
remote sensing  

Article

Mapping up-to-Date Paddy Rice Extent at 10 M
Resolution in China through the Integration of
Optical and Synthetic Aperture Radar Images

Xin Zhang 1 ID , Bingfang Wu 1,2,*, Guillermo E. Ponce-Campos 3, Miao Zhang 1, Sheng Chang 1

and Fuyou Tian 1

1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Olympic Village Science Park, W. Beichen Road, Beijing 100101, China;
zhangxin1010@radi.ac.cn (X.Z.); zhangmiao@radi.ac.cn (M.Z.); changsheng@radi.ac.cn (S.C.);
tianfy@radi.ac.cn (F.T.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3 USDA ARS Southwest Watershed Research, Tucson, AZ 85719, USA; guillermo.ponce@ars.usda.gov
* Correspondence: wubf@radi.ac.cn

Received: 22 May 2018; Accepted: 26 July 2018; Published: 31 July 2018
����������
�������

Abstract: Rice is a staple food in East Asia and Southeast Asia—an area that accounts for more than
half of the world’s population, and 11% of its cultivated land. Studies on rice monitoring can provide
direct or indirect information on food security, and water source management. Remote sensing
has proven to be the most effective method for the large-scale monitoring of croplands, by using
temporary and spectral information. The Google Earth Engine (GEE) is a cloud-based platform
providing access to high-performance computing resources for processing extremely large geospatial
datasets. In this study, by leveraging the computational power of GEE and a large pool of satellite and
other geophysical data (e.g., forest and water extent maps, with high accuracy at 30 m), we generated
the first up-to-date rice extent map with crop intensity, at 10 m resolution in the three provinces with
the highest rice production in China (the Heilongjiang, Hunan and Guangxi provinces). Optical
and synthetic aperture radar (SAR) data were monthly and metric composited to ensure a sufficient
amount of up-to-date data without cloud interference. To remove the common confounding noise
in the pixel-based classification results at medium to high resolution, we integrated the pixel-based
classification (using a random forest classifier) result with the object-based segmentation (using a
simple linear iterative clustering (SLIC) method). This integration resulted in the rice planted area data
that most closely resembled official statistics. The overall accuracy was approximately 90%, which
was validated by ground crop field points. The F scores reached 87.78% in the Heilongjiang Province
for monocropped rice, 89.97% and 80.00% in the Hunan Province for mono- and double-cropped rice,
respectively, and 88.24% in the Guangxi Province for double-cropped rice.
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1. Introduction

Food security is always a major challenge due to continuously increasing populations and limited
land availability [1]. As a major staple food, rice feeds almost 50% of world’s population and provides
approximately 20% of the daily human caloric supply due to the high intake of cereal-type foods [2].
Monitoring rice cultivation is necessary for understanding the status of food security and providing
meaningful information for national food policies and decision-makers [3,4]. In addition, paddy
rice also plays an important role in water use management because it is the most common water
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consuming crop. The improvement of water use efficiency in rice planting would greatly help global
water security [5,6].

Paddy rice areas account for more than 12% of the global cropland area and have spread
remarkably since 2002 [7]. In 2017, the global rice production (milled) and harvest area were forecasted
to reach 500.820 million tons and 165.06 million ha, respectively [8,9] (Figure 1). Asia has the largest
number of paddy rice fields and produces more than 90% of the global rice supply [10]. China has the
largest number of rice planting areas, the greatest grain production, and the greatest rice consumption
globally. A total of 65% of people in China use rice as their staple food, such that rice provides more
than 50% of the caloric supply [11].
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Paddy rice agriculture in China plays a pivotal role in both national and global food security [12].
Traditional paddy rice acreage monitoring at a large scale, which requires massive ground surveys
and statistical analyses, is time and labor intensive. Remote sensing data can help monitor the ground
surface of crops at a large scale by providing precise and timely information on the phenological status
and development of vegetation [13,14]. Several studies have been conducted on the use of remote
sensing data when mapping paddy rice, and the data used by these studies are generally divided into
two categories: Optical data, and synthetic aperture radar (SAR) data [15–18].

Optical data are the most common and easily accessible satellite data, and are often used to
explore unique spectral characteristics of a crop at a certain stage using vegetation indices or a
combination of indices (e.g., the normalized difference vegetation index (NDVI), the enhanced
vegetation index (EVI) [19], and the land surface water index (LSWI) [20]. Mapping paddy rice
based on optical imagery has a long history that is accompanied by the development of optical
satellites [21,22]. The unique phenological characteristics of paddy rice (e.g., the transplanting stage
using flooding signals) compared to other crops can be used to distinguish other types of natural
vegetation. This method is often used to map rice by obtaining either individual images or multiple
images during the specific growing stage [23–25]. It is effective and easy to apply, but obtaining enough
optical data without cloud interference during a specific stage at a large scale remains a challenge [26].
Furthermore, the time series analysis method tracks the seasonal dynamics of each type of crop using
every available image during the crop growing season [27]. By using unsupervised clustering methods,
several algorithms have been developed to map crops based on their phenological information [28–30].
The reliance of phenology-based methods on time series and images requires the selection of low to
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medium spatial and high temporal resolution data [31], which is less capable of identifying crops in
small- and medium-sized fields. In China, this limitation is more problematic due to the complexity of
small heterogeneous and fragmented farmlands [32].

As a water-intensive crop, paddy rice is usually planted in rainy areas where optical data are
highly sensitive to clouds [16]. SAR satellite signals can penetrate through clouds and, thus, are
suitable for monitoring rice in regions dominated by cloudy and rainy weather. The backscatter in
rice fields was significantly lower than that from any other agricultural crop due to the specific water
flooding stage during the transplanting stage [33,34]. Both single and multi-polarized SAR data have
been used to map paddy rice [35,36]. However, microwave or radar data are usually expensive and
difficult to obtain. Several studies have studied the mapping of rice with SAR data but it still difficult
to implement at large areas [37–39].

