic and multispectral images and solved “what”
and “where” classification problems. Hao et al. [27] employed SdAE to extract spectral information
from hyperspectral images and a deep network to extract spatial information. Xu et al. [28] utilized
a CNN to extract spatial and spectral information from hyperspectral remote sensing images and features
from LIDAR or VIS data using cascade. Hu et al. [29] used a two-stream network to extract features from
hyperspectral and PolSAR images, respectively and combined the results. These researchers achieved
excellent classification results; however, the data for different network streams had to be prepared
individually and each stream was prepared separately or alternatively. In contrast, our proposed
method utilizes different kinds of filters to widen the network and to increase the richness and
diversity of extracted information, instead of only increasing the filter depth or preparing different
inputs. Some researchers [17,30] have focused on this point, using multi-scale filters or spatial pyramid
pooling to explore the features of different scales. However, most of them used the operators in
different scales to convolve or pool only once, which may not be sufficient for full exploitation of the
information from different scales.

To solve the problems outlined above, we propose a novel DenseNet-based deep neural network
(DNN) with multi-scale filters to extract features from VHRRS images and produce better classification
results. The proposed network utilizes DenseNet to increase the depth of the network and strengthen
the gradients by reusing the features from previous layers. Further, it simultaneously uses extra
internal classifiers to increase the transparency of hidden layers, in order to reduce negative effects
from overfitting or gradient disappearance and enhances the performance of deep networks. For width,
the network uses multi-scale filters to generate different receptive fields. The multi-scale filters facilitate
acquisition of both spatial and spectral features and the joint spatio-spectral information increases the
features of the ground objects. Further, different receptive fields reflect diverse spatial structures and
may increase the level of discrimination from the local structures. To better fuse the deepening and
widening strategy, inspired by [24] and the Inception architecture [31], we use the “network in network”
concept. Each group of multi-scale filter-based DenseNets serves as a subnet. Stacking several subnets
results in a network. The subnets possess more powerful expressive ability than the pure convolution
layer, which enables the network to not only solve linearly separable problems but also simulate and
process more complicated problems.

The major contributions of this paper are as follows:

1. A novel depth-width double reinforced neural network is proposed for per-pixel VHRRS
classification. DenseNet and internal classifiers are used to design a deeper network in which
negative effects from gradient disappearance and overfitting are reduced and hidden layer
transparency is increased. Multi-scale filters are employed to widen the network and increase the
diversity of the extracted features by acquiring joint spatio-spectral information and diverse local
spatial structures.

2. DenseNet, which is seldom utilized in VHRRS image per-pixel classification, is introduced.
Feature reusing, shorter connection between input and output layers and supervision over all
layers help to strengthen the gradients and reduce overfitting and the problems of too many
redundant parameters, making it possible to fully utilize the expressive ability of deep networks.

3. The “network in network” concept is applied to smoothly fuse the deepening and widening
strategies. Staking of subnets increases the network depth and enhances the network’s diverse
information acquisition ability, which improves the expressive ability of the network and enable
it to face more complicated situations.

The remainder of this paper is organized as follows. Section 2 presents relevant background
knowledge. Section 3 describes the proposed network and its training and classification strategies.
Section 4 outlines the experiments conducted, including the experimental data and strategy and
analyzes the results obtained. Section 5 provides concluding remarks.
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2. Background Knowledge

CNNs represent a milestone in deep learning. Many popular and influential models, such as
GoogLeNet [31], CaffeNet [32], ResNet [14] and DenseNet (a key component in our proposed
method), are based on CNN. Therefore, this section briefly introduces the concept of CNN, for a better
understanding of the following proposed novel network.

A CNN is in fact a multi-layer perceptron. In a CNN data transmission simulates the biological
characteristics in human brains, in which one section of the visual cortex only corresponds to some
local areas. Consequently, in a CNN, nodes in the next hidden layer are only related to some successive
input data, which is implemented by weight sharing. This enables CNNs to exploit the potential spatial
correlation in the data and reduces the quantity of training parameters in the network, making CNNs
particularly superior in the fields of data processing and voice recognition [33–35].

A CNN comprises multiple feature extraction layers, which makes it extremely good at extracting
hierarchical features from raw data. The features extracted from the lower layers are more detailed and
retain information such as boundaries and locations. Features extracted from the higher layers are more
abstract, robust and discriminative, which can be used to identify what the objects are. Thus, CNNs
perform outstandingly in such tasks as classification, feature extraction and target positioning [36–38].

A CNN comprises a series of alternating convolutions, pooling and activation function, followed by
fully connected (FC) layers and classifiers. The convolution layer generates feature maps using fixed
weights to operate the inner product with data inside the sliding window. The convolution operation
is shown in Figure 1.
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In a convolution, the fixed weight is called a filter or kernel. The size of the filter, which is called
the receptive field, represents the size of the area in the previous layer influenced by every pixel on
output feature maps. Because of the receptive field, CNN can exploit not only the spectral features
but also the spatial features of the pixel and its surrounding environment. The fixed weight for every
filter indicates the kind of feature associated with the filter; for example, vertical boundary, color and
some repeated horizontal textures. Suppose W =

{
w1,w2,...wn}, where W is the collection of n filters

for layer l, in which wi ∈ <m×m×k, m is the size of the receptive field and k is the number of feature
maps in layer l. Therefore, Fl+1, the future maps generated by layer l, is given by Equation (1):

Fl+1 = W ∗ Fl + bl (1)

where ∗ is the convolution operation, bl represents bias and Fl+1 has n channels.
However, the convolution can only perform linear weighted sum. Regardless of the number of

convolution layers a network has, it only achieves what one hidden layer can achieve. Therefore,
we need to use activation functions to perform nonlinear mapping. Only by stacking those nonlinear
functions continuously can the neural network have enough capacity to approximate arbitrary
functions. There are many kinds of activation functions, such as sigmoid, ReLU and tanh. We use
the ReLU function, f(x) = max(0, x), in the proposed network because it is simple and carries out



Remote Sens. 2018, 10, 779 5 of 27

calculation quickly. Further, it generates sparsity in the network to decrease the interdependence of
the functions, thereby reducing the problem of overfitting.

Pooling layers reduce the dimensionality of the data by statistical aggregation. They remove
redundant or inessential information and reserve the scale-invariant and the most representative
features. Usually, the features from convolution or nonlinear transformation are divided into several
non-overlapped regions and then a maximum, minimum, or average value is chosen to represent
the regions.

FC layers usually show up at the end of the traditional CNN network before the classifier.
They flatten the features from the last convolution block and then connect every output node with all
nodes in the flattened features. This FC technique is based on one-dimensional vectors, tends to result
in loss of structural information [16] and will generate a large number of parameters. It cannot accept
input data of arbitrary size and, consequently, classification results are not generated in a pixel-to-pixel
manner. This can be very effective for scene classification; however, it can increase the per-pixel
classification difficulty.

The whole CNN is a feedforward neural network that inputs hierarchical features extracted
layer-by-layer into the classifier to generate objective functions, then backpropagation is employed to
optimize the network and calculate the network parameters. A network flowchart for a traditional
CNN is shown in Figure 2.
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3. Proposed Method

This section presents the details of the proposed network’s key components and its overall
architecture, including the DenseNet, internal classifier supervision and network in network.
These components are discussed separately according to their respective contribution to deepening
and widening the network. A flowchart of the proposed network is shown in Figure 3.
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3.1. Making a Deeper Network

In general, a deeper network tends to extract more diverse image structure information and
improves the network’s expression ability. In addition, a deep network results in more robust, abstract
and discriminative features by acquiring higher-level feature maps, which makes it easier to find the



Remote Sens. 2018, 10, 779 6 of 27

potential and inherent specifics in the raw data. However, deep networks tend to have problems
such as gradient disappearance, which consequently makes the increasing depth out of proportion
with the expression ability. Moreover, owing to lack of an open database in the domain of per-pixel
classification of VHRRS, it is very difficult to acquire a large amount of labeled data to train a deeper
network, whereas a small sampling size might result in problems such as overfitting in a complicated
network. The question of how to overcome these problems and construct a network to takes full
advantage of the network depth is addressed in this article.

