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Abstract: Sago palm (Metroxylon sagu) is a palm tree species originating in Indonesia. In the future,
this starch-producing tree will play an important role in food security and biodiversity. Local
governments have begun to emphasize the sustainable development of sago palm plantations;
therefore, they require near-real-time geospatial information on palm stands. We developed a
semi-automated classification scheme for mapping sago palm using machine learning within an
object-based image analysis framework with Pleiades-1A imagery. In addition to spectral information,
arithmetic, geometric, and textural features were employed to enhance the classification accuracy.
Recursive feature elimination was applied to samples to rank the importance of 26 input features.
A support vector machine (SVM) was used to perform classifications and resulted in the highest
overall accuracy of 85.00% after inclusion of the eight most important features, including three spectral
features, three arithmetic features, and two textural features. The SVM classifier showed normal fitting
up to the eighth most important feature. According to the McNemar test results, using the top seven to
14 features provided a better classification accuracy. The significance of this research is the revelation
of the most important features in recognizing sago palm among other similar tree species.

Keywords: sago palm; OBIA; machine learning; textural features; image segmentation; feature
selection; classification

1. Introduction

Sago palm is a highly valuable plant but is not well known. This palm is one of the most promising
underutilized food crops in the world, but has received very little attention or study [1]. The primary
product of this palm is sago starch; the sponge inside the trunk contains this starch at yields of 150 to
400 kg dry starch per harvested trunk [2]. Researchers interested in reviewing sago palm starch and the
promising aspects of sago palm should refer to Karim et al. [3] and McClatchey et al. [4]. According to
Abbas [5], Indonesia has the largest area of sago palm forest and cultivation worldwide, as confirmed
by Bintoro [6], who stated that 85% of all sago (5.5 million ha) is distributed in Indonesia. Flach [2]
roughly estimated that wild stands and (semi)-cultivated stands with good sago palm coverage occupy
2.49 million ha worldwide. In short, various reports provide different growing areas and percent
coverage estimates.
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Remote sensing-based research to measure and map sago palm areas is scant, and little is known
about the optimal sensor type, method, or growth formation. Previous research on sago palm mapping
has mostly utilized medium-resolution satellite imagery. For example, Santillan et al. [7] used Landsat
ETM+. Meanwhile, Santillan et al. [8] added the multi-source datasets ALOS AVNIR-2, Envisat
ASAR, and ASTER GDEM to map the starch-rich sago palm in Agusan del Sur, Mindanao, The
Philippines. The WorldView-2 sensor was used for visual interpretation and confirmation of sago
palm [9]. A comprehensive in situ spectral response measurement of sago palm was carried out to
discriminate them from other palm species in several municipalities of Mindanao [10]. dos Santos
et al. [11] performed automatic detection of the large circular crown of the palm tree Attalea speciosa
(babassu) to estimate its density using the “Compt-palm” algorithm, but the use of this algorithm has
not been reported for the detection of sago palms in clump formations.

Mapping sago palms using remote sensing techniques requires the recognition of the presence
of these trees on satellite imagery. According to the review on tree species classification of
Fassnacht et al. [12] using remote sensing imagery, most tree species classification is object-based.
Object-based image analysis (OBIA) is most often applied for tree species classification. For example, one
study determined the age of oil palm plantations using WorldView-2 satellite imagery in Ejisu-Juaben
district, Ghana, to create a hierarchical classification using OBIA techniques [13]. Puissant et al. [14]
mapped urban trees using a random forest (RF) classifier within an object-oriented approach.
Wang et al. [15] evaluated pixel- and object-based analyses in mapping an artificial mangrove from
Pleiades-1 imagery; here, the object-based method had a better overall accuracy (OA) than the
pixel-based method, on average. The development of the (Geographic) OBIA approach in remote
sensing and geographic information science has progressed rapidly [16]. OBIA is applied in image
segmentation to subdivide entire images at the pixel level into smaller image objects [17], usually in the
form of vector-polygons. OBIA techniques may involve other features in addition to the original spectral
bands, such as arithmetical, geometrical, and textural features of the image object. A popular arithmetic
feature is the normalized difference vegetation index (NDVI) used in vegetation and non-vegetation
classifications [18]. Image classification using OBIA that incorporates spectral information, and textural
and hierarchical features [18] can overcome the shortcomings of pixel-based image analyses (PBIAs).

In the OBIA environment, the geometric features of the object can be determined from the
segmented image. For example, Ma et al. [19] utilized 10 geometric features for land cover mapping,
i.e., area, compactness, density, roundness, main direction, rectangular fit, elliptic fit, asymmetry, border
index, and shape index. A brief description of these geometrical features can be found in Trimble®

Trimble eCognition [17]. The textural feature is an important component in imagery, as it is used to
evaluate the image objects, and can be based on layer values or the shapes of the objects. The textural
feature based on layer values or color brightness plays an important role in image classification.
Several methods of textural information extraction are available. Among these, statistical methods are
easy to implement and have a strong adaptability and robustness [20]. For example, the gray level
co-occurrence matrix (GLCM) [21] is often used as a textural feature in the OBIA classification approach,
and has been applied extensively in many studies involving textural description [20]. Zylshal et al. [22]
used GLCM homogeneity to extract urban green space, and Ghosh and Joshi [23] proved that the
GLCM mean was more useful than their proposed textural features for mapping bamboo patches
using WorldView-2 imagery. Franklin et al. [24] incorporated GLCM homogeneity and entropy to
determine forest species composition, and Peña-Barragán et al. [18] applied GLCM dissimilarity and
GLCM entropy features to discriminate between crop fields.

