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Abstract: Mapping lithology and geological structures accurately remains a challenge in difficult
terrain or in active mining areas. We demonstrate that the integration of terrestrial and drone-borne
multi-sensor remote sensing techniques significantly improves the reliability, safety, and efficiency
of geological activities during exploration and mining monitoring. We describe an integrated
workflow to produce a geometrically and spectrally accurate combination of a Structure-from-Motion
Multi-View Stereo point cloud and hyperspectral data cubes in the visible to near-infrared (VNIR) and
short-wave infrared (SWIR), as well as long-wave infrared (LWIR) ranges acquired by terrestrial and
drone-borne imaging sensors. Vertical outcrops in a quarry in the Freiberg mining district, Saxony
(Germany), featuring sulfide-rich hydrothermal zones in a granitoid host, are used to showcase the
versatility of our approach. The image data are processed using spectroscopic and machine learning
algorithms to generate meaningful 2.5D (i.e., surface) maps that are available to geologists on the
ground just shortly after data acquisition. We validate the remote sensing data with thin section
analysis and laboratory X-ray diffraction, as well as point spectroscopic data. The combination of
ground- and drone-based photogrammetric and hyperspectral VNIR, SWIR, and LWIR imaging
allows for safer and more efficient ground surveys, as well as a better, statistically sound sampling
strategy for further structural, geochemical, and petrological investigations.

Keywords: hyperspectral imaging; Structure-from-Motion (SfM); mineral mapping; virtual outcrops;
geology; hydrothermal; UAV; long-wave infrared

1. Introduction

Digital outcrop models provide geometrically accurate 3D records of geological exposures over a
range of scales (from centimeters to hundreds of meters) that can be used to visualize and analyze
lithology and structure (e.g., [1–5]). Usually, the color information of digital outcrops is based on
digital photographs, which capture broad bands of the visible part of the electromagnetic spectrum
and are not radiometrically corrected, limiting their use. However, hyperspectral imagery, in which
every pixel contains a continuous spectrum over a certain wavelength range [6,7], provides a suitable
means to remotely map compositional variations in geological formations [8–12]. This is based on the
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fact that for any given material, the amount of radiation that is reflected, absorbed, or emitted is a
function of its wavelength, so that minerals have unique spectral signatures (e.g., [13–19]). For the full
integration of digital outcrops and infrared spectroscopy, three main aspects remain to be considered:

1. Hyperspectral imagery has recently been integrated into digital outcrops (e.g., [20–25]), but using
only hyperspectral data in the visible to near infrared (VNIR) and the shortwave infrared
(SWIR) part of the electromagnetic spectrum, which lacks distinctive Si–O bond-related spectral
features [26]. Hyperspectral long-wave infrared (LWIR) imaging complements VNIR–SWIR data
in the field of mineral mapping, since the molecular vibrations of many rock-forming minerals
have characteristic resonant wavelengths in the LWIR part of the electromagnetic spectrum [27].
LWIR hyperspectral sensors have been utilized for the characterization of geologic materials in
the laboratory (e.g., [28–32]) and from airborne platforms [33–35], but have only very recently
been employed for geological mapping in ground-based mode [36,37].

2. While the potential of combining VNIR, SWIR and LWIR hyperspectral data for geological
mapping has been recognized [12,38–40], hyperspectral imagers have been operated from a single
platform, usually airborne (e.g., [41,42]). Recently, the Helmholtz Institute Freiberg for Resource
Technology started to deploy hyperspectral sensors on the ground [24,37], and on unmanned
aerial systems [43,44]. This approach allows for higher spatial resolutions (from millimeters to
tens of centimeters) and a range of scanning perspectives, which can be advantageous, particularly
in areas with steep outcrops and poorly accessible and potentially dangerous terrain.

3. Digital outcrop models are traditionally based on data obtained from laser scanning (e.g., [4,45–47])
or photogrammetric techniques (e.g., [48–52]). Fusion between hyperspectral and 3D outcrop data is
mostly based on terrestrial laser scanning (TLS) data (e.g., [20–23,53,54]). TLS can be used to derive
highly precise outcrop models (e.g., [48,55–57]), but these are prone to containing data gaps caused
by occlusion, particular in areas of high relief. The effect of occlusion can be reduced by obtaining
TLS data from multiple scan locations, but this is time-consuming, and can be impeded in areas
of restricted accessibility. Airborne laser scanning may supplement TLS, but it requires substantial
financial and logistical efforts. Alternatively, 3D outcrop geometry may be reconstructed rapidly,
safely, and cost-efficiently by the means of Structure-from-Motion Multi-View Stereo (SfM-MVS,
or simply SfM) photogrammetry. Due to the varying image acquisition angles, SfM point clouds
based on terrestrial and aerial photographs are less influenced by occlusion, and they can serve as a
basis for the fusion of spectral datasets with varied sensor positions.

While there are some aspects that have been covered (e.g., [58–62]), a comprehensive approach to
generate geometrically and spectrally accurate digital outcrops from multi-sensor datasets has never been
proposed. The objective of this study is to describe a novel acquisition, processing, and interpretation
workflow for the combination of ground- or unmanned aerial vehicle (UAV)-based hyperspectral VNIR,
SWIR, and LWIR data, and their integration into SfM point clouds. This set of routines can easily be
adapted to other hyperspectral sensors, and it is envisaged to increase the efficiency and safety of geological
mapping in geoscientific research, mineral exploration, mining, and geohazard monitoring. To demonstrate
the workflow, we selected the Naundorf quarry in the Freiberg mining district, Saxony (Germany) as a
case study location. The well-exposed and accessible vertical quarry faces combined with the occurrence of
(i) compositionally diverse granitoid host rocks and (ii) zones with sulfide mineralization and associated
hydrothermal and supergene alteration makes the Naundorf quarry a well-suited target to demonstrate
the versatility of our integrative approach. For pre-processing of the hyperspectral data, we use established
routines for the correction of e.g., topographic and atmospheric effects [24,43], and validate the results
using field observations and a variety of analytical techniques. For post-processing, emphasis is put on
simple and fast workflows using both standard and innovative machine learning-based image processing
and classification techniques to enable an almost instantaneous discrimination of lithologic domains for
more efficient geological fieldwork.
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2. Case Study

The Naundorf gravel quarry, located in the state of Saxony, eastern Germany, ca. 30 km
SW of Dresden (Figure 1), was selected as a location for the acquisition of SfM photogrammetric
and hyperspectral ground-based VNIR–SWIR and LWIR, as well as UAV-based VNIR datasets.
Geologically, the rocks of the quarry belong to the Erzgebirge, a domain of Variscan crystalline
basement rocks at the northern margin of the Bohemian Massif [63]. At the quarry, Late Variscan
(ca. 325–320 Ma; [64,65]) biotite granites of the Niederbobritzscher Granite (Figure 2A) are cut by a
number of faults associated with phyllic hydrothermal alteration (Figure 2B). The orientation of these
structures (sub-vertical dip, WNW-ESE and NNE-SSW strike; Figures 1D and 2C) is characteristic
for the polymetallic sulphide vein network of the Freiberg mining district, in particular, carbonate- or
quartz-bearing Ag–Sb veins (eb ore type, i.e., the “edle Braunspat Formation” = noble carbonate formation)
and quartz-bearing As(–Au)–Zn–Cu(–In–Cd)–Sn–Pb–Ag–Bi–Sb veins (kb ore type, i.e., “kiesig-blendige
Bleierzformation” = pyritic lead formation), respectively (e.g., [66–68]).