3.1.1. Improved DenseNet

We employed DenseNet to solve the problems discussed above and to make the network deeper.
DenseNet is based on the principle that shorter connections between layers close to the input and
layers close to the output result in the network being more effective, accurate and easier to train [18].
Some researchers concatenate all the feature maps acquired from the previous layers in the last layer
and input them to the classifier for classification [39–41]. This method reduces the distance between the
classifier and each layer but the connections between each layer is not reduced. Moreover, each layer
has only a few connections with other layers, except the one before it. Huang et al. [19] also proved that
dropping some layers in ResNet aids the training, which indicates that there is significant redundancy
in the network and layers may also contribute to the ones several layers away from it. Therefore,
instead of concatenating all the layers, DenseNet makes every layer accept the feature maps from all
previous layers, as illustrated in Figure 4.
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Therefore, xl , the feature maps generated by the current layer, can be described by Equation (2):

xl = F(Concat(xl−1, xl−2, ..., x1), Wl), (2)

where x is the set of feature maps from layers l − 1, l − 2, ..., 1 respectively, Concat is the concatenation
function concatenating the feature maps dimensionally, rather than the point-wise sum. F comprises
the operations, including convolution, pooling and nonlinear transformations with the weight Wl .
It shows that continuous concatenation of different layers can help to propagate the gradient to the
shallower layers more efficiently and therefore may reduce the gradient disappearance problem.
Meanwhile, the reuse of features from previous layers allows us to reduce the number of features
generated from each layer, to prevent redundancy. In addition, the dense concatenations that DenseNet
employs involve a combination of nonlinear transformations with high complexity from higher layers
and transformations with low complexity from the shallow layer. Thus, it tends to get a smooth
decision function with better generalization performance. This is why DenseNet can deepen the
network while reduce overfitting.

DenseNet uses concatenation to join the features from different layers; therefore, features must
share the same size. However, in a CNN, down-sampling is very important, because it can increase the
receptive field. Therefore, reference [18] concatenated multiple blocks composed of densely connected
layers and performed pooling only between every two blocks. However, it is not suitable for remote
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sensing pre-pixel classification. Once pooling is performed, the size of the features will be changed
and stops us from getting pixel-to-pixel classification results. We prefer to get a direct result output
with the same size as the raw data, with each pixel representing the category of the pixel at the
same position on the original input image. Some researchers [42,43] used unpooling to restore the
down-sampled features to the original sizes, whereas others [44] have also shown that during the
process of down-sampling and up-sampling, some information is lost.

Consequently, we modified the network structure of the original DenseNet to use dilated
convolution instead. According to the two-dimensional definition of dilated convolution [44],
the convolution is defined as follows:

(F ∗l k)(p) = ∑
s+lt=p

F(s)k(t), (3)

where F is a two-dimensional sequence, s is the domain of F, k is the kernel function and t is the domain
of k. ∗l is the l times dilated convolution operation and p is the domain of the dilated convolution.
The convolution operation is depicted in Figure 5.
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Figure 5 shows 2-dilated convolution with a 3 × 3 kernel. The blue area is the receptive area
covered during the calculation. The convolution kernel does not convolve in the continuous space but
instead convolves discretely according to the size of the dilation. As shown in the image, there are
only nine marked points convolved with the kernel, the other points have a weight of zero. That is,
the receptive field grows with the growth of the dilation. In contrast to pooling, dilated convolution
increases the receptive field during the convolution, making every convolution operation cover a larger
area and preventing information loss during pooling and up-sampling.

With the size of the features unchanged, we consider removing the FC layers and sending the
extracted features directly to the classifier. We transformed the whole network into a fully convolutional
network and prevented the superfluous parameters from the FC layers and the information loss in the
process of flattening the features to one dimension. Meanwhile, to ensure that the network achieves
real end-to-end and pixel-to-pixel classification, every pixel in the result represents the category to
which the original pixel belonged.

The classifier needs to decide the category of every pixel. There are usually more than two
categories for the ground objects. This makes softmax—which is generalization of the logistic regression
model in multi-category classification—a great choice. Assume that, K different values can be acquired
after classification, then for the given input data x(i), the probability of its classification result y(i)

equaling category k is as follows:

p
(

y(i) = k|x(i);θ
)
=

eθ
T
k x(i)

∑K
l=1 eθ

T
l x(i)

, (4)
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where θ is the model parameter and T is transpose. The sum of the probabilities of all the category
is one. The cost function generated by the given ground truth and the classification results can be
denoted as follows:

J(θ) = − 1
m× n

[
m

∑
i=1

n

∑
j=1

K

∑
k=1

1
{

y(i,j) = k
}

log
(

p(i,j)
k

)]
+

λ

2
‖θ‖2, (5)

where m and n are the number of rows and columns. K is the total number of categories, θ is the
network parameter,

(
x(i,j), y(i,j)

)
and p(i,j)

k represent the ground truth of the pixel on row i and column

j and the probability of this pixel being classified as class k. 1
{

y(i,j) = k
}

is the indicative function,
if the ground truth of the corresponding pixel is k, then one is returned; otherwise, zero is return.
λ
2 ‖θ‖

2 is the regularization. Parameters are updated iteratively by taking the partial derivative of the
cost function to the gradient descending algorithm.

3.1.2. Internal Classifier Supervision

Like a traditional CNN, DenseNet is also formed by multiple convolution layers, with several
hidden layers in it. However, a common problem of hidden layers is proving the validity of the
extracted feature. Further, the low transparency caused by it makes the network training process
difficult to observe.

When minimizing the objective function and optimizing the network parameters, most CNN-based
methods only supervise the output of the final layer and then propagate the gradients to the shallow
layer by calculating the derivative of the objective function. Even when the layers in the DenseNet
concatenate all the feature maps from the previous layer and consider all low-level and high-level
features, the single objective function on the top is prone to proving the effectiveness of the total sum,
which is not a good valuation for features in the set. Springenberg et al. [20] stated that the features
extracted by CNN were not discriminative enough and Huang et al. [19] dropped out a large amount
of the layers but did not affect the effect of network, proving that the features extracted by the hidden
layers were not discriminative enough and large redundancy remained. Enhancing the transparency
of the network based on DenseNet and improving the hidden layer improves the network’s feature
extraction ability.

Lee et al. [21] proposed to utilize a companion objective function instead of the single objective
function. They employed the L2SVM objective function for the intermediate layers and strengthened
the network with supervision from both the final layer and the hidden layers. This kind of integrated
supervision significantly increased the transparency of the hidden layers, making the extracted features
more targeted and discriminative and helping to solve the gradient disappearance caused by the one
cost function in a deeper network simultaneously.

Considering the purposes of per-pixel classification, we believe that it is more convenient for us
to develop and use softmax supervision as companion supervision, which coincides with the final
objective function. Because the size of the feature maps from each layer is the same as that of the
original input data, each hidden layer can generate per-pixel classification results throughout the
classifier. If features from hidden layers are becoming more similar to the per-pixel ground truth,
then it is believed that the data mining ability of the hidden layer is getting stronger and the extracted
features are more effective, robust and discriminative.