Until recently, monitoring crop dynamics at medium to high resolution has been limited by
the lack of available high temporal and spatial resolution satellite imagery [40]. The combination
of different satellite data will provide increased opportunities for more frequent cloud-free surface
observations [41]. As the most widely accessible medium to high spatial resolution optical satellite
products, the Sentinel-2 and Landsat products are concurrently used to create merged products with
high temporal resolutions [42,43]. SAR data availability has also increased since the launch of the
Sentinel-1A and B on 3 April 2014, and 25 April 2016, respectively. This was the first operational
SAR mission that operated within the European Commission’s Copernicus program; it provided an
unprecedentedly large amount of free data for the operational needs of the Copernicus program [44].
The satellite was designed for continuous near real-time land monitoring and provided dual-polarized
vertical receiving/vertical transmission with horizontal receiving (VV/VH) SAR images with a global
spatial resolution of 5 m to 20 m at least every 10 days.

Processing multisource remote sensing data at high spatial and temporal resolutions on a national
scale is a major challenge for both computer storage and operating capacity. High-performance computing
systems have become abundant, and large-scale cloud computations have become a universally available
commodity [45,46]. The Google Earth Engine (GEE) is a cloud-based platform for planetary-scale
geospatial analysis that uses Google’s massive computational capabilities to study a variety of high-impact
societal issues, including deforestation, drought, disaster, disease, food security, water management,
climate monitoring, and environmental protection [47]. Google has collected a large amount of publicly
available remote sensing satellite data from around the world, providing researchers with the ability to
apply multisource remote sensing data to various research topics at various spatial scales [48,49].

The objective of this study is to design a universal rice mapping method using the supercomputing
power of GEE and massive data sets to generate updated and accurate rice paddy maps with 10 m spatial
resolution with crop intensity for China. First, we merged two widely used optical satellite datasets,
including Landsat 8 and Sentinel-2, and removed the incidence angle impact in the overlapping
areas of the SAR data. Second, we trained a random forest (RF) classifier based on two different
types of composites: A phenological monthly composite and a metric composite. Third, object-based
segmentations from simple linear iterative clustering (SLIC) were introduced to improve the pixel-based
classification. Finally, we quantified the accuracy of the paddy rice map with ground observations
and existing algorithms to distinguish rice from other crop observations. This result demonstrates
how cloud-based service such as GEE are changing the paradigm of crop monitoring from a static,
product-based approach by simplifying data access and processing large amounts of satellite data.

2. Materials

2.1. Study Area

China has approximately 120 million ha of agricultural land, of which 25–30% are used for
paddy rice production [8]. Paddy rice cultivation is practiced in almost every province, the main rice
producing areas are in the Northeast, Yangtze River Basin and Pearl river Basin (Figure 2). The number
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of rice harvests per year gradually increases from one time in the northern provinces up to three times
in the southern provinces (rice cultivated by tribes can be planted in parts of the south, but in recent
years, these farmers have opted to grow other cash crops instead of rice).
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Figure 2. The location of the study area (China) and the rice production of each province in 2015
(the production data of each province are from the National Bureau of Statistics in China). Three types of
regions were identified based on different cropped seasons: A monocropped region, a double-cropped
region and a mixed region. The Heilongjiang, Hunan and Guangxi provinces, which are the largest
producers of the three different area types, were selected as the study area in this paper. The right
column in the figure shows the annual normalized difference vegetation index (NDVI) growth process
line and standard deviation for each rice type.

Based on the different rice cropping seasons, paddy rice in China can be divided into three typical
areas: Mono-, double-cropped rice and mixed. The crop season is determined by the agricultural
climate conditions of the planting area. In general, north of the Yangtze River and in the western-most
places, only one rice harvest occurs per year. South of the Yangtze Basin, there is a transition zone,
with one long or two short rice seasons, which is referred to as the mixed area in this paper. Further
south, near the Nanling Mountains, there are generally double crop seasons per year due to the
abundance of rainfall and high annual average temperature. In this paper, three provinces, which are
the largest producers of the three different rice area types, were selected as the study area: Heilongjiang
(monocropped area with 46.00% cloud cover), Hunan (mixed area with 62.39% cloud cover) and
Guangxi (double-cropped area with 65.43% cloud cover).

2.2. Data and Preprocessing

By taking advantage of the tremendous amounts of petabyte-scale storage for archived remote
sensing and related production data as well as the large-scale cloud-based computing capacity of GEE,
multisource data in large regions can be chosen and processed in an acceptable amount of time [47].
In this study, two widely accessible medium to high spatial resolution multispectral optical datasets,
the Landsat 8 Operational Land Imager (OLI) and the Sentinel-2 A/B multispectral instrument (MSI),
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were chosen as the optical data sources. The new free open-access radar dataset of Sentinel-1 C-band
was selected as the SAR data source. All processing and pixeled-based classifications were run in GEE.

2.2.1. Cloud-Free Optical Imagery Composition

Currently, Landsat from USGS and Sentinel-2 A/B from the ESA (The European Space Agency)
are the most widely accessible medium-high spatial resolution optical products. The synergistic use of
these two sources significantly increase the opportunities for timely and cloud-free observations of the
surface [43]. Blue, green, red, near-infrared (NIR), and two short-wave infrared spectral range (SWIR)
bands, which are available in both sensors and have similar spectral response functions (SRF), were
used in this paper (Figure 3, Table 1).

Remote Sens. 2018, 10, x FOR PEER REVIEW 5 of 26 

 

2.2.1. Cloud-Free Optical Imagery Composition 

Currently, Landsat from USGS and Sentinel-2 A/B from the ESA (The European Space Agency) 
are the most widely accessible medium-high spatial resolution optical products. The synergistic use 
of these two sources significantly increase the opportunities for timely and cloud-free observations 
of the surface [43]. Blue, green, red, near-infrared (NIR), and two short-wave infrared spectral range 
(SWIR) bands, which are available in both sensors and have similar spectral response functions (SRF), 
were used in this paper (Figure 3, Table 1). 