For validation, extensive geological fieldwork was conducted at the Naundorf quarry, including
structural measurements, and documentation of the lithology, mineralization, and alteration.
For analytical purposes, six hand-sized rock samples were collected at the Naundorf quarry for
thin section, X-ray diffraction (XRD), and spectroscopic analysis. The specimens comprise three
samples from the host rock (a monzogranite, a mafic enclave of quartz monzonitic composition, and a
microgranite) and three samples from hydrothermal zones (altered monzogranite 1 and 2, representing
increasing degrees of hydrothermal alteration, and a quartz vein). Although not taken in situ, these
samples are considered to be representative of the lithologic variability of the NW part of the quarry,
as captured in the hyperspectral scenes. An additional set of three samples was collected in situ for
VNIR–SWIR spectral measurements. These samples were taken from the surface of a prominent fault
surface exposed in the center of the outcrop containing sulphides and secondary iron minerals.
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Figure 1. (A–C)Figure 1. (A–C) Location of the investigated vertical geological outcrop in the Naundorf quarry, eastern
Germany. (D) Orthophoto of the NW part of the Naundorf quarry showing scanning positions of
the employed hyperspectral sensors, as well as structural field measurements of mineralized faults.
(E) Panorama of the investigated outcrop (size ca. 200 × 40 m) in the NW corner of the quarry.
Rectangular overlays correspond to the extents of the respective hyperspectral scenes. Person for scale
in the bottom right of the image. Abbreviation: Terr.—terrestrial.
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Figure 2. (A) Photo showing the intrusive relationships in granitoid host rocks at the Naundorf
quarry. Coarse-grained monzogranite (main lithology) with quartz monzonite enclave (dark blobs)
being cut by a microgranitic aplite dike (fine-grained linear structure cutting enclave on the right).
(B) Hydrothermally altered fault zone (also captured by terrestrial VNIR–SWIR and LWIR scenes)
showing silicification, brecciation, sericitisation, and carbonate precipitation. Hammer handle for
scale is 1 m. (C) Stereonet diagram of all faults and hydrothermal veins (dominantly brecciated,
sulfide- or barite-bearing) measured in the field. These structures are subvertical and their orientation
is typical for polymetallic veins-type deposits in the Freiberg mining district. All stereograms are
equal-area, lower-hemisphere projections. Contours are drawn according to the method of [69] using a
3σ significance level and a 2σ contour interval.

3. Methods and Materials

3.1. Ground-Based VNIR–SWIR Hyperspectral Imaging

Ground-based hyperspectral outcrop data was acquired in sunny conditions using a
tripod-mounted Specim AisaFenix [70] hyperspectral push broom scanner (Tables 1 and 2).
The VNIR–SWIR hyperspectral dataset of the Naundorf quarry featured a ca. 130◦ swath of the
NW vertical quarry wall (Figure 1D,E) and covered all of the first and second benches within that
swath at a ground resolution of about 13 cm.
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Table 1. Overview of hyperspectral datasets used in this study. Abbreviations: VNIR—visible to
near-infrared; SWIR—shortwave infrared; LWIR—longwave infrared.

Date Time Sensors Platform Type No. of Images Image Overlap

11 May 2017 11:30 AM VNIR–SWIR Specim AisaFenix Terrestrial, push broom 1

19 October 2017 1:45 PM LWIR Telops Hyper-Cam LW Terrestrial, frame 12 30%

24 May 2018 12:45 PM VNIR Senop Rikola Drone-borne 2 20%

Table 2. Sensor specifications of the Specim AisaFenix VNIR–SWIR hyperspectral camera as given by
Specim Spectral Imaging Oy, Oulu, Finland.

Wavelength range VNIR 380–970 nm
SWIR 970–2500 nm

Spectral resolution/sampling distance VNIR 3.5 nm/1.7 nm
SWIR 12 nm/5.7 nm

Number of bands 624

Field of view (FOV) 32.3◦ (384 detectors)

Focal length 16.615 mm

Maximum scanning angle 130◦

Spectral binning VNIR 2
SWIR 1

The pre-processing of ground-based hyperspectral data followed the workflow presented in [24]
and was as follows (Figure 3):

1. Conversion to at-sensor radiance: The first step included dark-current subtraction, followed by image
normalization and multiplication of the sensor- and band-specific radiometric calibration data.

2. Optical distortion correction: In this step, sensor-specific optical distortions were corrected for. In case
of the Specim AisaFenix scanner, this encompassed fish-eye- and slit-bending effects, which could be
removed by applying sensor-specific correction values for each pixel in the field of view (FOV).

3. Conversion to at-sensor reflectance: This conversion was achieved by an empirical line calibration
using a white reference panel (Spectralon SRS-99, [71]) placed in the scene with a similar
orientation to the target.

4. Orthorectification and georeferencing: A corresponding photogrammetric point cloud (see below)
was transformed, projected, and rasterized to represent the viewing angle of the hyperspectral
sensor. In case of data acquired with the Specim AisaFenix, a cylindrical projection was
used to account for the panoramic imaging geometry of push broom scanners (see [24]
for details). The resulting acquisition-specific pseudo-orthophoto contained red-green-blue
(RGB) values, original coordination, and sun incidence angles for each rasterized pixel.
Subsequently, the hyperspectral image was referenced to the pseudo-orthophoto based on
23 manual tie points that were spread evenly over the entire scene.

5. Conversion to at-target reflectance: The hyperspectral image may be influenced by illumination
differences due to topography. These were corrected for by c-factor topographic correction
(see [43] for details) based on pixel-specific sun incidence angles, which were determined for
each point of the photogrammetric 3D point cloud and stored in each pixel of the created
pseudo-orthophoto, as described above.
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The post-processing of the terrestrial VNIR–SWIR data from the Naundorf quarry included
masking of the image to remove vegetation, as well as removal of gravel piles obstructing the view
of the outcrop. Vegetation masking was performed based on the normalized difference vegetation
index (NDVI). Spectral smoothing was applied based on a minimum noise fraction (MNF, [72])
transformation. Minimum wavelength mapping was used as a simple means to highlight variations in
mineral abundances in different absorption bands, such as ~2160–2220 nm for Al-OH, ~2230–2295 nm
for Fe-OH, ~2300–2360 nm for Mg-OH/CO3 [13–15,73], and ~400–950 nm for Fe-oxide, Fe-hydroxide,
and Fe-sulphate-hydrate minerals (e.g., [74]). The minimum wavelength maps were generated by using
the Hyperspectral Python toolbox (HypPy, e.g., [61,75]) and in-house Python scripts. In minimum
wavelength maps, the hue corresponds to the wavelength position of a certain absorption feature,
and the color intensity reflects the absorption depth of the feature [61,76]. The classification maps of
mineral assemblages were generated using ENVI version 5.1 (Exelis Visual Information Solutions,
Boulder, CO, USA) software. First, a MNF transform process was used in order to reduce the
dimensionality of the data, followed by the pixel purity index (PPI, [77,78]) in order to determine
and locate the purest pixels in the dataset. Subsequently, an endmember extraction was performed
using ENVI’s n-Dimensional visualizer (N-FINDR, [79]), which allows the visualization of endmember
clusters consisting of the purest pixels in an n-dimensional space. The parameter n represents the
number of selected relevant MNF bands, while the coordinates of each point represents the reflectance
of a specific pixel in each of the bands. With the selected endmembers, a mineral mapping was
performed using ENVI’s spectral angle mapper (SAM, [80]), which evaluates the similarity between
the image and reference spectra based on their angular distance in n (= number of bands) dimensions.
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3.2. Ground-Based LWIR Hyperspectral Imaging

LWIR hyperspectral data were acquired in sunny conditions using a tripod-mounted Telops
Hyper-Cam LW [81,82] operated in ground-based mode (Tables 1 and 3). A prominent, ca. 2 m
thick hydrothermal zone surrounded by hybrid granitoid host rocks along the northern wall of the
Naundorf quarry was selected for LWIR imaging (Figure 1E). The zone is subvertical (dip azimuth/dip
angle of fault plane = 125/75◦) and features disseminated sulfides, massive quartz veins, brecciation,
sericitisation, and carbonate precipitation (Figure 2B). Due to the small footprint of a single image
frame (Table 3), the area of interest was covered by an array of 3 × 4 images individually overlapping
by approximately 30%.

Table 3. Sensor specifications of the Telops Hyper-Cam LW thermal hyperspectral camera.

Image size 320 × 256 px, 67 spectral bands
Field of view (FOV) 6.4◦ × 5.1◦ (standard lens)

Focal length 86 mm (standard lens)
Spectral coverage 1300–881 cm−1 (7.7–11.8 µm)

Spectral resolution 0.25 to 150 cm−1

Imaging distance/footprint 55 m/6.1 × 4.9 m

The calibration and pre-processing workflow of the Hyper-Cam data is described in detail in [24]
and consisted of the following steps (Figure 3):

1. Conversion to radiance: Immediately after acquisition, the raw interferometer data frame was
automatically converted to radiance based on the offset and gain of an internal blackbody
calibration. For internal calibration, the device features two blackbodies, the temperatures of
which were adjusted to bracket the expected temperature range of the measured scenario to
minimize the non-linearity effects of the instrument’s response.

2. Temperature-emissivity separation: To achieve the radiometric calibration, a temperature-emissivity
separation (TES) was performed using the algorithms of the TES-MATLAB toolbox developed by
Telops. A custom-made diffuse reflector (brushed Al-panel, Al 6082 alloy) and a blackbody (Al
panel, milled and sprayed with black Würth acrylic lacquer paint) were placed in the scene during
acquisition. Whereas the diffuse reflector (high reflectivity, low emissivity) was used to estimate the
atmospheric downwelling radiance, the blackbody (high emissivity, low reflectivity) was used to
determine the emissivity of the target, which varies according to the temperature-specific Planck
function and the atmospheric transmittance between the sensor and target. Other parameters needed
for the TES were the emissivities of both reference surfaces (in the Naundorf LWIR scene 0.95 and 0.17,
for the blackbody and the reflector, respectively), the panel temperatures, which for the Naundorf
LWIR scene were extracted from the brightness–temperature image (blackbody 51.78 ◦C; diffuse
reflector 21.35 ◦C, measured at the water vapor line at 282.15 K), and the ambient air temperature
(26.7 ◦C, measured with a digital thermometer). The TES returns both a temperature image and the
spectral emissivity data cube.