However, if we apply extra supervision to each hidden layer in a relatively deep network, it would
undoubtedly increase the computations of the network and increase the training difficulty. Therefore,
the proposed method uses the trade-off, which is to add classifiers at certain intervals between the
input and output layers. This increases the transparency of the intermediate layers to some degree and
simultaneously avoids bringing a large computation burden.
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3.2. Making a Wider Network

In addition to enhancing the performance of the network by using a deep network structure,
the proposed method also considers making the network wider in order to extract more diverse
information for better classification. The “Making a wider network” referred to here is to extract
the network information by multi-scale filters in order to “widen” the richness and diversity of the
extracted information.

The proposed method uses filters in three different scales: 1 × 1, 3 × 3 and 5 × 5. The sliding
window covers only one pixel when the 1 × 1 kernel is applied to each channel; thus, it cares more
about spectral coherence. For the other two kinds of kernels, because the receptive fields expand
during the computation, they can explore the spatial information and determine which category this
pixel probably is according to the spatial structure. Therefore, the 1 × 1 filter and the other two kinds
of filters realize joint spatio-spectral information mining.

Secondly, the 3 × 3 and 5 × 5 filters focus on different potential local spatial structures because of
the different receptive fields. With the help of the fine resolution of the VHRRS images, even structural
changes in small areas can be represented. Therefore, we can acquire diverse information for the same
pixel from different perspectives with filters in different scales.

When using the multi-scale filters for feature extraction, we choose a method that differs from the
one-time convolution used in many current studies [17], which focuses on using the multi-scale filters
to convolve the original input data, then integrating the feature maps generated by the process and
inputting them into the following network with convolution based on one fixed-scale filter. We utilize
multi-scale filters to extract hierarchical features several times. Specifically, we equip one stream
of densely connected convolutional layers with one kind of filter and convolve the input data with
multi-scale filters respectively, to get abundant information under different scales and acquire better
classification results.

3.3. Architecture of the Proposed Network

The core concept underlying our proposed neural network is to find a better way to fuse the
deepening and widening strategies comprehensively, such that they can cooperate more harmoniously
and enhance the performance of the network. In this study, we applied the “network in network”:
(NIN) concept to design a “deeper and wider” network.

There are two main reasons for using the NIN concept. Firstly, because we use dense concatenation
to alleviate the overfitting or gradient disappearance brought by the deep network, we can make the
network relatively deeper. However, every layer accepts the features from all previous layers via
concatenation; the higher the level of the layer, the greater the input and the more computational
burden it brings. Secondly, using multi-scale filters and 3 × 3 and 5 × 5 kernels to compute the
input with numerous channels is time-consuming. Therefore, assembling the complete network using
several subnets with DenseNets fused with multi-scale filters is a good way to take full advantage of
the benefits of the network depth and width. The structure of each subnet is as shown in Figure 6.
A flowchart of the whole network is given in Figure 3.
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Each subnet uses three kinds of filters to extract information through densely concatenated
convolution streams. Every stream contains several feature extraction operations (including convolution
and activation functions). After completing the feature extraction, the network connects all the features
by concatenation. The repetition of subnets can change the depth of the network. It deepens the
network and extracts the information from different spatial structures simultaneously, reinforcing the
network from width and depth perspectives.

However, because the output of each subnet comprises concatenated features. Inputting those
features directly into the next subnets may make the training too computation-intensive. Therefore,
we use the bottleneck layer [45] for dimension reduction. We denote this layer as the transition layer.

Another use of the transition layer is to supervise the hidden layer through the internal classifiers.
All the results from the transition layer are input into the softmax classifier to get a per-pixel
classification result and the objective functions. Thus, the whole classification network does not solely
depend on the objective function from the top layer. Instead, it uses integrated supervision to restrict
the final output and hidden layers simultaneously, training the network to extract more robust, effective
and discriminative features. Considering the network complexity, we do not apply supervision for
every convolution layer. Applying supervision on the transition layer enables supervision of every
subnet. Although we cannot prove the validity of every hidden layer, the enhanced transparency of the
subnets can also benefit the transparency of the hidden layers and contribute to enhance the network
performance, as it is the combination of some hidden layers and the component units of the network.

Under the control of internal classifier supervision, the whole classification network generates
more than one objective function; then, the total loss function can be denoted as follows:

LOSS = ∑ L
l=1

(
α(l)J(l)

)
(6)

where L is the total number of objective functions, J =
(

J(1), J(2), J(3), ..., J(L)
)

is the collection of all

objective functions and α(l) is the balance coefficient for each objective function—with the total cost
equal to the linear combination of all the objective functions with weights variable and learnable
according to the iterative training. The learnable coefficients make the fusion more flexible and control
their contributions to the overall objective according to the level of discrimination of the features
extracted from the hidden layers.

In general, the proposed method is a depth and width double reinforced network for VHRRS
per-pixel classification. It is an end-to-end, pixel-to-pixel network built by DenseNets with multi-scale
filters in a “network in network” manner and integrates internal classifiers with a final classifier
through linear combination based on learnable coefficients to enhance hidden layer transparency and
improve the network’s feature extraction and classification efficacy.

When images of arbitrary sizes are input into the network, each subnet convolves the input data
with different filters in a dense convolution manner. Then, the extracted results are concatenated
and placed into the transition layer to reduce the dimension. The output data are used to realize
(1) comparison of the per-pixel classification results from the internal classifiers with the ground truth
to calculate the loss; (2) inputting of the results to the next subnet and repetition of the aforementioned
process until objective functions from the final layer are required. All the companion objective functions
are combined to calculate the overall loss function and backpropagation stochastic gradient descent
is employed for network training. For training convenience, alternative optimization is conducted
between the training of balance coefficients from all objective functions and the training of the network
parameters. The overall optimization approach for the proposed method is presented in Algorithm 1.
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Algorithm 1. Optimization approach for the proposed method.

1 Inputs:
2 Input data: X and corresponding ground truth y.
3 Iterations: M1,M2 Number of categories: q
4 Number of layers: L Number of objective functions: l

5 Linear weights: α =
(
α(1),α(2), ...,α(l)

)
6 network parameter: θ =

(
θ(1),θ(2), ...,θ(L)

)
7 learning rate: r1,r2

8 Algorithm:
9 for i← 1 to M1

10 input X
11 for j← 1 to l
12 do LOSS← LOSS(j−1) + α(j) LOSS(j)

13 end
14 do LOSS(θ)← LOSS
15 ∆θ← ∂Loss

∂θ θ← θ + r1∆θ

16 for n← 1 to M2

17 for m← 1 to l
18 do LOSS← LOSS(m−1) + α(m) LOSS(m)

19 end
20 ∆α← ∂Loss

∂α α← αθ + r2∆αθ

21 end
end

4. Experiments and Results

In this section, the details of the experiments conducted, including the data and experimental
strategy, are presented and the results analyzed.

4.1. Experimental Data

In the overall experimental process, 15 images from four different satellites, namely, the GF02, BJ02
and geoeye and quickbird satellites, were utilized to validate our proposed method. The sizes of these
images varied from 400 × 400 to 950 × 950 pixels. Most of the images from GF02 and BJ02 were taken
in Dongying city, Shangdong province, on 25 June 2016 and 21 June 2017, respectively and included
five bands. One of the bands was panchromatic with 1 m spatial resolution, whereas the others were
multispectral bands in red, blue, green and near-infrared, with 4 m spatial resolution. The image from
the geoeye satellite was taken over the urban area of Hobart, Tasmania, Australia, on September 2012,
with red, blue, green and near-infrared bands of 0.5 m spatial resolution. The images from quickbird
were taken from Fancun, Hainan province in 2010, with 2.4 m spatial resolution for red, blue, green and
near-infrared bands. Some of these ten images contained ground objects from five categories: water,
vegetation, building, road and bare land. The others contained another grass class. Thus, there was
a total of six categories. We labeled over 80% of the pixels for each of the 10 images manually as the
ground truth for training and testing. All experimental data are displayed in Figure 7.