One of the major machine learning strategies is the supervised learning scenario, which trains a
system to work with samples that have never been used before [25]. Numerous sophisticated machine
learning algorithms are widely applied in remote sensing for image classification; within the OBIA
environment, the support vector machine (SVM) classifier [26–28], RF [29], classification and regression
tree (CART) [18], and k-nearest neighbor (KNN) [30] are commonly used. In this study, we used
the SVM algorithm as a classifier. Ghosh and Joshi [23] performed a comparative analysis of SVM,
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RF, and the maximum likelihood classifier (MLC), and found that SVM classifiers outperform RF
and MLC for mapping bamboo patches. Mountrakis et al. [28] provided a comprehensive review
regarding SVM classifier use; they justified that many past applications of SVM classifiers were
superior in performance to alternative algorithms (such as backpropagation neural networks, MLC,
and decision trees). The same justification was identified by Tzotsos [31], who compared SVM and
nearest neighbor (NN) classifiers and found that the SVM classifier provides satisfactory classification
results. Other sophisticated image classification methods include normal Bayes (NB), CART, and KNN.
Qian et al. [32] compared several machine learning classifiers for object-based land cover classification
using very high-resolution imagery; they found that both SVM and NB were superior to CART and
KNN, having a high classification accuracy of >90%.

When working with high-dimensional data, involving other features in addition to the original
spectral bands, may result in redundancy in image classification and human subjectivity. Also,
processing a large number of features requires a significant computation time and resources.
To overcome these shortcomings, feature selection techniques should be applied, as commonly used
in machine learning and data mining research. Tang et al. [33] have provided a comprehensive
review of feature selection for classification. In the environment of machine learning, Cai et al. [34]
surveyed several representative methods of feature selection; their experimental analysis showed
that the wrapper feature selection method can obtain a markedly better classification accuracy.
For supervised feature selection, recursive feature elimination (RFE), a wrapper method of SVM
classification, is widely studied and applied to measure feature performance and develop sophisticated
classifiers [34]. Ma et al. [19] demonstrated the added benefits of using the SVM-RFE classifier, with
respect to classification accuracy, especially for small training sizes.

In this study, we used Pleiades-1A imagery of an area around Luwu Raya, which has extensive
sago palm coverage (Figure 1). Based on ground truth data and interviews with smallholder farmers,
most sago palm trees in Luwu Raya occur in natural or semi-cultivated stands, scattered either in
large or small clumps, and with irregular spatial patterns in terms of size, age, and height. Therefore,
recognizing sago palm from satellite imagery is very challenging.

According to the context and constraints provided in the studies referenced above, this research was
based on the following hypotheses. (i) Image objects of sago palms have specific arithmetic, geometric,
and textural features. Through the OBIA approach, RFE and the SVM classifier can reveal the optimum
features for sago palm classification. (ii) The mapping of sago palm trees using high-resolution satellite
imagery can achieve a high classification accuracy within the OBIA framework, enriched by arithmetic,
geometric, and textural features. In support of these hypotheses, this research sought to reveal the
important spectral, arithmetic, geometric, and textural features through RFE feature selection and to
measure the accuracy of the SVM classifier and analyze the overall classification performance.

The remainder of this paper is organized as follows. Section 2 explains the materials and methods,
and Section 3 provides the results. Section 4 discusses the findings in the context of previous research.
The final section presents conclusions and suggests future work related to this research.
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Figure 1. (a) Natural color composite of Pleiades-1A imagery shows heterogeneous land use land cover
(LULC) including sago palm clumps and single sago palm trees. (b) Research location in North Luwu
Regency, South Sulawesi Province, Indonesia. (c) Field photo showing sago palm, (d) oil palm (Elaeis
guineensis Jacq.), and (e) nipa palm (Nipah sp.).

2. Materials and Methods

This section describes the satellite imagery used and its characteristics, the research location,
and the land use land cover (LULC) characteristics within the study area. Figure 2 shows the
study methodology flowchart, which is divided into three major steps: preprocessing and image
segmentation, sample mining, and classification and analyses. The first step, preprocessing and
image segmentation, includes pansharpening of the Pleiades imagery, determining the test image, and
generating image objects through image segmentation. This step produces image objects that represent
the targeted LULC classes. The second major step is sample mining of non-mainstream data of the
classification scheme. This step can guide the researcher in determining sample adequacy, recognizing
data characteristics, and evaluating the classifier learnability of the sample. Classifier application to
test images provides an estimate of the results. Through sample mining, we also performed feature
selection to rank the importance of candidate features. From this step, we acquired the predicted
classification accuracy relative to feature contributions, classification parameters, and ranked features.
The third major step is classification and analyses, including training and applying the SVM classifier,
performing an accuracy assessment, and conducting statistical tests. We carried out 26 executions for
this classification scheme and calculated the confusion matrix for each classified image. The OA of
image classification was then tested to evaluate its significance, and to determine the range of the most
important features for sago palm classification.
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Figure 2. Research flowchart depicting the important steps in this classification scheme.

2.1. Data and Study Area

This study used Pleiades-1A imagery acquired on 14 September, 2014. Pleiades-1A imagery has
four multispectral bands [35] (blue band 430–550 nm, green band 500–620 nm, red band 600–720 nm,
and the near-infrared (NIR) band 740–940 nm) and a panchromatic band with a spectrum of 470–830
nm. We received this data during processing of the standard ortho [36], with the geographic coordinate
system, CRS WGS84, and projected in south universal transverse Mercator zone 51. The multispectral
and panchromatic data were bundled in a separate file; thus, we performed pansharpening using the
PANSHARP algorithm built-in to PCI Geomatics [37]. This approach adopted the UNB PanSharp
algorithm [38] that applies least squares to greatly reduce the two major deficiencies of pansharpening:
color distortion and operator/dataset dependency [37]. Cheng [39] explained the possibility of
performing pansharpening of Pleiades imagery using PCI Geomatics. Due to the huge image size and
computational complexity, the test image employed a small subset from the pansharpened image, with
the following specifications: 6235× 4008 pixels, 16 bit, and 0.5-m spatial resolution after pansharpening.
LULC at this site is dominated by dry crops, sago palm, nipa palm, oil palm, fish ponds, and other
vegetation. The heterogeneous landscape in this region is typical of Indonesia, particularly in areas
where the sago palm grows.