 
Figure 3. Average relative spectral response functions (SRF) of bands using the Landsat 8 Operational 
Land Imager (OLI) and the Sentinel-2 A/B multispectral instrument (MSI). Blue, green, red, near-
infrared (NIR), and two short-wave infrared spectral range (SWIR) bands in each of the two sensors 
were used in this paper. Detailed spectral information is shown in Table 1. 

Table 1. Characteristics of the Sentinel-1 C-band, Sentinel-2 MSI, Landsat-8 OLI band used in this 
study. Six bands in the optical sensor and two bands in the microwave sensor were used in this study. 
The elevation and slope layer from the Shuttle Radar Topography Mission (SRTM) were also used for 
feature extraction. The Hansen Global Forest Change and Joint Research Center (JRC) Global Surface 
Water Mapping data at a 30 m resolution from the Google Earth Engine (GEE) were used for forest 
and water mapping in this study. 

Sensors Band Use Wavelength Res Provider 

Sentinel-2 
MSI 

B2 Blue 490 µm 10 m 

ESA 

B3 Green 560 µm 10 m 
B4 Red 665 µm 10 m 
B8 Near-infrared  842 µm 10 m 
B11 Short-wave infrared 1 1610 µm 20 m 
B12 Short-wave infrared 2 2190 µm 20 m 

Landsat 8 
OLI 

B2 Blue  0.45–0.51 µm 30 m 

USGS (United States 
Geological Survey) 

B3 Green  0.53–0.59 µm 30 m 
B4 Red  0.64–0.67 µm 30 m 
B5 Near-infrared  0.85–0.88 µm 30 m 
B6 Short-wave infrared 1 1.57–1.65 µm 30 m 
B7 Short-wave infrared 2 2.11–2.29 µm 30 m 

Sentinel-1 C 
VV Dual-band cross-polarization, vertical 

transmission/horizontal receiver 
10 m 

ESA 
VH 10 m 

SRTM Elevation 30 m 
NASA (National Aeronautics 

and Space 
Administration)/USGS 

Landsat Hansen Global Forest Change 30 m GEE 
Landsat JRC Global Surface Water Mapping 30 m GEE 

Figure 3. Average relative spectral response functions (SRF) of bands using the Landsat 8 Operational
Land Imager (OLI) and the Sentinel-2 A/B multispectral instrument (MSI). Blue, green, red,
near-infrared (NIR), and two short-wave infrared spectral range (SWIR) bands in each of the two
sensors were used in this paper. Detailed spectral information is shown in Table 1.

Table 1. Characteristics of the Sentinel-1 C-band, Sentinel-2 MSI, Landsat-8 OLI band used in this
study. Six bands in the optical sensor and two bands in the microwave sensor were used in this study.
The elevation and slope layer from the Shuttle Radar Topography Mission (SRTM) were also used for
feature extraction. The Hansen Global Forest Change and Joint Research Center (JRC) Global Surface
Water Mapping data at a 30 m resolution from the Google Earth Engine (GEE) were used for forest and
water mapping in this study.

Sensors Band Use Wavelength Res Provider

Sentinel-2 MSI

B2 Blue 490 µm 10 m

ESA

B3 Green 560 µm 10 m
B4 Red 665 µm 10 m
B8 Near-infrared 842 µm 10 m

B11 Short-wave infrared 1 1610 µm 20 m
B12 Short-wave infrared 2 2190 µm 20 m

Landsat 8 OLI

B2 Blue 0.45–0.51 µm 30 m

USGS (United States Geological Survey)

B3 Green 0.53–0.59 µm 30 m
B4 Red 0.64–0.67 µm 30 m
B5 Near-infrared 0.85–0.88 µm 30 m
B6 Short-wave infrared 1 1.57–1.65 µm 30 m
B7 Short-wave infrared 2 2.11–2.29 µm 30 m

Sentinel-1 C
VV Dual-band cross-polarization, vertical

transmission/horizontal receiver
10 m

ESAVH 10 m

SRTM Elevation 30 m NASA (National Aeronautics and Space
Administration)/USGS

Landsat Hansen Global Forest Change 30 m GEE
Landsat JRC Global Surface Water Mapping 30 m GEE
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At a pixel level, cloud masking based on a combination of brightness, temperature, and the
normalized difference snow index (NDSI) were used to remove clouds from Landsat 8 OLI imagery [50].
The QA60 band was used to remove clouds from the Sentinel-2 MSI imagery [51]. All data were
resampled to 30-m using the average resolution value from all involved pixels. As a result, a total
of 8255 images in 269 footprints (7107 from Sentinel-2 and 1148 from Landsat 8) covering the entire
paddy rice growing season (February to November) in 2017 were queried from the GEE data pool and
used in this study (Table 2). The cloud cover percentage distribution for each province is shown in
Figure 4. Due to the rainy weather condition in southern China, the Hunan and Guangxi provinces
have greater cloud cover than that in Heilongjiang.

Table 2. The number of scenes from the Sentinel-1 C-band, Sentinel-2 MSI and Landsat 8 OLI that are
used in this study in Heilongjiang, Hunan and Guangxi, respectively.

Sensors (1 March to 30 November 2017) Heilongjiang Hunan Guangxi

Landsat 8 OLI
Scenes 752 187 209

Footprints 53 21 20

Sentinel-2 MSI
Scenes 4116 1411 1580

Footprints 86 41 48

Sentinel-1 C-band

Scenes 828 364 340

Mode Interferometric wide swath (IW)

Orbit Properties Descending Ascending Ascending
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Figure 4. The number of observation pixels in the Heilongjiang, Hunan and Guangxi provinces by
harmonized Landsat 8 and Sentinel-2 images between March and November of 2017. The detailed and
required scene information is shown in Table 2. The right column shows the cloud cover percentage
distribution for each image.