3. Image stitching: In order to stitch the individual image frames together to a mosaic, the automatic
key point detection and matching workflow from [43] was successfully adapted to the LWIR data.
The data cubes were automatically matched using a looping trial-and-error procedure, which
eliminated the need for prior image sorting. The created mosaic was subsequently orthorectified
and referenced to a scene-specific pseudo-orthophoto using 22 manually collected tie points.

Before image interpretation, the calibrated LWIR hypercube was masked to remove stitching
edges of the image mosaic and the calibration panels in the scene. Subsequently, a spectral
subsetting was performed to eliminate atmospheric bands, and smoothed using MNF smoothing.
Apart from algorithms used for the ground-based VNIR–SWIR dataset, such as SAM, image
processing for the LWIR scene is based on linear spectral unmixing (LSU, e.g., [83–85], which
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estimates the relative contributions (abundances) of a defined set of endmembers to each image
pixel. Moreover, the LWIR data was processed using a technique based on the random forest (RF, [86])
classifier. In this technique, endmembers were first extracted from the scene using the N-FINDR
method. Subsequently, endmember abundances were estimated for both the image and the sample
spectra using fully constrained linear spectral unmixing (FCLSU, [87]). In the classification step,
the estimated abundances of the samples and their corresponding class labels were applied to train a
RF classifier. For the mineral mapping of the hyperspectral scene, the estimated abundances of the
image data were given as input to the trained RF classifier to predict the class label of each pixel in the
image. All LWIR image processing is based on reflectance data.

3.3. Drone-Borne VNIR Hyperspectral Imaging

For the drone-borne VNIR hyperspectral image acquisition, a Senop Rikola Hyperspectral
Imager ([88], Tables 1 and 4) was mounted on an Aibotix Aibot X6v2 hexacopter [89]. The hexacopter
platform has a maximum flight time of 15 min and can be either be controlled manually or operated
fully autonomously using a predefined Global Positioning System (GPS) path with automatic start
and landing. The UAV-based hyperspectral VNIR dataset was acquired at a 50 m distance from the
target, and from an elevation of about 30 m above the ground. The imaged scene (consisting of two
individual scenes at ca. 2.7 cm resolution) is a rock face in the center of the outcrop which exposes the
plane of a prominent hydrothermal zone (Figure 1D,E).

Table 4. Sensor specifications of the Senop Rikola hyperspectral camera.

Image size max. 1010 × 1010 px, 50 spectral bands
Field of view (FOV) 36.5◦ × 36.5◦

Focal length ~9 mm
Spectral coverage 500–900 nm

Spectral resolution 10 nm, full width at half maximum (FWHM)
Imaging distance/ground pixel size 100 m/6.5 cm

Ref. [43] demonstrated that drone-borne hyperspectral imaging requires a specific sequence of
pre-processing steps to transform the raw data to meaningful hyperspectral images. A number
of Python-based scripts integrated into an in-house toolbox called Mineral Exploration Python
Hyperspectral Toolbox (MEPHySTo, [24,43]) and software provided by Senop was used to pre-process
the data. The pre-processing steps were as follows (Figure 3):

1. Conversion to radiance: First, a dark current subtraction was performed on the individual images
and the raw digital numbers were converted to radiance with the software provided by Senop.

2. Lens correction and co-registration: Specific lens distortions caused by internal camera features
were corrected for with the MEPHySTo toolbox. Moreover, spatial shifts between the single bands
occurred during image capture, due to sensor movement. Therefore, the spectral bands were
co-registered with one another using the toolbox.

3. Orthorectification and georeferencing: Subsequently, the toolbox was used to automatically
orthorectify and georeference the images. This was done through keypoint detection and
point-matching algorithms to match points between the hyperspectral images and a view-specific
pseudo-orthophoto generated from an SfM point cloud.

4. Topographic correction: The topography of the area, such as various orientated slopes, can influence
the illumination within an image. The radiance of the same material can vary, due to different
sunlight incidences on that material. The MEPHySTo toolbox was used to perform these
topographic corrections.

5. Mosaicking: The orthorectified and georeferenced images were then simply merged together
using the toolbox, to create a mosaic of the whole area.



Remote Sens. 2018, 10, 1366 10 of 31

6. Atmospheric correction: Finally, the hyperspectral radiance mosaic was converted to reflectance.
An empirical line method was used by using known spectra from black, white, and grey Polyvinyl
chloride (PVC) panels placed in the scene.

The UAV-based VNIR image mosaic was masked to exclude parts covered by vegetation and
by the reference panels. Subsequently, smoothing was applied using a Savitzky–Golay filter [90].
Image processing of the drone-borne VNIR data is based on SAM using mineral reference spectra
and minimum wavelength mapping, but inversely applied to a maximum produced by two flanking
minima that may not be well developed, or that may lie outside the spectral range of the sensor.

3.4. Photogrammetry and 3D Integration

For photogrammetric surface reconstruction, RGB photographs were acquired from multiple
viewpoints on the ground and from unmanned aerial vehicles (UAV). A pre-calibrated Nikon D810 and
D850 DSLR camera with a Zeiss Milvus 2/35 ZF.2 lens was used for ground-based imaging, whereas
pre-calibrated GoPro Hero 4 Black, Nikon Coolpix A and Canon S110 RGB compact cameras are used
for aerial photography (Table 5). For oblique imaging of vertical quarry faces, the Nikon Coolpix A
was mounted on a manually-controlled Aibotix Aibot X6v2 hexacopter. Nadir UAV imagery were
acquired with the Canon S110 RGB mounted on a Sensefly eBee fixed-wing UAV [91], which was
pre-programmed to attain optimal ground resolution, image acquisition time, and image overlap.
The eBee has a maximum flight time of 50 min. The orientation of the respective drone and GPS
coordinates were written to the EXIF files of individual images in post-flight processing.

Based on the terrestrial as well as UAV nadir and oblique images, the 3D outcrop geometry of
the quarry was reconstructed using SfM photogrammetry. SfM is a low-cost, user-friendly workflow
combining photogrammetric techniques, 3D computer vision, and conventional surveying techniques.
It solves the equations for camera pose and scene geometry automatically using a highly redundant
bundle adjustment [50,52]. The typical SfM workflow is performed using Agisoft PhotoScan Professional
1.2.5, following protocols recommended by various authors [57,92]. Processing parameters were set for
image alignment to ‘high quality’ with reference tie point selection. Outlier tie points were removed using
the gradual selection tool prior to dense cloud reconstruction at ‘high quality’, with the depth filtering
set to ‘aggressive’. Images with high residual tie point errors were excluded from further dense cloud
matching. Interior and exterior orientation parameters of the camera were estimated in Agisoft Photoscan
based on bundle-block adjustment. The accuracy of the SfM point clouds was validated using a Monte
Carlo approach presented by [57], in which the root mean square errors (RMSE) on ground control points
(GCP) are calculated based on the actual measured GCP positions and estimated GCP positions in Agisoft
PhotoScan. The method uses repeated bundle adjustments, for each of which a random distribution of
check and control points is used, and the corresponding RMSE is determined.

During pre-processing, each of the hyperspectral datasets was registered to an SfM point
cloud-derived pseudo-orthophoto corresponding to the position and view-direction of the respective
hyperspectral sensor using either manual tie points or an automated routine based on keypoint detection
and point matching algorithms. By the pixel-wise joining of coordination and spectral information,
a so-called “hypercloud” was created, i.e., a geometrically correct, spatially 3-dimensional representation
of the hyperspectral data cube or its derivatives (Figure 3).
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Table 5. SfM parameters for the point clouds of the Naundorf quarry.