2.2. Ground Truthing and Known Land Use Land Cover

Ground truthing was conducted to provide field data regarding sago palm distribution.
The geographic coordinates of sago palm locations and other LULC data were recorded using a
hand-held global positioning system (GPS) receiver. LULC was divided into eight classes: sago palm,
nipa palm, oil palm, other vegetation, large canopies, tree shadows, non-vegetation, and water bodies.
The LULC classes based on visual observation of the Pleiades-1A imagery are presented in Table 1.
Training points for each class were randomly selected within the study area using well-known class
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locations. The equal sample size (360 points) used for each class was designed to reduce the statistical
bias caused by unequal sample sizes. The yellow plus symbol in Table 1 indicates training points,
which were converted into image objects after the segmentation process was completed. To meet the
needs of the accuracy assessment, another set of checkpoints (200 per class) was carefully selected
manually from the image, avoiding any overlap with the training points to avoid statistical bias.

Table 1. Typical characteristics of the LULC class identified from field testing and recognized in
Pleiades-1A imagery.

No Class Image Sample Spectral and Spatial Characteristics

1 Sago palm
(360/2880)
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2.3. Segmentation

The first step of OBIA involves subdividing the entire image into smaller pieces, which serve as
building blocks for further analyses. This process, referred to as segmentation, generates a simple
object to represent the objects of interest [40]. Multiresolution segmentation (MRS), spectral difference,
and image object fusion algorithms were used to develop image objects [17]. The MRS algorithm
identifies single-image objects of one pixel and merges them with their neighbors based on relative
homogeneity criteria. Meanwhile, the spectral difference algorithm maximizes the spectral differences
among heterogeneous image objects. The image object fusion algorithm is used to minimize the current
image object surface tension and to merge the current image object with neighboring objects or others
within the current image.
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In eCognition, three criteria are used to define segmentation: scale, shape, and compactness.
The scale parameter value is determined using the estimation of scale parameters (ESP) tool [41].
ESP simulations lead to the first break point of the rate of change in local variance (ROC-LV) around
the 20-scale parameter, and this value is used as the scale parameter for first-level segmentation.
Meanwhile, the shape and compactness values employed are moderate, 0.3–0.5, to maintain good
segmentation of tree clumps and tree stands. Spectral band weight is also important in generating an
appropriate image object. Typically, NIR band interactions at the leaf scale include high transmittance
and reflectance due to photon scattering within leaf air-cell wall interfaces [42]; therefore, the NIR
band is weighted more heavily than the other three visible bands of Pleiades-1A imagery. The final
image objects were obtained after four segmentation steps, starting with the generation of basic image
objects, then minimizing heterogeneity, maximizing spectral distance, and minimizing surface tension.
These four steps reduce the number of image objects by approximately 80%, resulting in simpler final
image objects, while still maintaining class representation.

2.4. Input Layers and Features

We tested 26 candidate features including four spectral band features, three arithmetic features,
seven geometric features, and 12 textural features. Table 2 lists the 26 image object features used.
The arithmetic features are customized for the spectral operation to obtain a specific index useful for
distinguishing among classes; we used the NDVI as an important vegetation index for vegetation
and non-vegetation classification [18], based on maximum difference (MD) and visible brightness
(VB). Several geometrical features were considered important, because the image object of sago palm
appears to have specific patterns in its shape, polygon, and skeleton. According to a visual assessment
of the sago palm canopy, we hypothesized that the sago palm canopy has unique geometric features.
Ma et al. [19] utilized 10 geometric features; we used five of these 10 and added two others (degree of
skeleton branching and polygon compactness) deemed uniquely suitable for sago palm classification.

Table 2. List of image object features.

Feature Types Feature Names Feature Descriptions

Spectral (4) Blue, Green, Red, and NIR band The mean value of each Pleiades-1A band

Customized
arithmetic
features (3)

MD, NDVI, and VB

MD = the maximum possible difference between two
layers divided by the brightness of the layer

NDVI = (Mean NIR−Mean Red)
(Mean Nir+Mean Red)

VB = Mean Blue+Mean Red+Mean NIR
(3)

Geometry (7)

Shape: Asymmetry, border index,
compactness, density, and shape index

The shape, polygons, and skeletal features refer to the
geometry data of meaningful objects, calculated from
their pixels. An appropriate segmented image should
be generated to ensure that these features work well.

Polygon: compactness (polygon)

Skeleton: degree of skeleton branching

Texture (12)

Grey-level co-occurrence matrix (GLCM):
homogeneity, contrast, dissimilarity,

entropy, ang. 2nd moment, mean, std.
Dev, and correlation.

These texture features are derived from texture after
Haralick [21]

Grey-level difference vector (GLDV): ang.
2nd moment, entropy, mean, and contrast.

The textural feature described by Haralick [21] is most often used with the OBIA
approach [18,19,22,23], and is based on GLCM, which tabulates the frequency with which different
combinations of pixel gray levels occur in an image. Another way to measure textural components is
to use the gray-level difference vector (GLDV), which is the sum of the diagonals of the GLCM [17].
We calculated the GLCM within the image object domain (segmented image) and involved all
four bands of the Pleiades imagery in all directions [17]. We applied eight GLCM- and four
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GLDV-based textural features as input feature candidates. In total, 26 features were calculated using
Trimble-eCognition. Although involving features other than spectral features in each classification
will enhance the classification accuracy, it is not efficient in terms of the computation time and
resources required for the classification process; therefore, feature selection should include ranking the
importance of a feature.

2.5. Feature Selection

Feature selection is an important aspect of machine learning and data mining research [33].
We used the RFE method [19], which is an embedded feature selection algorithm for the SVM classifier.
SVM-RFE is a rank feature selection method that utilizes the SVM classifier as a so-called wrapper
in the feature selection process [34,43,44]. For rank feature selection, SVM-RFE applies a pruning
method that first utilizes all features to train a model, and then attempts to eliminate some features
by setting the corresponding coefficients to ‘0’ while maintaining model performance [33]. Following
Guyon et al. [43], the procedure for executing RFE is iterative, involving the recursive process of
training the classifier, computing the ranking criterion for all features, and removing the feature with
the smallest ranking criterion.