Collectively, three commonly used indices were calculated and investigated as variables for rice
identification. The EVI is a common and useful vegetation index designed to enhance the vegetation
signal with an improved sensitivity to soil brightness [52]. The LSWI and NDWI are known to be
sensitive to the total amounts of liquid water in vegetation and has been widely used to identify paddy
rice with the EVI [20]. The green chlorophyll vegetation index (GCVI) is typically used to forecast
crop yield and has been shown to have a greater dynamic range for denser canopies than that of other
vegetation indices. The three indices were defined with the following equations:

EVI =
2.5× (NIR− Red)

NIR + 6× Red− 7.5× Blue + 1
(1)

LSWI =
NIR− SWIR1
NIR + SWIR1

(2)

GCVI =
NIR

Green
− 1 (3)

2.2.2. Synthetic Aperture Radar (SAR) Image Preprocessing

The Level 1 Ground Range Detected (GRD) product from Sentinel-1 A/B in the IW (Interferometric
Wide) swath model used in this study, which has a dual-polarized vertical transmission with VV
(Single co-polarization, vertical transmit/vertical receive) and VH (Dual-band cross-polarization,
vertical transmit/horizontal receive) bands, had a resolution of 10 m and a swath of 250 km.
The incidence angle ranged from approximately 30◦ to 45◦. Each tile had high geometric accuracy and
was processed to derive the backscatter coefficient (σ◦) in decibels (dB) with GEE (as implemented by
the Sentinel-1 Toolbox [53]):

• Orbit file application (using restituted orbits)
• Thermal noise removal
• Radiometric calibration
• Terrain correction (orthorectification) using SRTM 30 or ASTER DEM for areas greater than ±60◦

latitude, where SRTM was not available.
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For this study, the Level 1 GRD product acquired data during the rice crop growing cycle from
March to November in 2017. The detailed information for each province is shown in Table 2.

A literature review suggests that VH polarization data are sensitive to rice cultivation [17,54].
However, the VH/VV ratio can reduce double-bounce effects and environmental factors (e.g., those due
to variations in soil moisture), and may be a more stable indicator than VH or VV backscatter alone [40].
In this paper, the VH and VH/VV bands were used for the monthly and metric composites, respectively.

Because the data acquired by GEE were acquired at the province scale, overlapping areas
inevitably appeared, as shown in Figure 5a in the yellow area. For the optical data, overlapping areas
can significantly increase the number of observations in the time series analysis, thereby improving
the quality of information. However, for SAR data, overlapping areas with various incidence angles
(approximately 10◦) could produce noise in time series analysis (Figure 5b). Therefore, incidence angle
processing in overlapping areas was conducted before the monthly and metric composites, and the
data in overlapping areas with higher incidence angles were removed. Then, a Savitzky–Golay (SG)
filter was applied on the temporal axis for each pixel to smooth and reduce system errors. The window
size was set as 10, the order and polynomial degree were set as 2 in SG filter (Figure 5c).

Remote Sens. 2018, 10, x FOR PEER REVIEW 8 of 26 

 

For this study, the Level 1 GRD product acquired data during the rice crop growing cycle from 
March to November in 2017. The detailed information for each province is shown in Table 2. 

A literature review suggests that VH polarization data are sensitive to rice cultivation [17,54]. 
However, the VH/VV ratio can reduce double-bounce effects and environmental factors (e.g., those 
due to variations in soil moisture), and may be a more stable indicator than VH or VV backscatter 
alone [40]. In this paper, the VH and VH/VV bands were used for the monthly and metric composites, 
respectively. 

Because the data acquired by GEE were acquired at the province scale, overlapping areas 
inevitably appeared, as shown in Figure 5a in the yellow area. For the optical data, overlapping areas 
can significantly increase the number of observations in the time series analysis, thereby improving 
the quality of information. However, for SAR data, overlapping areas with various incidence angles 
(approximately 10°) could produce noise in time series analysis (Figure 5b). Therefore, incidence 
angle processing in overlapping areas was conducted before the monthly and metric composites, and 
the data in overlapping areas with higher incidence angles were removed. Then, a Savitzky–Golay 
(SG) filter was applied on the temporal axis for each pixel to smooth and reduce system errors. The 
window size was set as 10, the order and polynomial degree were set as 2 in SG filter (Figure 5c). 

 
Figure 5. (a) The number of observation pixels using the Sentinel-1 C-band imager in the Hunan 
Province between March and November of 2017. The detailed required scene information is shown 
in Table 2. (b) Incidence angles of a pixel, which vary greatly in the yellow area where the images 
overlap. (c) To remove the impact of changing angles in the time series analysis, lower value incidence 
angles were selected. A Savitzky–Golay (SG) filter was used to smooth the data. 

2.2.3. Auxiliary Data 

Topographic Data 

Topographic information such as elevation and slope can provide meaningful data for land 
cover recognition [55]. Generally, slopes of less than 3° are suitable for planting rice paddies due to 
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Figure 5. (a) The number of observation pixels using the Sentinel-1 C-band imager in the Hunan
Province between March and November of 2017. The detailed required scene information is shown in
Table 2. (b) Incidence angles of a pixel, which vary greatly in the yellow area where the images overlap.
(c) To remove the impact of changing angles in the time series analysis, lower value incidence angles
were selected. A Savitzky–Golay (SG) filter was used to smooth the data.