SfM Dataset 11 May 2011 19 October 2017 04 April 2018

Aligned images 186 239 214

Image acquisition

UAV-based: DJI Phantom 2 (GoPro Hero 4 Black,
12 MP), eBee (Canon Powershot 110 HS, 16 MP)

ground-based: Nikon D810 + Zeiss Milvus
2/35 ZF.2 (36 MP)

UAV-based: Aibot (Nikon
Coolpix A, 16 MP)

UAV-based: Aibot (Nikon
Coolpix A, 16 MP), eBee (Canon

Powershot 110 HS, 16 MP)
ground-based: Nikon D850 +

Zeiss Milvus 2/35 ZF.2 (45 MP)

Average flying altitude (m) 89 43 86

Ground resolution (cm/pix) 2.45 1.11 1.61

Ground control point
(GCP) number

directly georeferenced with eBee onboard GPS
data, subsequently aligned with 19 Oct. 2017 15 25

GCP measurement - Trimble R4-2 PPK GNSS +
Trimble M3 Total Station

Trimble R10 RTK GNSS +
Trimble M3 Total Station

Root mean square (RMS)
projection error tie points (pix) 1.59 0.48 0.16

Control points RMSE (cm) - 86.86 3.24

Check points RMSE (cm) - 106.85 3.70

Total error (cm) - 89.53 3.41

Total error (X, Y, Z in cm) - 80.44, 80.44, 39.29 1.84, 1.23, 2.59

3.5. XRD and Spectrometric Analysis

Standard petrographic thin sections were prepared from the hand samples, and examined using
a Zeiss Axio Imager Z2M microscope using plane- and cross-polarized light, as well as reflected
light. For XRD analysis, the samples were manually ground to <400 µm and further micronized to
approximately 4 µm using a McCrone mill (Retsch). They were filled into the samples holder using the
backloading technique. XRD analysis was carried out using a PANalytical Empyrean diffractometer,
which was equipped with a Co-tube, Fe-Filter, and a PIXcel 3Dmedipix area detector. The irradiated
area was kept constant at 12 × 12 mm by means of an automated divergence slit. Data were collected
in a 2theta range of 5–80◦. Quantitative data were obtained (Table 6) using the Rietveld method and
applying the software package BGMN/Profex v. 3.9.2 [93]. Additionally, oriented samples on glass
substrates were prepared in order to specify the clay minerals in the samples, where necessary.

Laboratory spectral measurements of both altered and fresh rock surfaces, as well as sample
powders, were acquired using a Spectral Evolution PSR-3500 portable spectro-radiometer. Spectra were
recorded for the VNIR/SWIR part of the electromagnetic spectrum (400 to 2500 nm) with a spectral
resolution of 3.5 nm (1.5 nm sampling interval) in VNIR, and 7 nm (2.5 nm sampling interval) in the
SWIR using a contact probe (8 mm spot size) with an internal light source. Radiance values were
converted to reflectance using a calibrated Zenith polymer polytetrafluoroethylene (PTFE) target with
>99% reflectance in VNIR and >95% reflectance in SWIR, which was measured at regular intervals.
Each spectral record consists of 10 individual measurements taken consecutively and averaged.

MWIR to LWIR spectral measurements were obtained using an Agilent 4300 Fourier Transform
Infrared (FTIR) spectrometer (Agilent, Santa Clara, United States) with a DRIFT sensor. The spectral
resolution was set to 8 cm−1 and the spectral range limited to 1430–830 cm−1 (ca. 7–12 µm) to match
the resolution and spectral range of the Telops Hyper-Cam LW data. Radiance values were converted
to reflectance using a pre-calibrated SpectraGold target with >95% reflectance. Each spectral record
consists of 32 individual measurements taken consecutively and averaged.

4. Results: Case Study Naundorf Quarry (Germany)

4.1. Validation Data

The host rocks of the Naundorf quarry consist of medium to coarse-grained, porphyritic
monzogranites containing mafic magmatic enclaves of quartz monzonitic composition. The enclaves
exhibit an irregular shape and are up to 30 cm in diameter. Locally, the intrusive assemblage is cut by
up to 10 cm wide, microgranitic aplite dykes (Figure 2A). The monzogranites are mainly composed of
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plagioclase, quartz, K-feldspars, chlorite, and biotite (Figure 4A, Table 6). The monzogranite contains
euhedral plagioclase crystals up to 3 mm in size, exhibiting magmatic zonation. Quartz xenocrysts
are rimmed by biotite (ocellar texture), suggesting magma mixing between mafic and felsic melts
(e.g., [94,95]), which is consistent with published interpretations based on geochemical data from the
Niederbobritzsch Granite [96,97]. The quartz monzonitic enclaves exhibit the same porphyritic texture,
but have a finer-grained matrix (Figure 4B) and contain less quartz than the felsic host and additional
amphibole (ferro-pargasite, see Table 6). Compositionally, the microgranite is almost identical to the
monzogranite (Table 6), but it displays an equigranular texture (Figure 4C). Hydrothermal zones
contain disseminated sulfides, and are characterized by silicification, brecciation, sericitisation,
and carbonate precipitation (Figure 3B). In the hydrothermal zones, feldspars and biotite in the
monzogranitic host rock are partly (Figure 4D) to completely (Figure 4E) replaced by chlorite and
sericite. Quartz occurs in interstices and as strain fringes adjacent to pyrite (Figure 4D). Locally, massive,
up to 8 cm wide sphalerite- and pyrite-bearing quartz veins are encountered in the center of certain
larger (NNE-SSW striking) hydrothermal zones (Figure 4F). A rock face in the center of the outcrop,
which is the target of the drone-borne VNIR imaging and also part of the ground-based VNIR–SWIR
scene (Figure 1E), exposes the plane of a prominent hydrothermal zone (125/58 = dip azimuth/dip).
The exposed fault plane is stained yellowish-brown by the occurrence of sulfides (mainly pyrite) and a
suite of secondary alteration minerals.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 31 
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Figure 4. Photomicrographs of representative samples from the NW part of the Naundorf quarry.
(A) Monzogranite; (B) Quartz monzogranite; (C) Microgranite; (D) Altered monzogranite 1; (E) Altered
monzogranite 2; (F) Quartz vein. Abbreviations are as follows: II—plane polarized light, X—cross-polarized
light, RL—reflected light. Mineral abbreviations after [98].

4.2. Ground-Based VNIR–SWIR Hyperspectral Imaging

For the terrestrial VNIR–SWIR hyperspectral dataset of the Naundorf quarry, minimum
wavelength maps were generated in four diagnostic wavelength ranges as a means to identify domains
of contrasting mineralogy (Figure 5A–D). For validation, the frequency distribution of minimum
wavelengths in these respective MWL maps were compared with (i) wavelengths of prominent
absorption features in the VNIR–SWIR sample spectra (Figure 6A–F), which were automatically
extracted using a filter width of 30 nm, and (ii) absorption wavelengths of infrared-active minerals
identified in XRD and in outcrops (Figure 6G,H). Absorption features for fresh and altered parts of the
samples were plotted separately to allow for the differentiation of constituents of the fresh or bulk rock
and secondary minerals on the rock surface.
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Table 6. X-ray diffraction results for samples from the NW part of the Naundorf quarry. Mineral abbreviations after [98].

Host Rock Hydrothermal Zone

Monzogranite Quartz Monzonite Microgranite Altered Monzogranite 1 Altered Monzogranite 2 Quartz Vein

Phase wt.% ± 3σ Phase wt.% ± 3σ Phase wt.% ± 3σ Phase wt.% ± 3σ Phase wt.% ± 3σ Phase wt.% ± 3σ

Pl (An10–50) 38.2 ± 0.3 Pl (An10–50) 39.2 ± 0.4 Pl (An0–16) 34.1 ± 0.8 Pl (An0–10) 38.4 ± 1.0 Qz 60 1 Qz 91.2 ± 0.5
Qz 29.3 ± 0.1 Kfs 22.2 ± 0.2 Qz 29.8 ± 0.6 Qz 31.6 ± 0.8 Ms 32 1 Cal 6.9 ± 0.5
Kfs 20.3 ± 0.2 Qz 12.6 ± 0.1 Kfs 21.9 ± 0.8 Ms 12.7 ± 0.7 Kln 8 1 Py 1.6 ± 0.2
Chl 8.0 ± 0.2 Chl 10.1 ± 0.3 Chl 6.6 ± 0.8 Chl 9.5 ± 0.9 Sp (Fe) 0.3 ± 0.2
Bt 4.2 ± 0.1 Ilt 5.3 ± 0.1 Bt 5.0 ± 0.4 Py 3.9 ± 0.3

Bt 4.9 ± 0.1 Cal 2.6 ± 0.4 Cal 3.5 ± 0.5
Fprg 4.6 ± 0.1 Sp (Fe) 0.4 ± 0.1
Ap 1.0 ± 0.0