The feature selection methods were executed using WEKA data mining software (ver. 3.8.2) [45],
which includes the AttributeSelectedClassifier tool consisting of the following: LibSVM as a classifier,
SVMAttribEval as an evaluator, and Ranker as a search method [46]. The SVMAttributeEval function
evaluates the value of an attribute using an SVM classifier, and subsequently ranks attributes using the
square of the weight assigned by the SVM. In this research, attribute selection is faced with a multiclass
problem, which is handled by ranking the attributes separately using the one-versus-all method and
then “dealing” from the top of each pile to obtain a final ranking [47]. The evaluator determines which
method is used to assign a value to each subset of attributes, while the search method determines
which style of search is performed [48].

2.6. Machine Learning Algorithm

In this study, we applied an SVM classifier in an attempt to find the optimal hyperplane
separating classes, by focusing on training cases placed at the edge of the class descriptors [31].
As recommended by Hsu et al. [49], we considered the linear SVM with nonlinear extensions, using
the kernel trick to handle SVM calculations with nonlinear distributions. Researchers interested in
the advancement of linear SVM, the kernel trick, and its practical applications should refer to several
previous studies [28,46,48,50].

When working with nonlinear problems, it is useful to transform the original vectors by projecting
them into a higher dimensional space, using the kernel trick so that they can be linearly separated.
In this study, we used the radial basis function (RBF) kernel with cost and gamma parameters, which
can be found automatically using a grid search [46,48]. The parameters were determined using WEKA
data mining software, which provides the GridSearch tool [45]. We used an equal range of cost and
gamma parameters, within the range of 10−3 to 103 and with a step size of 101. If the best pair was
located on the border of the grid, we let GridSearch extend the search automatically. The GridSearch
tool generated a cost parameter of 1000 and a gamma parameter of 0.1 with normalized samples.

2.7. Accuracy Assessment

An accuracy assessment of a classified image requires a reference, either from ground
measurements or from reference data such as a map. In this study, we used another set of checkpoints
(200 points for each class) independent of the training points, referred to as independent check points
(ICPs). The ICPs were selected manually from the test image, without overlapping the training points.
The confusion matrices or error matrices [51,52] contain calculated values for a particular class from the
classified image relative to the actual class on the ICP. The producer’s accuracy (PA), user’s accuracy
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(UA), and OA are then calculated from the confusion matrices of each classification scheme. The OA
indicates the accuracy of the classification results.

Because the same set of samples was used with 26 classification schemes, the significance of
OA between classification schemes was calculated using the McNemar statistical test instead of a
z-test [53–55]. The McNemar test can be used to compare the performance of any classifier with respect
to customized training size, segmentation size [56], and textural features [57]. This test is based on the
standardized normal test statistic (z), and the evaluation is based on the chi-square (χ2) distribution
with one degree of freedom [53]. The equation of the chi-square test is as follows:

χ2 =
( f01 − f10)

2

f01 + f10
(1)

where f 01 and f 10 are disagreement terms from cross-tabulation of the confusion matrices. We used the
95% confidence interval to evaluate the significance of OA between classification schemes. Our null
hypothesis was that there is no significant difference between OA values in a paired classification
scheme. The McNemar test will successfully reject the null hypothesis when the calculated χ2 is greater
than 3.84 or its probability (p-value) is less than 0.05, and thus conclude that the two classification
schemes have a statistically significant difference.

3. Results

We concentrated on three vegetation classes: sago palm, nipa palm, and oil palm, due to their
spectral response similarities.

3.1. Overall Classification Performance

The performance of the SVM classifier varied along with changes in feature ranking. Figure 3
shows the feature ranking performance for both training samples (blue line) and ICPs (brown line).
Based on 360 samples from each class, the SVM classifier successfully estimated the correctly classified
instances (CCIs) [46] and reached a peak at the 10 most important features (marked by a red circle on
the blue line in Figure 3, with a CCI of 85.55%); however, the CCI values appeared to be saturated
thereafter. When the classifier arrived at the 24 most important features and beyond, CCI values tended
to decrease, as the model appeared to become overwhelmed with the number of features involved.

A similar result was obtained when the accuracy of the classified images was tested using the ICP;
the OA values (brown line in Figure 3) were similar to CCI values until reaching a peak at the eight
most important features (marked by a black circle on the brown line in Figure 3, with an OA of 85.00%).
From the ninth most important feature upwards, OA tended to decrease until reaching its lowest value
at the 20th most important feature (marked by a green circle on the brown line in Figure 3; OA of
79.72%), and only insignificantly small fluctuations occurred thereafter. From the most important to
the eighth most important feature, the model seemed to fit normally, but became overfitted thereafter
for lower ranking features. Overfitting is a common problem in machine learning, in which a model
performs well on training samples but does not generalize well for test images [58]. Our model faced
the same problem when used on training samples and test images, where too many features led to very
complex computations and resulted in a lower classification accuracy. Our model’s “sweet spot” [59]
was at eight features, where it showed an optimal performance in both training and test images.
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3.2. Feature Selection

The important features were ranked using the SVM-RFE method. The blue line in Figure 3 shows
the change in CCI with increasing feature ranking number; we can infer that after the inclusion of
the first 10 features (marked by a red circle), the CCI values appeared to be in a steady state and
almost no subsequent changes occurred. The first 10 most important features included the following:
three spectral features, three arithmetic features, three textural features, and one geometric feature.
The spectral features are important in this study for classifying imagery into eight classes; however,
the degree of importance of the NIR band is reduced with NDVI, MD, and VB. The first two major
features contain spectral information, i.e., the red and blue bands. The next two most important
features are textural features, namely, GLDV contrast and GLCM correlation; this made it evident that
to improve the classification accuracy and obtain better separation among classes, textural features
must be considered. The other four features in the top 10 included three arithmetic features and one
geometric feature (the degree of skeleton branching).