All the data needed to be pre-processed. Pre-processing included normalization and taking
patches from the normalized data. We randomly selected labeled pixels in the images as the training
pixels according to the training ratio. We cropped the corresponding patch for every selected pixel,
which was denoted as xi, xi ∈ <w×w×c, in which w was the size of the patch and c was the number
of bands. This pixel could be at any positon in the patch. The size of xi was the same as that of the
corresponding ground truth yi. For each ground truth patch, only the position for the training pixel
was assigned a category label, which meant that the other pixels were not involved in the training.
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The prepared input dataset was denoted as
((

x1, y1), (x2, y2), ...,
(
xi, yi), ..., (xn, yn)

)
. It contained n

training pixels.
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4.2. Experimental Strategies

To better reveal the factors affecting the performance of the proposed method and validate the
network’s effectiveness and rationality, we took two scene images, BJ image and GF image from
Figure 7a,b, respectively, as examples and determined the influences on the network from the network
structure, the ratio of the training samples and so forth. We also verified the importance of each
component of the proposed method on the performance of the network, to validate the practicality of
the network components. The size of the two scene images and the total number of labeled pixels are
presented in Table 1. We chose only a small part for training and validation, the other parts served as
test data.

Table 1. Reference data information for BJ02 and GF02 images.

BJ Size 800 × 800 GF Size 570 × 570

No. Category Mark Color Number of Pixels No. Category Mark Color Number of Pixels

1 Water Light Blue 35522 1 Water Light Blue 65444
2 Tree Blue 226305 2 Tree Blue 86927
4 Bare Land Red 70549 4 Bare Land Red 46296
5 Building Green 115512 5 Building Green 37549
6 Road Purple 71464 6 Road Purple 26875

We tested different network structures in the experiments to find out how the network structures
influence the network performance. The proposed method used the “network in network” design.
Each subnet contained three DenseNets, extracting features using 1 × 1, 3 × 3 and 5 × 5 kernels,
respectively. Each DenseNet contained four convolution blocks comprising the dilated convolution
and the activation function and sometimes the batch normalization and drop out as well.
In the experiments, we used one, two and three subnets, respectively, to construct the final network to
test the influence from the network’s depth. The depth of the network comprising three subnets could
contain more than 15 layers. Although it was not very deep compared with deep networks in the
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computer science domain, it was quite deep in the domain of per-pixel remote sensing classification.
Besides, only small number of labeled pixels were designed to use for the training of the network
according to our research aim. Containing too many subnets might be too deep to train using tiny
amount of training samples. So, we thought the number of subnets no more than 3 could meet our
research requirements. What’s more, we have tested that training a network with 3 subnets might cost
over 4 h and containing more subnets would cost even longer time and not be efficient. For each subnet,
we considered how the convolution kernel depth influences the network performance. The study
conducted in [18] proved that because of the use of the dense concatenations, the depth of the convolution
kernels could be as shallow as 12 while still expressing the information efficiently. We verified the
differences of the network performance when setting the filter depth to 14, 18, 22, 26 and 30.

We used variable control to determine the network classification capabilities with internal classifier,
multi-scale kernels, or dense convolution removed, in order to verify the efficacy of the network design.

For data ratio, we used five different training-testing ratios to verify how the number of labeled
training samples influences the classification accuracy under different network structures and to prove
the robust capability of the proposed method when faced with a small number of training samples.

In addition to the two exhaustively analyzed images, we used another eight images for extra
experiments. All the experimental data were compared with some state-of-the-arts methods.

After about 20 rounds of experiments and referring to studies such as [23,46], we defined the
other network parameters as follows. All the input data for the network training were 35 × 35 patches,
which was a tradeoff considering both computational cost and training results. The patches with
bigger size would cost more time in training while the patches with smaller size might not provide
enough information. When applying the dilated convolutions, “dilated” was set to two, considering
the generated receptive field and the input patch sizes. Convolution stride was set to one and padding
to two and four for 3 × 3 and 5 × 5 kernels, respectively, in order to keep the size of generated feature
maps unchanged in convolution. The learning rate was set to 0.004, batch size to 100, momentum to 0.9
and weight decay to 0.0005, which were empirical parameter. All the experimental results presented
are the averages of multiple rounds.

All the experiments were conducted on the same computer, an Intel®Xeon®CPUE3-1220v5@3.00 GHz
CPU, 16.0 GB RAM and NVIDIA Quadro K620. The CUDA version for GPU acceleration was 8.0.44.

4.3. Experimental Results and Analysis

4.3.1. Influence of Network Structure on Network Performance

In this section, we analyze the influence of the depth of the network and the convolution kernel.
For each category, 1000 labeled pixels were randomly selected from the BJ02 and GF02 images for
training and validation. The remaining labeled data served as testing data. Figure 8a,b illustrate the
changing of overall accuracy (OA) for two images under different network structures. Tables 2–5 list the
detailed classification results. The results were the averages of 5 runs of the experiments. We used the
most popular OA and kappa as the criteria, in which OA represented the ratio of correct classified pixels
to overall pixels and kappa was used for consistency check, serving as a criterion of the classification
accuracy as well.

Table 2. Overall accuracy (OA) values for the BJ02 experiment. The bold one means the best results,
compared with other data.

1 Subnet 2 Subnets 3 Subnets

14 0.96799 0.973863 0.977498
18 0.969218 0.97481 0.97878
22 0.971377 0.97796 0.98119
26 0.97239 0.978845 0.982915
30 0.973252 0.979723 0.983866
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Table 3. KAPPA values for the BJ02 experiment. The bold one means the best results, compared with
other data.

1 Subnet 2 Subnets 3 Subnets

14 0.946285 0.956165 0.962246
18 0.948313 0.95764 0.964387
22 0.951957 0.96299 0.9684
26 0.95358 0.964458 0.9713
30 0.955042 0.965945 0.972904

Table 4. OA values for the GF02 experiment. The bold one means the best results, compared with
other data.

1 Subnet 2 Subnets 3 Subnets

14 0.973990 0.982858 0.984737
18 0.974033 0.983738 0.986798
22 0.975775 0.984148 0.9877175
26 0.978170 0.984558 0.98822
30 0.979980 0.985323 0.988855

Table 5. KAPPA values for the GF02 experiment. The bold one means the best results, compared with
other data.

1 Subnet 2 Subnets 3 Subnets

14 0.965193 0.977048 0.979563
18 0.965233 0.978228 0.982318
22 0.967575 0.978772 0.9835525
26 0.970774 0.979333 0.98422
30 0.973195 0.980348 0.9850775
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Figure 8. (a,b) display the overall accuracy acquired from the BJ02 and GF02 images, respectively, 
based on different network structures. 

Figure 8. (a,b) display the overall accuracy acquired from the BJ02 and GF02 images, respectively,
based on different network structures.

In Figure 8, the vertical axis is the OA value, the horizontal axis is the depth of the convolution
kernel. By comparing the results, it is clear that the network structure had a significant influence on
the performance of the network.

We found a common trend in the classification accuracy of the BJ02 and GF02 experiments. Firstly,
the accuracy of the network classification increased significantly with network depth. In particular,
for the network using three subnets and one subnet, the increase in the accuracy of the network
was larger than 1%. We theorize that this is because the shallow network focused more on the
detailed features but those low-level features were not abstract enough. As the network went deeper,



Remote Sens. 2018, 10, 779 15 of 27

more hierarchical features were extracted. The extracted information contained not only the low-level
information focusing on details but also the inherent features that were more discriminative, robust,
general and representative of the nature of the ground objects. For the GF02 image, the network
comprising two subnets achieved similar results when the kernel depth was small compared with the
deeper networks. However, as the kernel depth increased, the difference in accuracy also increased
gradually. Although it was not that obvious in the results from the BJ02 experiments, by the joint
efforts of the deepest network and the deepest kernel depth (deepest in all compared experimental
structures), both images achieved outstanding experimental results. This also proves to some degree
that with the combination of increasing depth of network and kernels, the extracted information gets
closer to the nature of data, which is the key to distinguishing the pixels from different categories.