1 semi-quantitative, as no appropriate structure model for the Rietveld refinement could be found for this sample.
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In the Al-OH range (2160–2220 nm), the wavelengths of the most pronounced reflection minimum
in the VNIR–SWIR image range between 2190 and 2203 nm in a left-skewed distribution (Figures 5A
and 6H). The absorption band centered around 2200 nm is diagnostic of white mica, and the minimum
wavelength of this feature is mostly controlled by the octahedral Al content and the ratio of K and
Na [18,99,100], which may change due to fluid–rock interactions. As the octahedral Al content and
the extent to which K is replaced by Na is strongly influenced by pH, temperature, and pressure of
the hydrothermal fluid, the 2200 nm feature is a sensitive indicator for hydrothermal alteration and
associated mineralization (e.g., [61]). In the corresponding minimum wavelength map (Figure 5A),
a series of vertical linear features (and a rectangular area corresponding to the exposed fault surface
in the center of the scene) in bright green and a cyan-colored patch in the upper left part of the
scene, indicating intermediate wavelengths of around 2196–2199 nm, distinctively stand out from
a background of deep green, brown, and blue, i.e., low-depth features with wavelengths over the
entire mapped wavelength range. This pattern suggests a trend of the 2200 nm feature from lower
wavelengths (i.e., a more phengitic composition) and higher wavelengths (i.e., a more paragonitic
composition) towards intermediate, i.e., normal sericitic compositions in the hydrothermally altered
zones. This trend is also apparent in sample spectra as one goes from samples of host-rocks and slightly
altered rocks to “altered monzogranite 2”, the most pervasively altered rock type (see also Table 6).
The depth of the 2200 nm feature, on the other hand, and its relation to the depth of the OH-H2O
feature around 1900 nm is related to the crystallinity of the mica (e.g., [73,101]); zones of lower mica
crystallinity typically being associated with higher amounts of water in the crystal structure, and vice
versa. In the Naundorf scene, a band ratio of the Al-OH feature at 2202 nm and the water feature in
this dataset anomalously occurring at 1943 nm, indicating the presence of flourine-rich mica or other
phases in the Naundorf rocks (e.g., [102,103]), was used as a proxy for the mica crystallinity (Figure 5B).
In this image, values of higher mica crystallinity are spatially associated with hydrothermal zones.
This may be related to plagioclase breakdown and formation of authigenic white mica, which is often
observed in zones of hydrothermal alteration (e.g., [104]), and are evident in the thin sections and XRD
results of the Naundorf rocks.

In the Fe-OH range between 2250 and 2264 nm, the minimum wavelength distribution within
the VNIR–SWIR image is bimodal (Figure 6H). In the corresponding MWL map (Figure 5C), the first
distribution peak centered around 2252 nm is represented by yellow to orange patches in the center of the
outcrop that most likely corresponds to zones with relatively high abundances of intermediate chlorite.
However, the maximum mapped feature depth is only 3%, which is consistent with the low amount of
chlorite detected in the rock samples (only up to 10 wt.%, Table 6). The smaller peak in the minimum
wavelength frequency distribution (Figure 6H) corresponds to dark blue areas in the periphery of the
outcrop and along hydrothermal zones, suggesting these zones have low chlorite abundances with lower
Mg/Fe composition. This agrees with the lack of evidence for chlorite in the spectral and XRD analyses for
samples in the cores of hydrothermal zones (“altered monzogranite 2” and “quartz vein”). Biotite also has
key absorption features within the mapped wavelength range, but biotite was unlikely to be detected in
the spectra due to low abundances in the rocks (up to 5 wt.%, Table 6) and low reflectivity in the SWIR
(e.g., [19]).

Absorption features between 2310 and 2350 nm are caused by Mg-OH and CO3 bond
stretching [13], and thus, alteration minerals such as actinolite, chlorite, biotite, epidote and carbonates
exhibit characteristic absorption features within this range. The MWL image for the wavelength range
between 2335 and 2352 nm shows a bimodal distribution, with one of the peaks centered around
2339 nm, and the other around 2348 nm (Figure 5D). The first peak is attributed to carbonates such as
calcite and/or siderite based on field evidence, known sample composition, and the color variations in
the MWL map, showing olive-brown areas (=low carbonate), and distinct yellow patches and streaks
in areas of mapped hydrothermal zones (=high carbonate). Minimum wavelengths around 2348 nm
exhibits only low color intensity, i.e., have low depth, and they may correspond to variations in white
mica and chlorite abundances and composition.
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Figure 2. (A–C)

Digital outcrop models provide geometrically accurate 3D records of geological exposures over a
range of scales (from centimeters to hundreds of meters) that can be used to visualize and analyze
lithology and structure (e.g., [1–5]). Usually, the color information of digital outcrops is based on
digital photographs, which capture broad bands of the visible part of the electromagnetic spectrum
and are not radiometrically corrected, limiting their use. However, hyperspectral imagery, in which
every pixel contains a continuous spectrum over a certain wavelength range [6,7], provides a suitable
means to remotely map compositional variations in geological formations [8–12]. This is based on the
fact that for any given material, the amount of radiation that is reflected, absorbed, or emitted is a
function of its wavelength, so that minerals have unique spectral signatures (e.g., [13–19]). For the full
integration of digital outcrops and infrared spectroscopy, three main aspects remain to be considered:

Figure 5. Image processing results for the terrestrial VNIR–SWIR hyperspectral data. (A) Minimum
wavelength (MWL) map for wavelength range characteristic for Al-OH-bearing alteration minerals.
(B) Band ratio of the Al-OH band at 2202 nm and the H2O band at 1943 nm as a measure of mica
crystallinity. (C) MWL map for the Fe-OH range. (D) MWL map for Mg-OH/CO3-bearing alteration
minerals. (E) Classification map derived by pixel purity index (PPI) endmember extraction, visual
endmember spectral analysis, and spectral angle mapping (SAM). Classes correspond to lithological
zones, where minerals or mineral groups that are identifiable in the VNIR–SWIR range are dominant.
“Low” refers to spectral signatures with low depths. Mineral abbreviations after [98]. (F) MWL map
for the VNIR range to discriminate between iron-bearing alteration minerals. See Figure 6G,H for the
location of absorption maxima in the VNIR and SWIR range, respectively.
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clarity. (G) Diagram showing absorption features in the VNIR range for (i) selected iron alteration 
minerals (black vertical lines, positions for reflectance minima and maxima from [74], mineral 
abbreviations after [98]), (ii) sample spectra (grey and white histograms, 5 nm bin width), and (iii) 
image pixels (color-filled histograms, 5 nm bin width) within the continuum-removed wavelength 
ranges 400–680 nm and 845–945 nm. Maxima within the range of 682–838 nm are extracted from non-
continuum-removed spectra. (H) Diagram analogous to (G) for the upper SWIR range (1 nm bin 
width). Absorption wavelength positions of selected alteration minerals from [19,73]. Abbreviations: 
“Alt.”—altered, “monzogr.”—monzogranite. 

The information gained from the minimum wavelength maps was confirmed and refined with 
a classification of the VNIR–SWIR image (Figure 5E). The classification is based on the visual 
inspection of seven spectral endmembers extracted using PPI and n-Dimensional visualizer in the 
ENVI software. This manual approach considers not only the position of absorption maxima in the 
upper SWIR range, but also the positions and shapes of all absorption features over the entire spectral 
range of the sensor (save for two bands of strong atmospheric absorption). The main identified 
minerals are white micas generalized as muscovite, followed by chlorite and calcite. Muscovite was 
identified based on its specific Al-OH feature in correlation with the OH-H2O feature at ca. 1940 nm. 
Chlorites show an intermediate Mg-Fe composition based on the main diagnostic Fe-OH–Mg-OH 

Figure 6. (A–F) VNIR–SWIR spectra for samples from the Naundorf quarry recorded with a Spectral
Evolution handheld spectrometer. Powder spectra were offset to lower the reflectance values for
clarity. (G) Diagram showing absorption features in the VNIR range for (i) selected iron alteration
minerals (black vertical lines, positions for reflectance minima and maxima from [74], mineral
abbreviations after [98]), (ii) sample spectra (grey and white histograms, 5 nm bin width), and (iii)
image pixels (color-filled histograms, 5 nm bin width) within the continuum-removed wavelength
ranges 400–680 nm and 845–945 nm. Maxima within the range of 682–838 nm are extracted from
non-continuum-removed spectra. (H) Diagram analogous to (G) for the upper SWIR range (1 nm bin
width). Absorption wavelength positions of selected alteration minerals from [19,73]. Abbreviations:
“Alt.”—altered, “monzogr.”—monzogranite.