3.3. Image Segmentation

Figure 4 shows the results of segmentation, i.e., the image objects. The first level of image
objects generated from the MRS algorithm tended to be over-segmented and massive (panel b), which
was intentional to allow single-tree objects to be identified. Segmentation shape values of 0.1 and
0.3 can produce accurate boundaries for image objects [60]; we chose a moderate shape value of 0.3.
To maintain the level of detail to identify sago palm clumps (indicated by green circles in the figure), we
used a 20-scale parameter at the first segmentation level. The next segmentation process was designed
to optimize the image object in terms of representing the actual object in the field. After executing
the second and third MRS algorithms (panels c and d), small objects such as single trees could be
separated clearly (white circles in panels a and d). Although the size of the image object appeared very
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small, the training samples were generated homogeneously and were able to accommodate finer class
limits during refinement of the classification results.
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Figure 4. A series showing (a) a subset of the Pleiades-1A imagery; (b) first segmentation level of
applying the MRS algorithm with 20 scale parameters; (c,d) second and third segmentation levels of
applying the MRS algorithm with 30 and 40 scale parameters, respectively; (e) fifth-level segmentation
applying the spectral difference algorithm and image object fusion algorithm; and (f) classified image
using eight features.

Panel (e) shows the fourth segmentation level, which applied a spectral difference algorithm
to maximize the spectral difference and to merge neighboring objects according to their mean layer
intensities. That image was also processed with the image object fusion algorithm to optimize the
final image objects. As seen in panels (d) and (e), small image objects merged into surrounding
dominant image objects (indicated by blue circles). The image object fusion algorithm is useful for
mapping single-tree objects, such as individual oil palm trees (white circles in panel f), while merging
unnecessary image objects. A good performance was also observed for dense sago palm clumps and
large canopies, which were classified correctly (green and red circles in panel f, respectively). The final
segmentation level left about 20% of the total image objects, and this final image object maintained a
level of detail for sago palm of either clumps or single trees.

Measures for segmentation accuracy relative to a set of reference data are needed [61], because
the segmented image will determine the classification results. The overall segmentation accuracy can
assist researchers in objective selection and determination of segmentation parameters. Segmentation
accuracy assessments have been widely published. Zhang [62] introduced two families of an evaluation
method for image segmentation, i.e., empirical goodness and discrepancy methods. Clinton et al. [61]
provided a comprehensive review of segmentation goodness measurement methods, and Bao et al. [63]
demonstrated Euclidean distance and segmentation error index measures. All of these measurement
approaches show the need for reference data to measure segmentation accuracy. Reference data are
commonly in a vector format, such as a polygon. Therefore, the provision of vector-based reference
data needs to be considered for justification of the segmentation results.
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3.4. Feature Performance

We classified all feature rankings consecutively, starting with the inclusion of 26 features until
only one feature remained; thus, within the so-called classification scheme, there are 26 classification
schemes in total. The OA of each classification scheme is shown in Figure 3 (brown line). For example,
the classification schemes involving only one feature (the red band) and two features (the red and blue
bands) resulted in the lowest accuracies (50.86% and 62.09%, respectively), which were nonetheless
higher than the accuracy predicted from the training samples (48.04% and 58.99%, respectively; blue
line in Figure 3). The classified image accuracy continued to increase until the number of features
reached eight (resulting in the highest OA of 85.00%), and then did not rise further as the number of
features gradually increased to 26.

Tables 3–5 show the confusion matrices from the three classification schemes, i.e., with eight, 10,
and 26 features, respectively, which are important due to their feature contribution to classification
accuracy. The confusion between sago palm and other vegetation classes (nipa palm, oil palm, other
vegetation, and large canopies) occurred in all classification schemes, and is understandable because
these five classes have overlapping spectral responses and similar geometric properties. There is
significant confusion between oil palm and sago palm in every classification scheme, and it should
be noted that in this study, oil palm trees were in the rosette stage. At the highest OA (eight most
important features), the PA and UA of sago palm also held the highest values compared with other
classification schemes.

Table 3. Confusion matrices between classified image and reference data for the eight most important features.

User
Class\Reference

Reference
Sp Np Op Ov Lc Ts Nv Wb UA

Sp 176 11 7 1 16 5 0 0 81.48%
Np 10 155 10 1 19 2 2 0 77.89%
Op 1 7 168 2 9 0 2 0 88.89%
Ov 0 5 3 141 15 0 1 1 84.94%
Lc 10 14 10 49 141 0 0 0 62.95%
Ts 2 3 0 0 0 187 0 0 97.40%
Nv 0 3 2 0 0 0 193 1 96.98%
Wb 1 1 0 0 0 0 1 126 97.67%

PA 88.00% 77.89% 84.00% 72.68% 70.50% 96.39% 96.98% 98.44%

OA 85.00%

Sp: Sago palm, Np: Nipa palm, Op: Oil palm, Ov: Other vegetation, Lc: Large canopies Ts: Tree shadows, Nv:
Non-vegetation, Wb: Water bodies.

Table 4. Confusion matrices between classified image and reference data for the ten most important features.

User
Class\Reference Sp Np Op Ov Lc Ts Nv Wb UA

Sp 174 10 4 2 14 5 0 0 83.25%
Np 10 146 11 3 13 4 2 0 77.25%
Op 3 12 168 6 10 0 3 0 83.17%
Ov 1 7 3 136 23 0 1 0 79.53%
Lc 10 17 11 47 140 0 0 0 62.22%
Ts 1 5 0 0 0 184 0 1 96.34%
Nv 0 1 3 0 0 1 192 1 96.97%
Wb 1 1 0 0 0 0 1 126 97.67%

PA 87.00% 73.37% 84.00% 70.10% 70.00% 94.85% 96.48% 98.44%

OA 83.62%

Sp: Sago palm, Np: Nipa palm, Op: Oil palm, Ov: Other vegetation, Lc: Large canopies Ts: Tree shadows, Nv:
Non-vegetation, Wb: Water bodies.
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Table 5. Confusion matrices between classified image and reference data for the 26 important features.