In addition to the network depth, the kernel depth also had a significant influence on the capability
of the network. The depth of the convolution kernels was the amount of feature maps generated by each
convolution. In our experiments, the three-subnet network achieved accuracies higher than 97.7% and
98.4% from the BJ02 and GF02 experiments, respectively, with only 14 convolution kernels. The accuracies
were very satisfactory compared with the contrast experiments. In our experiments, when the
convolution kernel depth varied from 14 to 30, the accuracy increased with the increasing kernel depth.
The increasing kernel depth enable generation of more feature maps, which described the ground
objects from different perspectives, making it easier to determine the intrinsic differences among
different ground objects and, consequently, achieved better results for ground object classification.
Meanwhile, the deepest kernel depth in our experiments was 30, which is not too much to cause
redundancy or a large burden for the next layer. Thus, the network performance increasing with
increasing kernel depth would not be abnormal. When the depth of the convolution kernel was 30,
the overall accuracy was as high as 98.4% and 98.9% under the deepest network structure. From the
GF02 and BJ02 experiments, sometimes the influence on the classification accuracy caused by the
changes of the kernel depth was stronger in a shallow network than in a deeper network. This might be
because in the shallower network, the hierarchical features extracted by the network were insufficient
to contribute much to the increase in the classification accuracy of the network. Then, the increasing in
diversity of the feature maps compensated for a lack of hierarchical features and made the extracted
features more discriminative.

Although employing more subnets and utilizing deeper convolution kernel depths both increased
the accuracy in our experiments, it did not mean that we could increase the depth of the network
indefinitely. This is because the number of parameters to be trained would increase quickly when the
network became wider and deeper. There would be a risk of overfitting when the amount of training
samples was small as in our experiments, even though we used some novel approaches to reduce the
influence of overfitting. Further, overly many feature maps increased the probability of redundancies
and may increase the computation burden in the next layer, making the increase of the classification
disproportional to the increase of the feature map numbers. If the increase of accuracy is not obvious
while the network training difficulty is significantly increased, then it would make no sense to deepen
or widen the network.

4.3.2. Influence of Network Components on Network Performance

In previous sections, we discussed the reasons why using the dense concatenative convolution,
multi-scale filters, as internal classifiers to construct the proposed method theoretically. Here, we use
control variables to test the influences of these components, in order to verify the significance and
rationality of choosing these components.

In Tables 6 and 7 we display the OA, KAPPA, user accuracy and producer accuracy of each category.
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Table 6. BJ02 Classification results for all comparative experiments.

Method OA KAPPA WATER TREE BARE LAND BUILDING ROAD

proposed method 0.984 ± 0.002 0.973 ± 0.002 0.998/0.960 0.989/0.999 0.978/0.920 0.963/0.984 0.985/0.968
Non-internal classifier 0.977 ± 0.002 0.962 ± 0.003 0.995/0.973 0.982/0.999 0.971/0.890 0.951/0.975 0.987/0.947

1*1 kernel 0.945 ± 0.004 0.907 ± 0.005 0.955/0.905 0.988/0.997 0.884/0.811 0.834/0.920 0.916/0.843
3*3 kernel 0.977 ± 0.004 0.962 ± 0.005 0.997/0.952 0.985/0.999 0.965/0.892 0.947/0.974 0.984/0.954
5*5 kernel 0.981 ± 0.002 0.968 ± 0.002 0.996/0.967 0.989/0.999 0.969/0.906 0.954/0.978 0.981/0.958

contextual deep CNN 0.977 ± 0.002 0.961 ± 0.003 0.995/0.956 0.990/0.999 0.950/0.895 0.938/0.977 0.980/0.945
without DenseNet 0.974 ± 0.002 0.957 ± 0.004 0.996/0.944 0.983/0.998 0.976/0.870 0.935/0.975 0.977/0.958
Improved URDNN 0.977 ± 0.001 0.962 ± 0.002 0.997/0.927 0.982/0.999 0.963/0.934 0.961/0.953 0.982/0.954

SCAE + SVM 0.892 ± 0.001 0.821 ± 0.001 0.868/0.774 0.964/0.995 0.865/0.708 0.726/0.776 0.764/0.752
Two-stream network 0.976 0.959 0.998/0.921 0.983/0.999 0.951/0.897 0.955/0.968 0.978/0.959

deconvolution 0.965 0.942 0.994/0.936 0.988/0.999 0.923/0.856 0.897/0.965 0.967/0.901
parallelepiped 0.606 0.515 1.000/0.444 1.000/0.983 0.000/0.000 0.547/0.609 0.410/0.996

minimum distance 0.746 0.683 0.912/0.873 1.000/0.992 0.550/0.645 0.626/0.421 0.683/0.753
Mahalanobis distance 0.820 0.700 0.659/0.942 0.984/0.973 0.479/0.697 0.619/0.259 0.628/0.831
maximum likelihood 0.8275 0.720 0.756/0.910 0.996/0.924 0.519/0.0.744 0.542/0.486 0.763/0.821

Table 7. GF02 Classification results for all comparative experiments.

Method OA KAPPA WATER TREE BARE LAND BUILDING ROAD

proposed method 0.989 ± 0.001 0.985 ± 0.001 1.000/1.000 0.990/0.999 0.973/0.974 0.973/0.956 0.992/0.978

Non-internal classifier 0.984 ± 0.003 0.978 ± 0.003 1.000/1.000 0.985/0.999 0.963/0.950 0.956/0.948 0.989/0.970

1*1 kernel 0.956 ± 0.003 0.942 ± 0.004 0.999/1.000 0.987/0.998 0.866/0.902 0.862/0.856 0.948/0.878

3*3 kernel 0.983 ± 0.002 0.978 ± 0.002 0.999/0.999 0.987/0.998 0.967/0.939 0.957/0.948 0.976/0.986

5*5 kernel 0.985 ± 0.001 0.980 ± 0.002 0.999/0.998 0.979/0.997 0.973/0.958 0.971/0.958 0.993/0.970

contextual deep CNN 0.982 ± 0.001 0.976 ± 0.001 1.000/1.000 0.988/0.998 0.960/0.954 0.945/0.951 0.981/0.950

without DenseNet 0.979 ± 0.001 0.972 ± 0.002 0.999/0.997 0.976/0.998 0.954/0.942 0.967/0.933 0.976/0.962

Improved URDNN 0.981 ± 0.001 0.975 ± 0.001 0.998/0.998 0.978/0.998 0.967/0.957 0.961/0.937 0.986/0.961

SCAE + SVM 0.913 ± 0.001 0.883 ± 0.001 0.994/0.998 0.984/0.997 0.816/0.783 0.535/0.799 0.948/0.727

Two-stream network 0.981 0.975 1.000/1.000 0.987/0.999 0.942/0.960 0.959/0.929 0.985/0.951

deconvolution 0.969 0.958 0.995/1.000 0.969/0.998 0.945/0.892 0.939/0.890 0.956/0.975

parallelepiped 0.333 0..208 0.997/0.086 1.000/0.549 0.000/0.000 0.159/1.000 0.000/0.000

minimum distance 0.839 0.787 0.952/0.997 0.998/0.930 0.700/0.675 0.465/0.349 0.624/0.880

Mahalanobis distance 0.859 0.813 0.980/0.998 1.000/0.946 0.691/0.699 0.644/0.377 0.615/0.945

maximum likelihood 0.773 0.708 0.993/0.997 1.000/0.709 0.693/0.680 0.270/0.367 0.615/0.976

(1) Influence of the multi-scale filters

In the proposed method, we used multi-scale filters to get joint spatio-spectral information and
diverse local spatial structure information. To determine the influence of multi-scale filters on the
network, for both the BJ02 and GF02 experiments, we compared the proposed network with the
networks using solely 1 × 1 kernels, 3 × 3 kernels, or 5 × 5 kernels. Those contrast experiments were
implemented under the three-subnets network with filter depth of 30 and all the other parameters
remained unchanged.