2.2.3. Auxiliary Data

Topographic Data

Topographic information such as elevation and slope can provide meaningful data for land cover
recognition [55]. Generally, slopes of less than 3◦ are suitable for planting rice paddies due to the
effects of flooding during the transplanting phase [56]. SRTM 1 arc-second global data at a resolution
of 30 m from GEE and its derived variable (slope) were used in this study [57]. Figure 6 shows a violin
plot of the changes in elevation and slope for the five classes in this study, including water, forest,
urban, other crops and rice. The slope of the rice sample mostly lies between 0–5◦.
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Figure 6. Violin plot of changes in elevation and slope for the five classes analyzed in this study,
including water, forest, urban, other crops and rice. Because paddy rice cannot be planted in sloped
areas due to the effects of floods during the transplanting phase, the slope of the rice sample was mostly
kept between 0–5◦.

Stratified Random Sample Points

When training an RF classifier, balanced points from each area and type are necessary. To maintain
balanced sample training points, stratified random sampling based on location (the latitude and
longitude) was used to obtain forest, water, build-up and paddy rice training samples (the green points
in Figure 7). In each province, there are 200 points for each layer were randomly selected for the RF
classifier training. The following land cover map was used to sample the training point.
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Figure 7. The spatial distribution of crop field points and sampling points (green) by stratified sampling
from the water, forest and urban distribution maps. The red points represent crop field points that
are either dry croplands or paddy rice regions collected using GVG (GPS, Video, and GIS, a volunteer
agricultural information collection application via smartphones); 50% of the points were used to train
the model, and the other points were used for validation.
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• Global forest change 2000–2017, version 1.5

The results from the time series analysis of Landsat images characterize the global forest extents
and changes from 2000 through 2017. Using version 1.5, the 2017 forest extent was updated, and the
Landsat 8 OLI data were used as the data source in recent years. The smallholder rotational agricultural
clearing when detecting dry and humid tropical forests was improved. The 2017 forest extent map
calculated by tree canopy cover in 2000 and the gains and losses in forest cover in 2017 were used as
the forest type in this study [48].

• JRC yearly water classification

The datasets that were available at the time of study are intended to show different facets of the
spatial and temporal distributions of surface waters over the last 32 years. The permanent water layer
was used as the water type in this study [49].

• Urban and bare areas

Urban and bare areas have either an impervious surface or exposed soils, respectively, which
usually have low LSWI values. A frequency map of LSWI < 0 was generated using Equations (4) and
(5). A pixel with a frequency value > 50% was then identified as either an urban or a bare area [58].

Low LSWIt =

{
1 LSWIt < 0
0 LSWIt > 0

(4)

Furban =
∑ NLow LSWI

∑ Ntotal
× 100 (5)

• Potential rice map with optical data

The phenological and pixel-based paddy rice mapping (PPPM) method identifies flooding signals
during the rice transplanting phase and has been effectively applied and proven in tropical and cold
regions. The relationship between LSWI and NDVI (EVI) can effectively identify the flooding and
transplanting signals [56,59]. Here, we recognize flooding signals using the flowing equation:

Floodt =

{
1 LSWIt > EVIt or LSWIt > NDVIt

0 LSWIt ≤ EVIt and LSWIt ≤ NDVIt
(6)

where Flood represents the status of the flooding/transplanting phase, and t represents the period
when the observations were acquired. The signals can last for approximately two months after the
transplanting phase. The flooding signal that appears during these two months was identified as
potential paddy rice. In addition, thresholds for the maximum EVI (>0.60) and minimum EVI (<0.4)
during the rice growing season were used to mask sparse and natural vegetation [12]. A dynamic
range backscatter VH threshold was also used to identify potential rice. The VH sensitivity threshold,
which was based on dry reference (P05) and wet reference (P95) images above 9 dB, was used to
identify potential rice in this study [16].

Field Data

A total of 2502 field points in Heilongjiang, 606 field points in the Hunan Province and 712 field
points in the Guangxi Province, including dry farmland(other crops in accuracy assignment) and
paddy rice areas, were collected using GVG (Red points in Figure 7), which is a volunteer agricultural
information collection application via smartphone [60,61]. Half of the field data were used for training
in the other crop and rice categories. The other half of data including 1910 points were used for the
accuracy assessment.
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3. Methodology

A comprehensive overview of the methodology is shown in Figure 8. Elevation data, optical
data by harmonized Landsat 8 OLI and Sentinel-2 MSI data and SAR data were integrated as features
of the classifier input, and monthly and metric composites were used to ensure the entire geometry;
temporary and spectral information were trained in the classifier. An RF classifier was used to
generate pixel-based classifications, including forest, water, urban, other crops and paddy rice.
A stratified sampling method was used on the forest, water and urban layers to ensure sufficient
and balanced samples to train the model and to specifically remove noise confusion, which will be
mentioned in the following sections regarding the pixel-based classification results for high- and
medium- to high-resolution data. We merged the pixel-based classification results and the object-based
segmentation results to remove the impact of noise [62,63]. Finally, an accuracy assessment was made
based on ground observations and statistical data.
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3.1. Monthly and Metric Composites

In most regions of China, rice has similar phenological and spectral information to that of other
crops, especially maize [32]. Normally, only finer temporal resolution time series data can be used
to distinguish between rice and other crops. However, due to the cloudy and rainy weather in rice
dominate areas, it difficult to collect enough cloud-free optical images for monthly composite at 10 to
30-meter resolution. On the other hand, the phenological information of rice planting in China changes
every year. Therefore, a metric composite method was used which was invented to capture crop and
nature vegetation phenological without the explicit hypothesis or known phenology information of
the timing of such dynamics. This composites method is suitable in large areas that it doesn’t need to
change parameters with location. In this paper, the monthly composites and metric composites were
used to extract the object features based on GEE (Figure 9). The strategy was aimed for composition of
SAR data and metric composition was based on optical and SAR data.
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Figure 9. Monthly and metric composites by leveraging the GEE array-based computational approach.