User
Class\Reference Sp Np Op Ov Lc Ts Nv Wb UA

Sp 170 19 0 7 23 14 0 0 72.96%
Np 11 154 6 5 11 10 1 0 77.78%
Op 2 2 166 4 15 0 2 0 86.91%
Ov 2 9 11 125 25 0 1 0 72.25%
Lc 7 9 11 49 126 0 2 0 61.76%
Ts 7 4 0 1 0 166 0 1 92.74%
Nv 1 1 6 2 0 0 192 1 94.58%
Wb 0 1 0 1 0 4 1 126 94.74%

PA 85.00% 77.39% 83.00% 64.43% 63.00% 85.57% 96.48% 98.44%

OA 80.91%

Sp: Sago palm, Np: Nipa palm, Op: Oil palm, Ov: Other vegetation, Lc: Large canopies Ts: Tree shadows, Nv:
Non-vegetation, Wb: Water bodies.

Associations in OA between classification schemes were tested using the McNemar test to
determine statistical significance. Table 6 shows a simple cross-tabulation (sometimes called a
contingency table) summarizing the classified and actual classes of a selected classification scheme
pair, i.e., eight versus 10 features. The table is a type of 2 × 2 matrix containing binary data for correct
and incorrect classifications [53], and it was derived from the original table from which the confusion
matrices were generated.

Table 6. Cross-tabulation of confusion matrices between SVM classifiers with eight and 10 features.

10 Features

Incorrect Correct Total

8 Features
Incorrect 171 53 224

Correct 74 1216 1290

Total 245 1269 1514

McNemar test: χ2 = 3.15 and p-value = 0.0759

From Table 6, let f 00 = 171, f 01 = 53, f 10 = 74, and f 11 = 1216; then, cross-tabulation includes
127 samples (53 + 74) with disagreement between the eight- and 10-feature SVM classifiers. The main
diagonal elements (f 00 and f 11) in Tables 6 and 7 do not contribute to making a statistical decision,
because the marginal homogeneity in the 2 × 2 matrices is equivalent to f 00 = f 10 [54]. The McNemar
test focused solely on f 01 and f 10, the disagreement elements, to determine whether eight features are
better than 10 features. Chi-square was calculated using Equation (1). Based on the disagreement
component in Table 6, we obtained a chi-square of 3.15, which corresponds to a p-value of 0.0759.
This p-value is greater than 0.05; therefore, the null hypothesis should be retained, stating that the
classification did not significantly differ between eight and 10 features. Accordingly, either one can
be used. In contrast, the results of analyses using the data shown in Table 7 had a chi-square of 16.08,
which corresponds to a p-value of 0.0001. This is smaller than 0.05, thus rejecting the null hypothesis;
additionally, these results indicate that the SVM classifier has a better OA with eight features than with
26 features.
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Table 7. Cross-tabulation of confusion matrices between SVM classifiers with eight and 26 features.

26 Features

Incorrect Correct Total

8 Features
Incorrect 136 88 224

Correct 151 1139 1290

Total 287 1227 1514

McNemar test: χ2 = 16.08 and p-value = 0.0001

Other McNemar test results are shown in Table 8; for example, classification pair #1 and #2 had a
statistically significant difference, and so did classification pairs #6 and #7. Because SVM classifiers
with 15 features or more tended to decrease (brown line in Figure 3), the McNemar test obtained a
significant difference with regards to their OA compared with using eight features. On the other hand,
the classification pair #3 and #5 did not show a statistically significant difference, which means that
within the range of the 7th–14th most important features, the SVM classifier will generate a higher
classification accuracy.

Table 8. The statistical significance of several pairs of classification accuracy estimates based on the
McNemar test with reference to the highest classification accuracy (eight features).

Classification
Pair

Number of
Features

Overall
Accuracy p-Value Level of

Significance
Statistical
Decision

Statistical
Significance

1
8 85.00%

0.0000 95% Reject H0 Significant
4 67.17%

2
8 85.00%

0.0000 95% Reject H0 Significant
6 77.21%

3
8 85.00%

0.5030 95% Retain H0
Not

significant7 84.74%

4
8 85.00%

0.0759 95% Retain H0
Not

significant10 83.62%

5
8 85.00%

0.0586 95% Retain H0
Not

significant14 83.22%

6
8 85.00%

0.0005 95% Reject H0 Significant
15 81.57%

7
8 85.00%

0.0000 95% Reject H0 Significant
20 79.72%

8
8 85.00%

0.0001 95% Reject H0 Significant
26 80.91%
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3.5. Classified Image

Figure 5 depicts the full extent of the test image (left image) and the classified image from the
highest OA (right image), which uses eight features. Visually, the classified image looks relatively
satisfactory for the sago palm class. Panel (a) shows Pleiades-1A imagery, and the red boxes represent
sago palm clumps and single trees. Panel (b) depicts the classified image, where the sago palm
class is shown in magenta (green box). Post-classification enhancement will reduce or eliminate the
salt-and-pepper effect on the classified image. However, in this study, post-classification improvement
was not conducted, as we wanted to observe the original performance of the algorithm and the
classification scheme.Remote Sens. 2018, 10, 1319 15 of 24 
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Figure 5. (a) Natural color composite of the whole Pleiades-1A test image; and (b) SVM classified
image using eight features and showing eight classes.

We conducted SVM classification by only involving the original four spectral bands as a starting
reference, regardless of whether additional features would improve the OA. Figure 6 (panels a and
c) shows the classified images; at a glance, visual assessment appears satisfactory in that there
is no significant difference between panels a and b. However, with more thorough tracing, the
misclassifications were more clearly resolved. The green box in panel (c) shows misclassification
between the sago palm and nipa palm, either at the edge of the sago palm class or in the middle of
the sago palm clump. Without post-classification refinement, this four spectral band-classification
result will greatly reduce the actual coverage of the sago palm stand. In contrast, the green box in
panel (d) shows less misclassification between the sago and nipa palms. The OA of the four spectral
band classification only reached 83%, compared with 85% after including other features, i.e., textural,
arithmetical, and geometrical features. The PA of the sago palm class of the four-band classification
was also lower than that including other features (80% vs. 88% respectively).
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Figure 6. Series showing an SVM-classified image using (a) only four spectral bands; (b) eight features;
(c) four spectral bands (magnified image from the black box of panel a); and (d) eight features (magnified
image from the black box of panel b). SVM: support vector machine.