According to the quantitative results, firstly, the accuracy of the network with 1 × 1 kernels was
the worst. For the BJ02 experiments, the OA was only 94.5%. Compared with the network using
3 × 3 or 5 × 5 kernels, the difference was more than 3.6%. For the GF02 experiments, OA achieved
98.5% using 5 × 5 kernels while it decreased to 95.6% when the 1 × 1 kernels were used. For both
experiments, using combination of three kernels reached highest accuracy. That using 3 × 3 and
5 × 5 filters increased the accuracy significantly, indicates that the spatial structure had a significant
influence. The 1 × 1 kernels mainly used spectral correlation information.

Figures 9 and 10 show the classification results from the BJ02 and GF02 experiments when using
three different kinds of filters. Visually speaking, the results generated by using solely 1 × 1 kernels
were heavily mottled. The commission errors were serious, no regardless of the inside ground objects
or at the boundaries. When using the filters in larger scales, because the spatial structure information
was considered, the commission and omission errors obviously decreased. For both the BJ02 and GF02
experiments, the network using 5× 5 filters achieved the best result and the completeness of the ground
objects was greatly improved compared with the network using other filters. Comparing these three
methods with the proposed method, although the boundaries of some ground objects were mottled
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for the proposed method, the misclassifications between bare lands and building, bare land and roads
and buildings and roads that were found in the others were significantly reduced and the results were
more similar to the labeled images. We theorize that it is closely related to the joint of spatio-spectral
information and the combination of diverse local structures. However, in all the methods, roads, bare
lands and buildings were most likely to be misclassified compared with others. This might be because
these ground objects used similar building materials; hence, those ground objects possessed similar
spectral information and consequently resulted in the decrease in the classification accuracy.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 27 
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Figure 9. BJ02 classification results from (a) manually labeled reference data, (b) proposed method, 
(c) internal classifier-removed, (d) method using 1 × 1 kernel, (e) method using 3 × 3 kernel, (f) 
method using 5 × 5 kernel, (g) ResNet-based method using contextual deep CNN, (h) method 
without densely connected convolution, (i) improved URDNN, (j) SCAE + SVM, (k) two-stream 
network, (l) deconvolution, (m) parallelepiped, (n) minimum distance, (o) Mahalanobis distance and 
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Figure 9. BJ02 classification results from (a) manually labeled reference data, (b) proposed method,
(c) internal classifier-removed, (d) method using 1 × 1 kernel, (e) method using 3 × 3 kernel,
(f) method using 5 × 5 kernel, (g) ResNet-based method using contextual deep CNN, (h) method
without densely connected convolution, (i) improved URDNN, (j) SCAE + SVM, (k) two-stream
network, (l) deconvolution, (m) parallelepiped, (n) minimum distance, (o) Mahalanobis distance and
(p) maximum likelihood.
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commission errors inside the ground objects. Some of them were in dots, some of them were in large 
areas, for example the bare lands and buildings inside the trees. 

For the GF02 experiments, OA decreased 0.5% to 98.4%. KAPPA decreased 0.7% to 97.8%. From 
Figure 9 clearly shows that, without the internal classifier the misclassifications between buildings 
and bare lands and between buildings and roads are more obvious, while the proposed methods 
preserved the completeness of the buildings better. 

The decreased accuracy indicates that when internal classifiers are removed, the features used 
for the classification are not that discriminative and because the internal classifiers also had some 
effect on strengthening the gradients, when using the network with the internal classifiers, they 
could back propagate stronger feedback on gradients from different layers. Therefore, when those 
companion classifiers were removed, the accuracy decreased distinctly. 

Figure 10. GF02 classification results from (a) manually labeled reference data, (b) proposed method,
(c) internal classifier-removed, (d) method using 1 × 1 kernel, (e) method using 3 × 3 kernel,
(f) method using 5 × 5 kernel, (g) ResNet-based method using contextual deep CNN, (h) method
without densely connected convolution, (i) improved URDNN, (j) SCAE + SVM, (k) two-stream
network, (l) deconvolution, (m) parallelepiped, (n) minimum distance, (o) Mahalanobis distance and
(p) maximum likelihood.

(2) Influence of the internal classifier on the network

The purpose of using internal classifiers is to increase the transparency of the hidden layers.
Inputting the feature maps generated by the hidden layers directly into the internal classifier to get
the companion loss and then combining the companion loss with the loss from the final layer makes
the features from hidden layers more discriminative, enhancing the robustness and reducing the
information redundancies.
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OA and KAPPA changed significantly when the network was with or without the internal classifiers.
For the BJ02 experiments, OA decreased about 0.6% and KAPPA decreased 1%. With the internal classifiers
removed, although the boundaries were well maintained, the completeness of the ground objects was
not as good as that from using internal classifiers. There were obvious commission errors inside the
ground objects. Some of them were in dots, some of them were in large areas, for example the bare
lands and buildings inside the trees.

For the GF02 experiments, OA decreased 0.5% to 98.4%. KAPPA decreased 0.7% to 97.8%.
From Figure 9 clearly shows that, without the internal classifier the misclassifications between buildings
and bare lands and between buildings and roads are more obvious, while the proposed methods
preserved the completeness of the buildings better.

The decreased accuracy indicates that when internal classifiers are removed, the features used for
the classification are not that discriminative and because the internal classifiers also had some effect
on strengthening the gradients, when using the network with the internal classifiers, they could back
propagate stronger feedback on gradients from different layers. Therefore, when those companion
classifiers were removed, the accuracy decreased distinctly.

(3) Influence of the DenseNet on the network

We removed the densely connected convolution and utilized normal convolution instead.
When the dense concatenation was removed, for two experiments, both of their OAs decreased
by about 1% and KAPPAs decreased by about 1.5%. For the BJ02 experiments, according to the
classification result images in Figure 9, some pixels inside buildings or roads were misclassified
as other ground objects obviously, for instance, the buildings on the right and the roads in the
middle. For the GF02 experiments, from Figure 10, some pixels inside the bare lands were obviously
misclassified as roads close to the edges of the GF image.

This proves that DenseNet can make use of the advantages brought by the depth of the deep
network, that deeper network possesses stronger expression ability. Because the dense concatenation
reutilized the feature maps, the connections between the layers close to the input layers and output
layers were shorter, which alleviated the problems harming the network performance, such as gradient
disappearance, brought by the deeper network and made deepening the network more sensible.

4.3.3. Contrast Experiments with Other Networks

To test the effectiveness and practicability of the proposed method, we introduced five kinds
of networks similar to the proposed method: DNN [47], URDNN [48], contextual deep CNN [17],
two-stream neural network [26] and SAE + SVM [49]. DNN uses deconvolution to realize an end-to-end,
pixel-to-pixel classification. It has also become a prevalent method for per-pixel classification recently.
URDNN utilizes the unsupervised network to support and control the supervised classification,
using both labeled and unlabeled pixels to alleviate the overfitting problems caused by a small number
of samples. We revised the original URDNN and added feature concatenation in the last layer to
make it more comparable with the proposed method. Contextual deep CNN and two-stream network
all rely on ResNet to reduce the problems like gradient disappearance and overfitting, which were
coherent with our aim. SAE + SVM used the unsupervised method to extract features and then utilized
SVM as the classifier for the classification. All the methods mentioned above were neural network
algorithms. Besides neural network based methods, we also introduced some simple classification
methods without using neural network for comparison, which were parallel piped, minimum distance,
mahalanobis distance and maximum likelihood methods.