Monthly Composites: To detect the time serious phenological information of the paddy rice,
monthly composites were used on that. We grouped all processed SAR images into monthly groups
from March to November to cover the entire rice growing season in China (9 groups). By leveraging
the GEE array-based computational approach, we reduced each monthly group of images into a single
median value on a per-pixel, per band basis. The composites results have VH and VH/VV bands with
10 m resolution.

Metric Composites: We generated a series of quantile-based composites for all the bands of
optical and SAR imagery by using observations across the entire temporal range. 5%, 25%, 50%, 75%,
and 95% quantile composites was produced, including the LSWI, EVI and GCVI, leading to a total of
55 metrics (six optical bands, two SAR bands and three indicators). We converted the entire collection
of images into a multidimensional array by leveraging the built-in array methods of GEE. By using a
percentile reducer, the entire array of observations along the temporal axis (on a per-pixel, per band
basis) were sorted, and the quantile values were extracted. Finally, we re-projected the observations
corresponding to each quantile back into the images (one per band and quantile).
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3.2. Pixel-Based Classifier: Random Forest (RF)

The RF classifier uses tree bagging to form an ensemble of trees by searching random subspaces
in the given features, then splitting the nodes by minimizing the correlation between the trees [64,65].
This method is more robust, provides a relatively faster classification, and is easier to implement than
many other classifiers [66]. Accurate land cover classifications and improved performances of the RF
models have been described by many researchers [67–69]. RF was used to classify rice in this study by
using 300 trees with a minimum leaf sample size of 5 to improve classification results. The pixel-based
RF classifiers were run with GEE. We trained a classifier for each province, for each category there are
200 points comes from the stratified random samples and for the other crops and rice, there are also
fields points have been added.

3.3. Simple Linear Iterative Clustering (SLIC) Superpixel Segmentation

Image segmentation is a principle function that splits an image into separated regions or objects
depending on the specified parameters. Pixels with similar spectral and spatial value are considered
an object according to the object-based classifier. The segmentation technique utilizes spatial concepts
that involve geometric features, spatial relations, and scaled topological relations between upscale
and downscale inheritances [70,71]. Classical segmentation algorithms mainly include the recursive
hierarchical segmentation (RHSeg) algorithm [72,73], multiresolution segmentation [74] and watershed
segmentation [75]. The SLIC clusters pixels in combined five-dimensional color and the image
plane space to efficiently generate compact and nearly uniform superpixels. This method is fast
and computationally efficient because the SLIC does not compare each pixel with all pixels in the
scene [76]. In this paper, an SLIC segmentation was used to develop field segmentations [77]. The true
color red, green and blue bands from the Sentinel-2 MSI imagery at a 10 m resolution were used and
stretched to 0–255. The compactness was set to 20, and sigma was set to 1.5 to balance color and spatial
proximity and to smooth the edge of each segmented area. The raw data and the segmented field
results are shown in Figure 10a,c.

3.4. Integration of the Pixel-Based Classification and the Object-Based Segmentation

The pixel-based clustering algorithms focused only on the spectral value of each pixel, which
resulted in different types of noise confusion when applied to a high-resolution image; this occurrence
has been referred to as “salt and pepper” noise [78]. In this paper, we integrated the pixel-based
classification and the object-based segmentation to improve the classification and remove the “salt and
pepper” noise. Each segmented area in the output of the SLIC consisted of pixels with a unique label,
which were labeled “rice” or “no rice” when the segment was covered with the pixel-based classification
results. To merge the pixel-based classification and the field boundary from the segmentation, the
pixel-based classification results were set to 0 (no rice) and 1 (rice). The mean value of each segmented
area was calculated by the pixel-based classification, and a threshold was set to ensure that each
segmented area was labeled [79]:

label =

{
mean ≥ 0.6, rice
mean < 0.6, no rice

(7)

The example shown in Figure 10 highlights the resulting value after the merging process.
The center coordinates of the example area (the Heilongjiang Province) are 132◦49′E and 47◦03′N,
where square-shaped fields usually indicate rice, and fields in long strips usually indicate maize. Maize
is primarily planted on both sides of the road, as shown in the central part of the image (Figure 10a).
The pixel-based classification of rice (blue) covered most rice areas. However, some pixels were missing,
and some appeared in the maize area due to cropland heterogeneity and spectral contamination among
neighboring pixels (Figure 10b). Figure 10d was merged to produce more refined and complete
boundaries of the rice fields (blue), which improved in consistency.
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Figure 10. The Heilongjiang (132◦49′E and 47◦03′N) example of (a) the Sentinel-2 MSI color composite
image, which had the lowest cloud cover during the rice growing season of 2017; (b) the pixel-based
classification using the random forest (RF) classifier; (c) the object-based SLIC image segmentation
result and (d) the merged results, which merged the SLIC segmentation result with the pixel-based
RF classification.

3.5. Accuracy Assessment

The field points were used for accuracy assignment, there are 1910 points which were defined as
the other crop and rice categories, used for the accuracy assessment. Four different metrics, which
were derived from the confusion matrix, were selected for accuracy assessment. The overall accuracy
(OA) evaluated the overall effectiveness of the algorithm, and the F score measured the accuracy of
a class using precision and recall measures. The study established error matrices in each province,
which calculated the OA, user accuracies (UA), producer accuracies (PA), and F score using the
following equations:

OA =
Sd
n
× 100%

UA =
Xij

Xj
× 100%

PA =
Xij

Xi
× 100%

Fscore =
UA× PA
UA + PA

× 2 (8)

where Sd represents the total number of correctly classified pixels, n represents the total number of
validation pixels, and Xij represents an observation in row i and column j in the confusion matrix;
Xi represents the marginal total of row i, and Xj represents the marginal total of column j in the
confusion matrix.