Figure 7 compares Pleiades-1A imagery with the classified images using eight, 20, and 26 features.
The OA also showed visual improvement in classified images. Among the three classified images in
Figure 7, panel (b) had the highest OA and showed better classification results according to visual
assessment. The black boxes indicate misclassified image objects of sago palm, nipa palm, and water
bodies. Most of the misclassified water bodies are actually tree shadows. In panel (b), the SVM classifier
with eight features resulted in a more homogenous and generalized classified image, especially for
the sago palm class. Classes other than those three had relatively few misclassifications; the oil palm
class had consistent classification, even for a single tree (red box). The oil palm class exhibited some
misclassification with other classes (panels c and d). As shown in panel (c), 20 features, with an OA of
79.72%, retained misclassified small water bodies and nipa palm objects. Likewise, 26 features gave an
OA of 80.91%, but most small objects such as water bodies and nipa palm were misclassified (panel
d), as they should have been classified as sago palm. As true for all classes, using eight features gave
the highest PA (88.00%) and UA (81.48%) values for the sago palm class, and this class was displayed
most uniformly.
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Figure 7. A series showing (a) a natural color composite of the whole Pleiades-1A test image with sago
palm clumps dominating the subset; (b) an SVM classified image using eight features; (c) an SVM
classified image using 20 features; and (d) an SVM classified image using 26 features.

4. Discussion

Previous research on sago palm mapping, as described in the Introduction section, has employed
the MLC as the classifier to stack and analyze multi-source datasets. Our research applied the
SVM as a learning algorithm, which is a promising machine learning methodology [28] that has
recently been used for a wide range of applications in remote sensing. We utilized high-resolution
full-band satellite imagery from Pleiades-1A. The red band is the most important, exhibiting the
strongest absorption in the majority of tree species due to the presence of chlorophyll, used for
photosynthesis [23]. The dominant chlorophyll pigments account for almost all absorption in the
red and blue bands, and carotenoid pigments extend this absorption into the blue-green bands [64].
Meanwhile, reflectance of the NIR band at the leaf level is controlled by water content, due to
chemically driven absorption [12], because most chlorophyll pigments do not significantly absorb
infrared light [64]. When the amount of water increases, the transmittance of the NIR band will
be enhanced [23], particularly at wavelengths longer than about 1100 nm, which water strongly
absorbs [64]. In this context, the importance of selecting particular spectral features for certain
vegetation classes is evident, because the spectral response depends on their chemical and structural
characteristics [64]. According to in situ spectral measurements [10], from 870 nm upward, oil palm
is separable from nipa palm and sago palm, and evidence shows that sago palm is separable from
nipa palm around 935–1010 nm. Unfortunately, the Pleiades-1A does not have a spectral band at
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935–1010 nm; therefore, we added other features to improve the classification accuracy, including
arithmetical, geometrical, and textural features.

This research site contained several vegetation classes; accordingly, we added the vegetation
index NDVI, which is useful for distinguishing among green vegetation classes [18] and also between
vegetation and non-vegetation. Other important arithmetic features, MD [19] and VB, were considered
due to their high contrast between sago palm and nipa palm. Visual assessment of a natural-color
composite of Pleiades-1A imagery found textural differences between sago palm and nipa palm
in clumps; thus, the inclusion of textural features was expected to make a strong contribution
to the classification accuracy. The 12 textural features used by Haralick [21] were selected as
input candidates [19]. Object-based image analyses require a segmented image as an input for
classification, with every class represented by many image objects depending on the scale, shape,
and compactness parameters used during the segmentation process. Every image object has certain
geometric characteristics; hence, we included the seven geometric features listed in Table 2, of which
five were used by Ma et al. [19].

Involving more feature space in the classification scheme has great potential for improving the
accuracy, but our data dimensionality became very high. We can estimate computational complexity by
multiplying the 26 features by eight classes, with 360 samples for each class and 161,168 image objects
at the final segmentation level; therefore, we applied feature selection to reduce data dimensionality
and computational complexity. Based on our computer performance (processor: Intel (R) Core (TM)
i7-3770 CPU @ 3.40 GHz (eight CPUs); memory: 32,768 MB RAM), we recorded the computation time
for these 26 classification schemes. From the results displayed in Figure 8, the amount of computation
time required increased in an almost linear manner as a function of the number of features involved in
the classification. The computation time of the training SVM classifier (the orange triangle in Figure 8)
is always shorter than that when applying an SVM classifier (the blue square in Figure 8), because it
is only applied to the sample. The difference in time required between one feature and 26 features
was significant, at ~80 min, considering that our test image size was relatively small (195 MB). At the
highest OA, with eight features, the computation time was ~15 min, which is very fast compared
with that required for 26 features. If the test image size increased to the gigabyte range, we would
expect the computation time to be considerable. Therefore, if the research project covers a wide area
and uses very high-resolution satellite imagery, performing feature selection prior to classification
is recommended. Our research goal was to obtain the highest possible classification accuracy; thus,
we used a feature-important evaluation method [19], i.e., SVM-RFE, with our SVM learning method.
According to experimental analyses by Cai et al. [34], SVM-RFE provides the best accuracy, of nearly
100%, outperforming other feature-selection methods. We executed SVM-RFE with known sample
classes and obtained the 10 most important features, with a CCI of 85.55%. This predicted classification
accuracy is still considered high due to the presence of other similar tree species in the study area, i.e.,
nipa palm and oil palm.