The information gained from the minimum wavelength maps was confirmed and refined with a
classification of the VNIR–SWIR image (Figure 5E). The classification is based on the visual inspection
of seven spectral endmembers extracted using PPI and n-Dimensional visualizer in the ENVI software.
This manual approach considers not only the position of absorption maxima in the upper SWIR range,
but also the positions and shapes of all absorption features over the entire spectral range of the sensor (save
for two bands of strong atmospheric absorption). The main identified minerals are white micas generalized
as muscovite, followed by chlorite and calcite. Muscovite was identified based on its specific Al-OH
feature in correlation with the OH-H2O feature at ca. 1940 nm. Chlorites show an intermediate Mg-Fe
composition based on the main diagnostic Fe-OH–Mg-OH feature located between 2250 and 2260 nm.
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Calcite was identified based on the specific carbonate feature present between 2336 and 2340 nm [73].
Due to the overlap with chlorite and muscovite features in this range, the depth of this feature in relation to
the other diagnostic absorptions of muscovite and chlorite was considered for the documentation of calcite.
The vertical features in the classification map composed of the classes “Ms”, “Ms(low)”, “Ms-Cal(low)”,
and “Ms-Cal-Chl” correspond to the hydrothermal zones identified in the field, whereas the majority of
granitoid host rocks were mapped as “Ms-Chl(low)” and “Ms-Chl-Cal”.

MWL maps for the wavelength ranges between 845 and 945 nm, as well as 400 and 680 nm, were
generated to identify and map supergene iron minerals that, because of their low volumetric abundance,
may have gone unnoticed in the XRD analyses and may be masked by other phases (e.g., clay minerals)
in the SWIR part of the spectrum. Although scarce, iron minerals do occur in the featured outcrop,
as indicated by the presence of diagnostic absorptions in the spectral range from 0.4 to ca. 1.2 µm related to
intervalence charge transfers (for instance, between Fe3+ and O2−, or between Fe3+ and Fe2+) and crystal
field transitions (e.g., [74,105–108]) in image and sample spectra (Figures 5F and 6G). Absorptions features
between 845 and 945 nm are observed at ~892 nm, ~912 nm and ~930 nm in the image, and between
~910 and ~930 in spectra from sample surfaces (Figure 6G), which indicates the presence of goethite and
jarosite, but excludes hematite as an occurring phase, because the position of the reflectance minimum
for the hematite group is near 860 nm. However, goethite and jarosite cannot be clearly differentiated in
this wavelength range, as both minerals have broad absorptions near 900 nm (e.g., goethite 910–940 nm,
jarosite: 900–925 nm, [108]). In the range from 400 to 680 nm, on the other hand, goethite has additional
features near 480–500 nm and at 670 nm, and jarosite exhibits an absorption band at 437 nm (e.g., [74]).
In the corresponding MWL map (Figure 5E), goethite, identified by pixels with minimum wavelengths
between ~450 and ~480 nm (Figure 6G), appears to be ubiquitous over the entire scene, but exhibits low
depths in parts identified as host rocks in the field, and greater depths along fault planes in the upper left
and center of the VNIR–SWIR image as well as in an area close to the quarry floor in the left part of the
scene. The abundance of goethite is also indicated by the majority of image and sample spectra exhibiting
reflectance maxima at higher wavelengths than either jarosite and hematite (Figure 6G). Jarosite, on the
other hand, corresponding to minima at ~432 nm, preferentially occurs in the center of the outcrop where
there is a notable abundance of hydrothermal zones.

4.3. Ground-Based LWIR Hyperspectral Imaging

Following the acquisition and pre-processing scheme outlined in the Methods chapter, a LWIR mosaic
was created from an array of 3 × 4 single scenes with a ground resolution of ca. 2.2 cm (Figure 7B).
Based on XRD results of the samples collected in the field (Table 6), mineralogical endmembers were
defined. Corresponding mineral reference spectra from spectral libraries ([19] and Arizona State University
Spectral Library) were then mapped using LSU. The resulting albite-quartz-muscovite RGB composite
image (Figure 7C) allows a clear distinction between the hydrothermal zone and the surrounding granitoid
host. Additionally, the image highlights (i) compositional variabilities in the granitoid host-rocks from more
quartz-rich (greenish yellow, i.e., the monzogranite host) to more plagioclase-rich varieties (orange-red,
i.e., mafic enclaves), and (ii) different components of the hydrothermal zone, such as pervasively seritized
monzogranites (deep blue) and quartz veins (green linear features).

Between 16 and 29 LWIR point spectra were acquired per sample using a handheld FTIR
spectrometer to evaluate the spectral variability within a sample (Figure 8). For representative FTIR
spectra, either mean or center spectra were used as an input for lithological classifications by SAM
(Figure 7D,E). Whereas the mean spectrum represents an “artificial” sample consisting of average
reflectance values, the center spectrum constitutes the “physical” sample spectrum closest to the mean.
In both classification images, the felsic host rocks are correctly mapped as monzogranites with local
occurrences of quartz monzonitic enclaves and varying alteration (corresponding to the mineralogy of
altered monzogranite 1). Zones of hydrothermal alteration in the center of the image, as well as in the
upper left corner, are delineated by the occurrence of altered monzogranite 2 and vein quartz.
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input for a random forest classification. 

The third classification result, which is based on a random forest machine learning algorithm 
(see Methods), uses image and sample spectra as an input, and thus, unlike SAM, considers all the 
intra-sample heterogeneity. The result correctly maps the distribution of host rocks and 
hydrothermally altered rocks, but underestimates the abundance of quartz monzonite enclaves 
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Figure 7. (A) Photograph of the LWIR scene (see Figure 1 for location). (B) Overlap of the 12 LWIR
scenes that were mosaicked to a 3 × 4 array. (C) Linear spectral unmixing (LSU) results for the LWIR
mosaic showing the relative abundance of selected mineral reference spectra [19]. Color stretch 2–98%.
Mineral abbreviations: Ab—albite, Qz—quartz, Ms—muscovite. Black rectangular area at the bottom
of the image corresponding to the masked reference panels. (D) Spectral angle map (SAM) based
on mean Fourier-transform infrared (FTIR) sample spectra. (E) SAM based on center FTIR sample
spectra. (F) Results of a classification approach based on the extraction of endmembers from the scene,
unmixing the sample spectra and the scene samples, and using abundance features as an input for a
random forest classification.

The third classification result, which is based on a random forest machine learning algorithm
(see Methods), uses image and sample spectra as an input, and thus, unlike SAM, considers all the
intra-sample heterogeneity. The result correctly maps the distribution of host rocks and hydrothermally
altered rocks, but underestimates the abundance of quartz monzonite enclaves (Figure 7F).



Remote Sens. 2018, 10, 1366 19 of 31
Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 31 

 

 
Figure 8. FTIR spectra of samples from the Naundorf quarry. (A) Monzogranite; (B) Quartz 
monzogranite; (C) Microgranite; (D) Altered monzogranite 1; (E) Altered monzogranite 2; (F) Quartz 
vein. 

4.4. UAV-Based VNIR Hyperspectral Imaging 

Three samples taken from the accessible lower part of the outcrop (Naun 1–3) targeted by UAV-
based VNIR hyperspectral imaging were examined using the Spectral Evolution spectro-radiometer. 
In the corresponding VNIR–SWIR spectra (Figure 9B), jarosite, goethite, and smectite could be 
identified based on characteristic absorptions [73,74] at ca. 890 nm (jarosite) and 912 nm (goethite) as 
well as ~1411, ~1904, and 2205–2212 nm (smectite). Reference library spectra [19,74] of minerals 
identified by spectral analysis were used as input for a SAM classification (Figure 9C), yielding a 
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Figure 8. FTIR spectra of samples from the Naundorf quarry. (A) Monzogranite; (B) Quartz monzogranite;
(C) Microgranite; (D) Altered monzogranite 1; (E) Altered monzogranite 2; (F) Quartz vein.