4. Results

The study produced a nominal 10 m rice extent product with crop intensities in three typical
provinces in China by integrating optical and SAR data for the year 2017 (Figure 11). The areas
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analyzed in this study were compared before and after integration of the pixel-based classification
and object-based segmentation, where the area data were reported by the National Bureau of Statistics
of China. The rice area based on the pixel-based classification agreed with the statistical rice area.
However, the area results were higher than the statistics results. By merging with the segmented
field, the misclassed pixels were removed, the result is closer to the statistics value (Figure 12). In the
following subsections, we discuss the accuracy of our results in the Heilongjiang, Hunan and Guangxi
provinces individually.
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Figure 12. Scatterplot of the 2015 and 2017 rice harvest area statistics used in this study, which shows
that the integration of the pixel-based classification and the object-based segmentation has an improved
agreement over statistical data alone (National Bureau of Statistics of China).

4.1. Monthly and Metric Composites for Each Province

Figure 13a,c,e show the differences in the quantiles for each class averaged across all the training
points. Compared with the true color bands (i.e., red, green, and blue), NIR, SWIR1, and SWIR2
showed improved diversities for each category due to their higher sensitivities to vegetation. The
LSWI showed large differences between rice and other crops. The EVI and GCVI showed adequate
diversities between vegetation and other categories. Similarly, the differences in phenology for each
category are shown in Figure 13b,d,f, which show VH/VV and VH band time series averaged during
all paddy rice growing stages across all the training points. During the transplanting stage of paddy
rice (May and June) monocropped rice (April), and double-cropped rice (August), water flooding
significantly decreased backscatter, which helped to identify paddy rice and its cropping intensity.
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Figure 13. (a,c,e) shows the quantiles of different spectral properties for each category based on
metrics composites, while (b,d,f) shows average monthly SAR spectral information for paddy rice and
other crop, as extracted from the monthly composites. Each line shows the mean with their standard
deviation from all the training points for each category.

4.2. Accuracy Assessment

This rice extent product in the Heilongjiang, Hunan and Guangxi provinces was systematically
tested for accuracy (Table 3) based on field data with other crops and rice with crop intensity. There
are 1910 points (1251 in Heilongjiang, 303 in Hunan, and 356 in Guangxi) which were defined as the
other crop and rice categories, used for the accuracy assessment.

As shown in Figure 13a, rice has similar features in its metric composites. In the Heilongjiang and
Guangxi provinces, when operational monocropped or double-cropped rice was planted, the OA were
93.37% and 95.51%, with PA of 90.03% and 92.31%, and UA of 85.63% and 84.51% for rice (Table 3),
respectively. In the Hunan Province, monocropped and double-cropped rice were mixed when planted.
Generally, monocropped rice is planted north of the Yangtze River, and double-cropped rice is planted
south of the river due to climatic conditions. Our results (Figure 11) clearly show this pattern, with OA
reaching 89.11%; PA were 86.67% and 89.29% and UA were 93.53% and 72.46% for monocropped and
double-cropped rice, respectively. The F scores varied between 89.97% and 80.00%.
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Table 3. The independent accuracy assessment of the rice extent product in Heilongjiang, Hunan,
and Guangxi.
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5. Discussion

Several studies have globally mapped croplands at a 30 m resolution and determined acceptable
accuracies [79,80]. However, identifying specific crop types is still challenging. This study indicated
the feasibility and reliability of mapping up-to-date annual 10-m paddy rice in three typical and high
production provinces by integrating the currently available optical and SAR images. To our knowledge,
this study was the first to investigate paddy rice mapping at a 10 m spatial resolution on a national
scale (the largest producer provinces of the three different area types were selected as the study area).
The feasibility of this study was attributed to several factors, including improved data quality and
quantity and used of a cloud-based platform and a machine learning classifier.

Comparisons among the Proba-V-based 100 m resolution rice map (based on the PPPM algorithm,
which identifies paddy rice by determining flooding/transplanting signals, has been the most
successful and widely used rice monitoring method that utilizes optical images), the pixel-based
30 m rice map with harmonized Landsat 8 and Sentinel-2 images (using the RF classifier) and the
merged 10 m rice map (with SLIC segmentation and pixel-based classification) in a typical paddy rice
cropping region in Heilongjiang Province (110◦14′E and 47◦39′N) are shown in Figure 14. Because of
10–30 m high-resolution optical data, the pixel-based 30 m rice map was able to resolve more details
with higher accuracy (Figure 14a,b). The pixel-based classification results tended to possess “salt
and pepper” noise; that is, several categories exhibited noise characteristics due to spectral confusion
among the various land cover classes (Figure 14b with red circle) [78]. The merged 10 m rice map
removed this noise effectively, especially in urban areas (Figure 14c).
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Figure 14. Visual comparisons among the Proba-V-based 100 m rice map (based on the PPPM
algorithm, (a)), the pixel-based 30-m rice map (using a random forest (RF) classifier, (b)) and the
merged 10 m rice map (using the SLIC segmentation and the pixel-based classification, (c)) for a typical
paddy rice cropping region in Heilongjiang Province (110◦14′E and 47◦39′N). (d) was the Sentinel-2
MSI color composite image with the lowest cloud cover during the 2017 rice growing season. The right
column showcases the spatial details of (a–d) within the red box.

Flooding/transplanting signals, which have been the most important feature used in rice
monitoring, can last for approximately two months after transplanting. However, this relative
approach based on optical imagery requires a sufficient amount of clear observations during this
stage. In southern China, rice is usually planted in areas with rainy weather, which leads to cloudy
observations. Figure 15 shows the number of clear observation pixels in Guangxi Province with
harmonized Landsat 8 and Sentinel-2 images spanning from the rice transplanting phase to the early
vegetative growth phase of March and April. A total of 59.1% of areas did not have clear observation
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pixels, and only 31.1% of the area had a single observation, making it difficult to identify flooding
signatures using optical imagery in these areas.Remote Sens. 2018, 10, x FOR PEER REVIEW 20 of 26 
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Figure 15. The number of clear observation pixels in Guangxi Province with harmonized Landsat 8
and Sentinel-2 images from the rice transplanting phase to the early vegetative growth phase between
March and April. A total of 59.1% of areas did not have observation pixels, and only 31.1% of areas
had a single observation, making it difficult to find flooding.