Our sample mining showed that three visible spectral bands remained important (blue, green, and
red bands); thus, the NIR band was eliminated and replaced with the three arithmetic features (NDVI,
MD, and VB). One geometric feature, the degree of skeleton branching, was also included among the
10 most important features, because image objects of the sago palm class appear to have a high degree
of skeleton branching. Within the 10 most important features, textural features play an important role,
as do spectral features, i.e., GLDV contrast, GLCM correlation, and GLCM angular second moment,
which contributed about 30% to the model. For crop identification, Peña-Barragán et al. [18] found
that the textural features discussed by Haralick [21] contributed 6–14% to the OBIA approach with
a decision tree algorithm. The difference in the contribution of textural features could be due to the
use of different algorithms and target classes. Ghosh and Joshi [23] noted that GLCM mean is more
useful than other GLCM textural features for mapping bamboo patches in the lower Gangetic plains of
the state of West Bengal, India, using WorldView-2 imagery. Based on the discussion above, we can



Remote Sens. 2018, 10, 1319 19 of 24

presume that the role and type of textural features depend on the classifier algorithm, feature selection
method, target class, image sensor, and image scene.Remote Sens. 2018, 10, 1319 19 of 24 
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Figure 8. Computation times for the 26 classification schemes as a function of the number of
features involved.

When the ranked features were applied to the test image, the results showed normal fitting for
the eight most important features, achieving the highest OA of 85.00% (with a PA and UA for sago
palm of 88.00% and 81.48%, respectively); thereafter, the data appeared to be overfitted (brown line in
Figure 3). The degree of skeleton branching and the GLCM angular second moment contribute less to
the model; when these two features (the 9th and 10th most important features) were involved in the
classification, the model was overfitted. Meanwhile, the textural features of the GLCM correlation and
GLDV contrast remained important, improving the OA from 62% to 67% (for details, see Figure 3).
According to the sample scatter plot, most GLDV contrast values of the nipa palm class were higher
than those of the sago palm class; thus, these values are useful to distinguish these classes. In a harsh
critique of thematic map accuracy derived from remote sensing [65], an OA of 85% was still considered
acceptable; researchers interested in the historical origin of this value should access the original
study [66]. Additionally, Foody et al. [65] and Congalton et al. [67] provide in-depth discussions of
image classification accuracy assessment.

Regarding the accuracy of our classified image, the highest OA of 85% may still be improved by
applying random sampling, as described in several studies [67,68] and recommended by Ma et al. [69].
Even though we used another set of checkpoints independent of the training points, some subjectivity
may have been introduced into the OA due to the manual selection approach. In our opinion, an OA of
85% is still relatively high compared with other research findings on palm-tree classification. Previous
studies on sago palm mapping have mostly utilized medium-resolution satellite imagery, such as
Santillan [8] and Santillan et al. [7]. When they only used spectral information from ALOS AVNIR 2
or LANDSAT ET+, the UA and PA of sago palm classification reached 77% and 82%, respectively; in
contrast, a UA of sago palm classification achieved 91.37% when several medium-resolution satellite
images were combined. Other palm-tree classifications, such as coconut tree [70] and babassu palm
(Attalea speciosa) [11], also resulted in a lower classification accuracy, that is, an OA value of 76.67%



Remote Sens. 2018, 10, 1319 20 of 24

for coconut tree and 75.45% for babassu palm. Li et al. [71] achieved better classification results when
performing oil palm plantation mappings in Cameroon using PALSAR 50 m; OA ranging from 86% to
92% was accomplished using an SVM classifier. To evaluate the significance of OA values obtained
from our own research, we conducted a McNemar statistical test.

McNemar tests indicated that using seven to 14 of the most important features was optimal.
Research is most effective when using as few features as possible while still obtaining a high accuracy.
Generally, the optimal number of important features is small. For example, Cai et al. [34] used 10
and 15 features with SVM-RFE to achieve nearly 100% accuracy. Ma et al. [19] reported using 10–20
features for the SVM classifier. Our method requires seven to 14 features for sago palm classification;
the results are comparable to those of previous studies within an OBIA framework with an SVM
classifier. Differences in the optimum numbers of features should be considered in image classification
depending on the heterogeneity of test images. The development of other important features to obtain
a classification accuracy higher than 85% in sago palm classification remains very challenging.

5. Conclusions

Sago palm classification using the OBIA approach and SVM classifier should consider other
features in addition to the original spectral bands from satellite imagery. The OA of four-band
classification can only reach 83%; the addition of textural, arithmetical, and geometrical features
increases the OA to 85%. The PA of sago palm was also lower than that including other features (80%
vs. 88%, respectively). Including the additional features in the classification increases the amount of
data to be processed; thus, the computation time and resources required increase as well. As such, the
feature selection algorithm is highly recommended.

This study reconfirms the importance of feature selection prior to the classification process.
Our major finding is the revelation of the most important features for sago palm classification within
an OBIA framework. We used SVM-RFE to assess the importance of the role of each feature, generating
a ranking of features. The SVM classifier learned from the training samples and, when applied to
the test image, produced normal fitting based on up to eight of the most important features, which
resulted in the highest OA of 85.00%. For sago palm classification, it is important to include textural
and arithmetic features such as GLDV contrast, GLCM correlation, NDVI, MD, and VB, in addition to
spectral information. In this study, the McNemar test was used to evaluate associations among OA
values of classification schemes, and the optimum range of ranked features was identified.

Generally speaking, the palm-tree classification is very challenging, especially for sago palm
classification in our study area. The sago palm trees in Luwu Raya are are generally natural or
semi-cultivated, and tend to be scattered either in large or small clumps with irregular spatial patterns
in size, age, and height. Coupled with the presence of other similar palm-tree species that have similar
spectral responses and textures, such as nipa palm and oil palm, this complicates the identification
process. Thus, a specific sago palm classification scheme is required to better understand its spatial and
spectral characteristics. The OA value of 85% can certainly be improved through further revisions of
our sampling approach for accuracy assessment, measurement of segmentation accuracy, atmospheric
correction, and geometric correction when using multi-strip images.
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