Tables 6 and 7 and Figures 9 and 10 illustrate the results in detail.
For the BJ02 experiment, the two networks utilizing ResNet achieved accuracies of 97.6% and

97.7%, respectively. The boundaries of the ground objects were well retained but there were some
misclassifications in some small roads and inside the buildings and trees. Contextual deep CNN mainly
misclassified buildings as bare lands, while the two-stream network performed well in the classification
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between buildings and bare lands but was prone to mix buildings with the roads. Those ground
objects were similar in their spectral information. URDNN does not adopt ResNet to reduce gradient
disappearance and overfitting but it utilizes the feature extraction of the unlabeled data and performed
well with the classification accuracy of 97.7%. The DNN performed relatively poorly compared with
the aforementioned methods. In addition to the previously mentioned misclassification, it also tended
to misclassify bare lands as roads and resulted in lower classification accuracy. SAE + SVM was the
only method solely relying on the unsupervised feature extraction but it performed worst.

The results from simple classification methods were much worse than what we have achieved
using proposed neural network method, no matter from accuracy aspect or visual effect aspect.
Some simple classification methods could do well on classifying simple ground object categories,
such as water and tree. However, they seemed not to be suitable for classifying some complex or confusing
categories, like bare land, building and road, which caused serious misclassification. From computational
cost aspect, using such simple classification methods would be more efficient. It just needed several
seconds to do the classification while we required about 4 h to train our network. But this efficiency
could not compensate their deficiency in VHRRS image per-pixel classification accuracy.

Compared with these contrast methods, the proposed method achieved the competitive results,
with OA of 98.4% and kappa of 97.3%. From Figure 9, although some boundaries of ground objects
were not well preserved, for instance, some building boundaries, the errors inside the ground objects
were greatly reduced. The ground objects extracted by the proposed method were more complete.
Although there were still misclassifications between buildings and bare lands and between bare lands
and roads, the classification result was getting more similar to the labeled ground truth.

For the GF02 experiment, the proposed method achieved an OA as high as 98.9%, which is about
0.7% higher compared with other contrast methods. ResNet-based contextual deep CNN achieved
the best result in five contrast methods. Although the improved URDNN did not use ResNet, its OA
were all over 98.1%. However, compared with the proposed method, these contrast methods did not
preserve the completeness of the ground objects well enough, especially inside the buildings and
bare lands. In addition, there are more commission errors on the boundaries of the buildings and
the roads. The SAE + SVM method performed poorly in the GF02 experiment as well, the bare lands
and the roads were heavily mixed, so the results looked mottled. The simple classification methods
without using neural network also behaved worse compared with proposed method, especially in
some confusing categories, like building and bare land.

The proposed network was not advantageous in terms of training and classification time because
it contains many convolutions that are very time-consuming, especially for those 5 × 5 convolutions.
Although we reduced the depth of filters to control it but time training time for the whole network was
about 4 h when the subnet number was three and filter depth was 30, using the Quadro K620 graphic
card. In the testing, the time to generate the classification result was 1.2 s, which was not too long.

4.3.4. Influence of Training Data Size on Network Performance

Because of the complexity of the deep network and the large number of parameters to be trained,
when the labeled training data were few, overfitting tended to happen and resulted in the decrease
in the classification accuracy. The network performance was not in proportion to the network depth.
In the field of per-pixel classification of VHRRS, it is hard to acquire the labeled data. Therefore,
it is challenging to make the model more robust with a small number of samples. For the BJ02 and
GF02 experiments, we chose 600, 700, 800, 900 and 1000 pixels for each category as training samples.
The changes of the overall accuracy are shown in Figure 11, in which ResNet represents the contextual
deep CNN and non-dense represented the proposed method with the densely connected convolution
removed. For the BJ02 and GF02 experiments, the decease of the amount of training samples generated
some similar trends.
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Figure 11. (a,b) are changes of OA values for the BJ02 experiments and GF02 experiments, respectively,
with the amount of training data decreasing.

Firstly, when using 600 training samples, the proposed method with three subnets achieved
the best results. In the BJ02 experiments, the OA reached 97%; and in the GF02 experiments,
OA reached 98%, both of which were satisfactory. Secondly, we could see that although the accuracies
of all the methods decreased when the amount of training sample was reduced, when using the
URDNN and the proposed method with densely connected removed, the speed and range of the
decease were quicker and larger. When using DenseNet and ResNet, the changes were relatively
steady. Especially for the contextual deep CNN, the changes were quite small, which proved that its
model is quite robust. Our proposed method changed more obviously when using 3 subnets than
using 2 subnets or one subnet, this was because the 3-subnets network was more complicated and
had more parameters. Although it employed DenseNet and internal classifiers to reduce the gradient
disappearance and overfitting, it was prone to be influenced by the number of samples than the simpler
networks. However, it still achieved satisfactory results with a small number of samples.

When the densely connected convolution was removed, the network classification accuracy
decreased rapidly as the number of training samples was reduced, which also proves that the increase in
the transparency of the hidden layers was beneficial to counter the overfitting problem. DenseNet was
useful for the network to extract more discriminative features and made the models more appropriate
for the training and classification in the circumstance of small number of training samples.

In general, the proposed method performed consistently when the training data were reduced.
It was suitable for the scenario of the RHRRS classification where the labeled training data were lacking.
It could strengthen the capability of data extraction of the network, enabling the network to achieve
better results when the number of samples is small.

4.3.5. More Experiments and Verifications

To test the validity and feasibility of the proposed method, in addition to the aforementioned
two scene images, we also applied the proposed method to another thirteen images. The classification
accuracies are given in Table 8. For each category, the producer’s accuracy and user’s accuracy were
calculated and are separated by “/”. In consideration of the space and the performance of different
contrast methods in Section 4.3.3, we chose two methods as contrast methods: ResNet and improved
URDNN. Compared with these two methods, in most circumstances the proposed method performed
best and obviously achieved the leading accuracies. Figure 12 shows images of the classification results.
The proposed method performed better than the contrast methods regarding the completeness and the
preservation of the boundaries for each ground category.
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Table 8. Classification results for extra eight images. The bold one means the best results, compared
with other data.