4.4. UAV-Based VNIR Hyperspectral Imaging

Three samples taken from the accessible lower part of the outcrop (Naun 1–3) targeted by UAV-based
VNIR hyperspectral imaging were examined using the Spectral Evolution spectro-radiometer. In the
corresponding VNIR–SWIR spectra (Figure 9B), jarosite, goethite, and smectite could be identified based
on characteristic absorptions [73,74] at ca. 890 nm (jarosite) and 912 nm (goethite) as well as ~1411,
~1904, and 2205–2212 nm (smectite). Reference library spectra [19,74] of minerals identified by spectral
analysis were used as input for a SAM classification (Figure 9C), yielding a distribution map with
smectite–goethite–jarosite in the order of decreasing abundance. The shape and positions of mean spectra
of all classified pixels for each mineral correspond well to the respective sample spectra (Figure 9B).
The reflectance maximum occurring between ca. 700 and 770 nm (e.g., for goethite at ~764 nm caused
by a shoulder near 650 nm, and a broad absorption band near 910 nm; [74,105]), is interpreted as a
reliable indicator of the dominant ferric iron-bearing mineral present. This forms the basis for a maximum
wavelength mapping (Figure 9D), which shows a similar distribution for the occurrence of goethite or
jarosite as the SAM classification, and largely agrees with the spatial distribution of these iron minerals in
the corresponding part of the VNIR–SWIR image (Figure 5F).
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Diagram highlights the likely occurrence of jarosite and goethite in outcrops and in image spectra. 
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SfM photogrammetric models of the Naundorf quarry were produced for topographic 
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workflow is that one photogrammetric model could be used for different imaging datasets obtained 
from different positions. However, as the different hyperspectral datasets were acquired not at the 
same time, but on three different occasions over the course of a year, a separate SfM model, which 
reproduces the geometry, lighting conditions, and vegetation of the quarry at the time of image 

Figure 9. Image processing results of the drone-borne VNIR dataset. (A) RGB mosaic of the acquired
scene showing sample locations. Vegetation and calibration panels (bottom right) are masked. (B) VNIR
sample spectra recorded with a Spectral Evolution handheld spectrometer (continuous lines), and image
spectra (stippled lines) representing the averages of all pixels within the corresponding Spectral Angle
Mapper (SAM) class (see Figure 9C). Histograms show the abundance and position of reflectance
minima (downward pointing bars) and maxima (upward pointing bars) for the sample spectra (n = 10
for each sample). Black vertical lines indicate reflections of the minima and maxima (superscript m) of
selected supergene secondary iron minerals. Mineral abbreviations after [98]. Naun X-X indicates the
sample location (1–3, see Figure 9A) and the number of spectrum (out of 10). The Diagram highlights
the likely occurrence of jarosite and goethite in outcrops and in image spectra. (C) SAM results based on
reference library spectra (from [19,74]). Classes correspond to lithological zones, in which the mapped
minerals are dominant. (D) “Maximum” wavelength mapping centered on the reflection peak between
675 and 800 nm.

4.5. SfM Photogrammetry

SfM photogrammetric models of the Naundorf quarry were produced for topographic correction
and fusion with hyperspectral imagery. A crucial benefit of our presented integrative workflow
is that one photogrammetric model could be used for different imaging datasets obtained from
different positions. However, as the different hyperspectral datasets were acquired not at the same
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time, but on three different occasions over the course of a year, a separate SfM model, which
reproduces the geometry, lighting conditions, and vegetation of the quarry at the time of image
acquisition, was generated for each of the three hyperspectral datasets (Table 5). The presented median
root-mean-square error (RMSE) values for check and control points were calculated from 50 bundle
adjustments, with 80 percent of the GCP being used as control points, and the remaining 20 percent as
independent check points. The final point clouds were processed using all GCP in the area of interest
as control data (total error), which amounts to a total error range of ca. 90 cm to ca. 3.5 cm for the last
two SfM models, respectively. The hyperclouds, which were based on these models, may have a larger
error due to errors being introduced during mosaicking and georeferencing (Table 7).

4.6. 3D Integration

Fusing one of the obtained image processing results for each of the hyperspectral datasets of the
Naundorf quarry with their corresponding SfM point cloud by manual or automatic georeferencing
yielded three hyperclouds, i.e., geometrically and spectrally accurate combinations of a SfM point cloud
and a hyperspectral data cube. The georeferencing accuracy, evaluated for each hyperspectral image
by collecting 10 GCPs per scene, extracting their real-world coordinates from the pseudo-orthophoto
and calculating a root mean square error (RMSE) in X, Y, and Z direction, is between 4 and 28 cm
(Table 7). The integrative 3D datasets can be viewed and evaluated under [109] in a browser (Chrome,
Firefox, Safari on desktop PCs and mobile devices) online using the WebGL-based Potree viewer [110].
The viewer allows for rendering of the 3D datasets (SfM point cloud, and terrestrial VNIR–SWIR
MWL, terrestrial LWIR LSU, UAV-based MWL hyperclouds), as well as measurements of distance,
area, and height profiles. The individual datasets should be viewed separately to avoid occlusions of
overlapping datasets. As different hyperspectral datasets were referenced to different point clouds,
there may be slight mismatches in the hyperclouds relative to the SfM RGB point cloud. This is due to
the varying accuracy of each reference point cloud (Table 7), as well as due to physical changes in the
quarry as part of mining operations.

Table 7. Georeferencing accuracies. Abbreviations: Terr.—Terrestrial.

Dataset RMSE X [m] RMSE Y [m] RMSE Z [m]

UAV VNIR 0.04 0.06 0.06
Terr. VNIR–SWIR 0.15 0.21 0.28

Terr. LWIR 0.16 0.13 0.11

5. Discussion

5.1. Quarry Naundorf

Image processing of the VNIR–SWIR data from the Naundorf quarry is based on minimum
wavelength mapping, band ratios, and endmember-based classifications. The MWL maps are evaluated
by comparing the absorption features in image and sample spectra with those of (infrared active) minerals
identified in the outcrop, and in thin section or XRD analyses (Figure 6G,H and Figure 9B). Despite an
apparent shift between the minimum wavelengths of the reference minerals, image spectra, and sample
spectra, which may be caused by spectral noise in image-derived spectra and/or different wavelength
ranges having been used for continuum removal during extraction of minimum wavelengths [111],
two main lithological zones can be distinguished based on this analysis: (1) hydrothermal zones,
characterized by white mica of intermediate, sericitic composition with a high mica crystallinity, in addition
to calcite, and (2) host-rocks, which contain comparatively low abundances of white mica of variable
composition with low crystallinity, and intermediate chlorite. As a result, the hydrothermal zones of the
Naundorf quarry can be clearly delineated as sub-vertical linear features, or irregular surfaces if the faults
intersect the host rocks at a low angle to the quarry face. The spatial location of these spectrally identified
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hydrothermal zones correspond well to the alteration zones documented in the field. Moreover, they
coincide with a negative relief in the corresponding 3D hypercloud.

Apart from the phyllosilicates and carbonates, supergene iron minerals were identified in
the Naundorf outcrop by means of both ground- as well as drone-borne hyperspectral imaging
(Figures 5F and 9D). These minerals were not identified by means of XRD or thin section analyses.
A plausible explanation for this is the fact that the XRD analysis is conducted on parts of the
complete volume of hand samples that are more representative of the fresh, unaltered rock, and thus
minerals on sample surfaces may be underrepresented or not detected at all. The compositional
discrepancy between the sample surface and its “volume” is clearly illustrated by the different
absorption wavelengths of spectra acquired from altered and fresh part of the sample (filled vs.
unfilled histograms in Figure 6G,H). The origin of goethite and jarosite mapped along the surfaces
of hydrothermal alteration and in the in the center of the VNIR–SWIR image, where hydrothermal
zones are most abundant, is most likely related to the occurrence of sulfide minerals. Locally, these
supergene minerals trace vertical streaks on the fault surfaces (e.g., Figure 9C,D). The streaks may
correspond to zones where water has run down the quarry face and has caused preferential chemical
weathering of sulfides (e.g., [112]). Goethite occurring in a horizontal domain at the bottom left of the
VNIR–SWIR image (Figure 5F), on the other hand, may be caused by wind-blown iron-mineral-laden
dust produced during quarry operations.

LWIR spectra, unlike SWIR spectra, do not contain sharp absorption features that allow for easy
material identification by visual spectral evaluation or minimum wavelength mapping. Instead, they
are characterized by broad reflectivity features that show only subtle asymmetries, bumps, and shifts in
extrema, due to compositional variations of the target rocks. However, as shown in the example, LWIR
hyperspectral scenes can be evaluated using standard unmixing and classification techniques that were
originally developed for SWIR data. Apart from being able to identify differences in the abundance or
composition of phyllosilicates and carbonates, the Naundorf LWIR hyperspectral data can be used
to discriminate between quartz- and plagioclase-dominated rock types, respectively. Except for the
monzogranite and the microgranite, which are texturally different, but compositionally nearly identical,
FTIR sample spectra are distinct enough to be used as endmembers in image classification. Thus, mafic
enclaves can be distinguished from the felsic granitoid host, and quartz veins can be identified in the
core of hydrothermal alteration zones. The abundance and size of the enclaves vary based on the
classification approach, but they by and large correspond to observations in the field. The geometry
of individual enclaves on the other hand, locally appearing angular in shape, may be affected by
distortions occurring as a result of the roughness of the outcrop. This is apparent in the corresponding
3D hypercloud of the hyperspectral LWIR scene.