SAR imaging made it possible to map the most current rice data in cloudy areas. Several
investigations have demonstrated that the C-band is a useful parameter for mapping and monitoring
rice croplands. Nguyen and Wagner set a dynamic range backscatter threshold for images (8.5 dB) to
identify potential rice areas in the Mediterranean region [16]. A violin plot showing the changes in
VH sensitivity (VHsen) based on dry (P05) and wet (P95) references during the rice growing season
for 5 classes in the Heilongjiang, Hunan and Guangxi provinces is shown in Figure 16. Due to the
paddy rice flooded stage, the VH sensitivity is higher than that of other types as previous studies
have shown [17,33,81]. The dynamic range backscatter threshold works in small scale benchmarks.
However, it remains difficult to apply at the province or bigger scale. The addition of SAR data,
especially the monthly time series composite based on backscatter, greatly improves the generalization
and adaptability of the method.

GEE cloud-based computing offers substantial computing power by linking all computers in the
Google data center, which allows parallel processing and thus enables the classification of provinces
with 30 m pixels in a matter of hours. In this study, the majority of the work was accomplished using
GEE, in which parts of the study are still running at the local level, including the segmentation and
accuracy assessment. The orientation-based classification, based on image segmentation, has been
proven to remove the noise that appears in pixel-based classifications with medium to high resolution
images. This was also confirmed in this study. Until now, it has been difficult to perform segmentation
using GEE directly.



Remote Sens. 2018, 10, 1200 21 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW 21 of 26 

 

generalization and adaptability in assessing large areas. Additionally, SLIC segmentation fails to 
identify the boundaries of crop fields using 10 m imagery. 

 

 

 
Figure 16. Violin plot of changes in VH sensitivity based on dry (P05) and wet (P95) references during 
the rice growing season for 5 classes in the Heilongjiang, Hunan, and Guangxi provinces. Due to the 
paddy rice flooded stage, the VH sensitivity is higher than that of other types. However, it still 
difficult to find a specific threshold at the province scale. 

Recently, deep learning has become a technology of considerable interest for computer vision 
tasks such as object recognition and classification [83] that rely on the rapid development of Graphic 
Processing Units (GPU). Semantic segmentation-based methods, such as fully convolutional 
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Figure 16. Violin plot of changes in VH sensitivity based on dry (P05) and wet (P95) references during
the rice growing season for 5 classes in the Heilongjiang, Hunan, and Guangxi provinces. Due to the
paddy rice flooded stage, the VH sensitivity is higher than that of other types. However, it still difficult
to find a specific threshold at the province scale.

Compared with the pixel-based classification results, the object-oriented classification, which was
used by integrating the object-based segmentation, removed the noise between adjacent categories and
improved the accuracy in predicting rice areas. However, the satellite imagery with a 10 m resolution
and the segmentation method are still limited for small fragmented fields and other objects, especially
in southern China, where farmland boundaries rarely exist, and mixed crops are often planted in
the same fields. In such cases, SLIC is sensitive to texture and can generate smooth, regular-sized
superpixels in non-textured regions and highly irregular superpixels in textured regions [82]. We have
to adjust the parameters including the desired number to be generated and the compactness of the
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superpixels in such areas. This method increases human involvement and lacks generalization and
adaptability in assessing large areas. Additionally, SLIC segmentation fails to identify the boundaries
of crop fields using 10 m imagery.

Recently, deep learning has become a technology of considerable interest for computer vision
tasks such as object recognition and classification [83] that rely on the rapid development of Graphic
Processing Units (GPU). Semantic segmentation-based methods, such as fully convolutional networks
(FCNs) [84], SegNet [85], and U-Net [86], have attracted substantial attention due to their efficiency in
classification and segmentation of images. These methods effectively and quickly assign a semantic
label (i.e., a class) to each coherent region of an image and provide opportunities for remote sensing
imagery recognition and mapping. By adapting contemporary classification networks to FCNs and
transferring their learned representations by fine-tuning the segmentation task, this method merges
segmentation and recognition into one training step. By training with a massive dataset, the model
can become much more generalizable and adaptable. A combination of GEE and the TensorFlow deep
learning framework is a part of Google’s future development [47]. We have reason to believe that
further work on crop recognition and mapping, not limited to paddy rice, can be performed using the
deep learning technology.

6. Conclusions

The intent of this study was to demonstrate how new cloud-based service, such as GEE, allow
users to generate accurate cropping maps of large areas at medium to high resolutions based on
multi-source data and machine learning classifiers. By leveraging the computational power of GEE,
a large pool of satellites and other geophysical data (e.g., the forest and water extent map at 30 m with
a high accuracy), we generated an up-to-date rice extent map of crop intensity at a 10 m resolution
in three typical provinces of high production in China for the first time (the Heilongjiang, Hunan
and Guangxi provinces). Optical and SAR data were composited monthly and metrically to ensure a
sufficient amount of up-to-date data without cloud interference. Based on the integration of pixel-based
classifications (using the RF classifier) with the object-based segmentation (using SLIC), commonly
observed noise in the pixel-based classification at medium to high resolutions was removed, and the
planted rice area more closely resembled that of the official statistics. The OA, which was validated by
1910 ground crop field points, reached approximately 90%. The F scores reached 87.78% in Heilongjiang
Province for monocropped rice; 89.97% and 80.00% in Hunan Province for mono- and double-cropped
rice, respectively; and 88.24% in Guangxi Province for double-cropped rice.
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