Method OA KAPPA WATER TREE BARE
LAND BUILDING ROAD GRASS

1

OUR’S 0.988 0.983 1.000/0.999 0.989/0.989 0.963/0.967 0.994/0.993 0.999/0.981 /

URDNN 0.980 0.971 0.996/0.998 0.976/0.993 0.957/0.935 0.992/0.976 0.992/0.880 /

ResNet 0.985 0.978 1.000/0.999 0.983/0.992 0.967/0.948 0.991/0.992 0.976/0.908 /

2

OUR’S 0.974 0.961 0.998/0.974 0.968/0.998 0.985/0.953 0.965/0.954 0.992/0.965 /

URDNN 0.966 0.949 0.998/0.972 0.963/0.995 0.978/0.934 0.945/0.949 0.989/0.959 /

ResNet 0.968 0.952 0.997/0.967 0.969/0.996 0.977/0.936 0.940/0.964 0.994/0.922 /

3

OUR’S 0.992 0.987 1.000/0.997 0.995/0.998 0.989/0.962 0.982/0.995 1.000/0.987 /

URDNN 0.985 0.976 1.000/0.996 0.983/0.999 0.989/0.919 0.981/0.992 1.000/0.990 /

ResNet 0.987 0.979 0.999/0.997 0.992/0.999 0.993/0.924 0.963/0.996 1.000/0.991 /

4

OUR’S 0.982 0.971 0.999/0.999 0.978/0.997 0.985/0.962 0.987/0.934 0.987/0.989 /

URDNN 0.975 0.960 1.000/0.999 0.964/0.998 0.998/0.915 0.985/0.928 0.988/0.986 /

ResNet 0.976 0.961 1.000/1.000 0.970/0.998 0.987/0.934 0.992/0.914 0.970/0.993 /

5

OUR’S 0.976 0.964 0.997/0.975 0.980/0.994 0.959/0.978 0.990/0.885 0.986/0.959 /

URDNN 0.970 0.954 0.995/0.975 0.983/0.991 0.924/0.986 0.992/0.849 0.998/0.919 /

ResNet 0.966 0.948 0.993/0.963 0.978/0.996 0.918/0.980 0.995/0.773 0.999/0.962 /

6

OUR’S 0.988 0.983 1.000/0.997 0.994/0.993 0.969/0.974 0.984/0.985 0.995/0.990 0.996/0.983

URDNN 0.985 0.979 0.999/0.991 0.989/0.996 0.980/0.956 0.973/0.989 0.994/0.983 0.998/0.944

ResNet 0.978 0.971 0.999/0.998 0.972/0.996 0.976/0.965 0.978/0.989 0.989/0.880 0.993/0.918

7

OUR’S 0.982 0.976 0.998/0.998 0.940/0.936 0.977/0.982 0.984/0.989 0.978/0.980 0.995/0.974

URDNN 0.978 0.971 0.998/0.998 0.936/0.912 0.974/0.973 0.979/0.989 0.978/0.975 0.984/0.970

ResNet 0.980 0.973 1.000/0.996 0.912/0.957 0.960/0.959 0.988/0.985 0.974/0.978 0.996/0.975

8

OUR’S 0.991 0.987 0.997/0.988 0.990/0.999 0.992/0.966 0.995/0.973 0.996/0.990 0.970/0.987

URDNN 0.988 0.982 0.995/0.969 0.985/0.998 0.983/0.962 0.999/0.971 0.991/0.996 0.970/0.983

ResNet 0.990 0.985 0.997/0.980 0.990/0.999 0.982/0.967 0.996/0.973 0.991/0.994 0.965/0.979
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Table 8. Cont.

Method OA KAPPA WATER TREE BARE
LAND BUILDING ROAD GRASS

9

OUR’S 0.984 0.979 0.999/0.979 0.983/0.997 0.984/0.988 0.977/0.981 0.991/0.959 /

URDNN 0.961 0.948 1.000/0.981 0.960/0.992 0.958/0.996 0.943/0.913 0.970/0.909 /

ResNet 0.970 0.960 0.999/0.989 0.965/0.996 0.981/0.990 0.954/0.930 0.978/0.936 /

10

OUR’S 0.992 0.986 0.999/1.000 0.991/0.999 0.987/0.983 0.997/0.977 0.997/0.955 /

URDNN 0.979 0.963 0.999/1.000 0.972/0.996 0.993/0.982 0.994/0.911 0.962/0.954 /

ResNet 0.973 0.954 0.998/1.000 0.964/0.998 0.984/0.984 0.993/0.902 0.977/0.874 /

11

OUR’S 0.983 0.977 0.993/0.984 0.975/0.994 0.975/0.971 0.986/0.991 0.995/0.913 /

URDNN 0.964 0.953 0.988/0.995 0.961/0.994 0.942/0.908 0.960/0.984 0.979/0.787 /

ResNet 0.971 0.961 0.986/0.980 0.956/0.991 0.977/0.935 0.975/0.991 0.976/0.837 /

12

OUR’S 0.989 0.984 1.000/0.965 0.981/0.999 0.994/0.980 0.994/0.983 0.998/0.986 /

URDNN 0.970 0.956 0.998/0.978 0.958/0.998 0.977/0.991 0.972/0.848 0.984/0.919 /

ResNet 0.977 0.966 1.000/0.895 0.964/0.996 0.983/0.966 0.988/0.967 0.995/0.978 /

13

OUR’S 0.981 0.974 1.000/1.000 0.983/0.996 0.971/0.973 0.991/0.973 0.992/0.996 0.977/0.950

URDNN 0.966 0.955 0.995/0.998 0.962/0.995 0.975/0.925 0.948/0.978 0.996/0.858 0.991/0.924

ResNet 0.971 0.961 0.995/0.991 0.972/0.994 0.968/0.948 0.957/0.992 0.989/0.847 0.994/0.893

5. Conclusions

This paper proposed a double reinforced deep learning neural network from two perspectives,
deepening and widening of the network, with the aim of building a more effective network for
very high resolution remote sensing per-pixel classification. The proposed method utilizes densely
connected convolution from the DenseNet concept and internal classifiers to make a deeper neural
network. It takes advantage of DenseNet to achieve feature maps reuse and densely connected
convolution helps it to achieve better feature extraction using smaller filter depth and to decrease the
redundancy. Further, it makes shorter connections from input and output layers, which strengthens the
gradients and reduces the negative effects on network performance brought by gradient disappearance.
Internal classifiers are designed not only to enhance the features and gradients but also to increase
the transparency of hidden layers, making extracted features from hidden layers more objective and
targeted, in order to reinforce its level of discrimination and reduce the redundancy. In addition to
width, the proposed method also enhances feature extraction capability from widening of the network.
Multi-scale filters are also involved, with 1 × 1 filters helping to extract spectral coherence and 3 × 3
and 5 × 5 filters designed to extract diverse local spatial structures. Thus, enabling extraction of
features from different views and making the range of information extraction broader and more
abundant. To better fuse the network deepening and widening strategy, the “network in network”
concept was utilized. It helps the double reinforced deep learning neural network to go smoothly and
improves the network’s expression ability as well, which enables it to deal with more complicated
situations and makes model performance better.

During the experiments, the influence on network performance of network structure parameters
(network depth, filter depth, etc.) was examined. It was found that the network depth and more
generated feature maps may benefit network performance. Further, the proposed method was compared
with densely connected convolution, multi-scale filters and internal classifiers removed. The better results
obtained by the proposed method prove the importance and rationality of these components.

The proposed method was also tested on ten images from the BJ02, GF02, geoeye and quickbird
satellites. It outperformed the compared methods and achieved competitive and leading classification
accuracies, illustrating its effectiveness. Meanwhile, when faced with decreasing amounts of labeled
training samples, it behaved well, proving that the network may be suitable for VHRRS per-pixel
classification, in which field, obtaining labeled training data is very expensive and time-consuming.

There still exist some limitations for this proposed method. First of all, our proposed method is a kind
of complex deep network containing a lot of convolution, pooling, non-linearity and concatenating
layers and utilizing multi-scale kernels for convolution. During the training of the network, the forward
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and backward propagations contain a lot of floating-point calculation and so on, which is considered
to be complex and time-consuming. Though if better CPU and GPU are utilized, the training time can
be shortened, we will try to shorten the time by improving the model in the future work. Secondly,
the amount of network parameters will increase sharply when network going deeper. If the amount
of labeled training samples cannot meet the demand for training a deep model, overfitting tends
to happen and results in the decrease in the classification performance. Even though we focus on
building a more robust deep neural network using less labeled training pixels, to simulate the reality
that labeled ground truth is very rare and expensive in very high resolution remote sensing image per
pixel classification field and we have used some novel approaches to reduce the influence of overfitting,
it does not mean we can contain subnets as many as we wish. If we provide extremely small number of
labeled pixels or adopt too many subnets, the method may fail. But the extreme limits vary from case
to case, so here we just give such examples to reveal some possible situations in which the method may
fail. How to decrease the negative effects from those factors will still be studied in our future work.
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