5.2. Benefits of the Integrated Workflow

Absorptions and emissions of materials in the infrared range occur due to different optico-physical
phenomena, i.e., (i) electronic processes, including crystal field effects, charge-transfers, conduction
bands, and color centers for wavelengths between ca. 0.1 and 3 µm, (ii) fundamental vibrational
processes for wavelengths greater than ca. 6 µm, and (iii) overtones and combination bands of
metal-OH bond stretching and bending, mainly between 1.0 and 2.5 µm [13,113]. Our multi-sensor
approach covers the VNIR (0.4–0.9 µm), SWIR (0.9–2.5 µm), and LWIR (7.7–11.8 µm) range, in which
all of these physical processes operate and cause characteristic spectral signatures for a variety of
common geologic materials, including iron oxides, iron hydroxides, and iron sulfates (e.g., [74,105])
as well as rare earth elements [114,115] in the VNIR; “alteration minerals”, such as phyllosilicates,
hydroxylated silicates, sulphates, carbonates, and ammonium minerals in the SWIR (e.g., [13,73]);
and rock-forming minerals including silicates (notably tectosilicates like quartz and feldspar), oxides,
carbonates, hydroxides, sulfates, and phosphates in the LWIR [27,33,116]. The LWIR outcrop sensing is
particulary useful in remotely mapping different rocktypes that cannot be distinguished in RGB, such
as marbles, quartzites, or different generations of basalts in mafic dyke swarms. Even though many
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ore metals are indistinct in the spectral range of the sensors used in this study, a variety of alteration
minerals related to ore mineralization show intense spectral contrast and can be used as mineralization
vectors, pathfinders, or proxies (e.g., [73,101,117]), which makes this sensor combination and described
workflow a valuable tool in exploration and mining.

The presented integrated workflow is meant to supplement geological fieldwork by providing
a qualitative discrimination of domains and lithological/tectonic contacts, so that the geologist can
make informed decisions about focussing mapping efforts and designing a suitable sampling strategy.
As with every remotely sensed data, validation by the means of ground truthing is crucial for calibration
purposes, training of classification algorithms, quality assessment of models, quantification, etc. To a
first degree, geological field work will provide qualitative data, such as an inventory of lithologies,
alteration and mineralization types, and quantitative data such as structural measurements of faults
and contacts. Petrographic and XRD mineralogical analyses, as well as sample spectra, provide a
link between mineralogy and spectral reflectance signature. Apart from mineralogical composition,
petrographic thin section analysis can yield valuable extra information on the alteration and the sequence
of crystallization. Additionally, the combination of multiple datasets in this integrated approach enable
extensive opportunities for cross-validation, i.e., (1) between hyperspectral imaging data based on
overlapping spectral ranges (i.e., drone-borne VNIR and ground-based VNIR–SWIR) or (2) between
hyperspectral imaging data based on the spatial abundance of minerals that are infrared-active in
the respective wavelength ranges (such as phyllosilicates producing diagnostic spectra in SWIR and
LWIR), (3) between imaging products and 3D point clouds (by means of hyperclouds) to evaluate the
shadowed parts of the image that may lead to misclassifications, or to assess the spatial accuracy of
mapped lithologies with a morphological expression, e.g., due to preferential weathering, (4) between
the (low-resolution) texture of hyperclouds and the high-resolution RGB textures of corresponding
SfM models.

The resolution of the presented datasets (VNIR—2.7 cm, VNIR–SWIR—13 cm, LWIR—2.2 cm)
can be controlled by adjusting the range of the sensor or (in the case of LWIR imaging using
the Telops Hyper-Cam) by replacing the optics with a longer or wider lens. Resolution is only
limited by accessibility (how close the terrestrial scanner can be set up), or by how close the drone
can be maneuvered to the outcrop (about 10–15 m). For the present example, the drone-borne
hyperspectral sensor was used to map an accessible part of the quarry wall to allow in-situ validation
and cross-correlation with the terrestrial VNIR–SWIR data. However, with the presented combination
of terrestrial and drone-borne sensors, geological outcrops at spatial scales of up to several hundred
square meters in the horizontal to vertical orientation can be easily mapped.

In studies that combine hyperspectral imagery with TLS data, both data sets are usually
acquired from one position in order to avoid data gaps due to occlusion in one or the other data
set. Hence, for each hyperspectral scan, an accompanying outcrop model has to be acquired. In our
presented approach, one single ground- and UAV-based SfM 3D model can be used to fuse many
hyperspectral datasets acquired from different horizontal and vertical positions, thus allowing for
greater flexibility. TLS data, if acquired from a network of scanning positions, which accessibility
conditions will not always allow, is generally deemed to be more precise and consistent across the
outcrop in comparison to SfM (e.g., [48,55,56]). However, SfM is now an established method which,
by following acquisition and processing guidelines (e.g., [57]) can yield reproducible and highly precise
3D models. Combined terrestrial and aerial SfM models have greater coverage and are less prone
to occlusion than TLS models, due to the additional camera positions and angles. Moreover, SfM
instrumentation is cheaper, lighter, more compact, and requires lower power consumption [55,56].

Regarding data processing, we focus on time-efficient routines which require minimum user
input. The applied algorithms include both established methods such as N-FINDR endmember
extraction, SAM, MWL mapping, and LSU that are implemented in standard image processing and
machine-learning workflows to take full advantage of the entire set of validation spectra. Open source
software such as the Hyperspectral Python toolbox (HypPy, e.g., [61,74]) and the Mineral Exploration
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Python Hyperspectral Toolbox MEPHySTo [24,43] are used for image pre- and post-processing, as well
as data integration. Even larger datasets can be processed efficiently, due to the employment of batch
processing routines for e.g., empirical line correction, co-registration, mosaicking, and georeferencing.

3D hyperclouds, which combine the information of the 3D surface geometry with multi-source,
multi-scale hyperspectral imaging products, apart from providing an intuitive visualization, can be used to
identify and extract geologic structures, as well as map areal distributions of geologic domains that may be
indistinguishable in the visible part of the electromagnetic spectrum. The approach is particularly useful if
detailed structural mapping is not possible, due to steepness, size, or safety concerns limiting access to
the outcrop. For example, the compass plugin by [118] for the CloudCompare Software (CloudCompare
version 2.9, 2018) can be used to easily trace lineaments (i.e., least-cost paths) along RGB values and
gradients in hyperclouds of suitable spectral contrast. Furthermore, as shown in our example, the 3D
hypercloud environment allows for hyperspectral datasets of differing spatial resolution or that are
obtained with different acquisition parameters, to be set into spatial relation. Within this framework,
hyperspectral surface information (i.e., 2.5D) can be combined with subsurface data such as drill-cores to
build fully 3D structural and mineral resource models.

6. Conclusions

The presented workflow for the combination of structure-from-motion (SfM) outcrop models
and multi-sensor hyperspectral imagery acquired from terrestrial and airborne platforms provides
an important source of geological information for geoscientific research, mineral exploration, mining,
and geohazard monitoring, with many advantages over traditional approaches with respect to:

1. spectral range, as the combination of visible to near infrared, shortwave infrared, and long-wave
infrared hyperspectral imaging enables the discrimination of a variety of geologic materials such
as rock-forming and hydrothermal alteration minerals;

2. spatial coverage, as the combined use of ground-based sensors and unmanned aerial vehicles
(UAV) allows for close-range imagery with higher spatial resolutions to be acquired of geological
outcrops from a number of perspectives;

3. flexibility, as SfM outcrop models based on terrestrial and aerial photographs are less influenced
by occlusion, and can serve as a basis for fusion of multiple spectral datasets with different
sensor positions;

4. validation, as geological field observations and analytical validation data are supplemented by a
range of cross-validation data between the individual datasets of the multi-sensor approach;

5. cost- and time-efficiency, as the SfM approach offers a fast and low-cost alternative to terrestrial
laser scanning and the presented hyperspectral processing routine, which is mostly based on
open source code, requires only minimal user input;

6. geological interpretation, as the hypercloud, i.e., a geometrically correct, spatially 3-dimensional
representation of the hyperspectral data cube or its derivatives, allows for an intuitive
visualization of geological outcrops, and it can be used to identify and extract geologic structures
as well as map areal distributions of lithologic domains.

The benefits gained from the presented integrated approach will be amplified by current developments
in (i) sensor development hyperspectral technology, resulting in the availability of small and lightweight
imaging sensors with extended wavelength ranges (e.g., [119]), (ii) machine-learning algorithms to improve
classifications based on the fusion of topographic and spectral data (e.g., [120,121], (iii) the augmentation
of topographic and spectral surface data with subsurface information from drill-cores and/or geophysical
data to build fully 3D structural and mineral resource models (e.g., [122]), and (iv) algorithms and hardware
to allow for real-time processing of photogrammetric data and hyperspectral images (e.g., [123]).
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