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Abstract: By using the high spectral resolution, hyperspectral images (HSIs) provide significant
information for target detection, which is of great interest in HSI processing. However, most classical
target detection methods may only perform well based on certain assumptions. Simultaneously,
using limited numbers of target samples and preserving the discriminative information is also a
challenging problem in hyperspectral target detection. To overcome these shortcomings, this paper
proposes a novel adaptive information-theoretic metric learning with local constraints (ITML-ALC)
for hyperspectral target detection. The proposed method firstly uses the information-theoretic metric
learning (ITML) method as the objective function for learning a Mahalanobis distance to separate
similar and dissimilar point-pairs without certain assumptions, needing fewer adjusted parameters.
Then, adaptively local constraints are applied to shrink the distances between samples of similar pairs
and expand the distances between samples of dissimilar pairs. Finally, target detection decision can
be made by considering both the threshold and the changes between the distances before and after
metric learning. Experimental results demonstrate that the proposed method can obviously separate
target samples from background ones and outperform both the state-of-the-art target detection
algorithms and the other classical metric learning methods.
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1. Introduction

A hyperspectral image (HSI) obtained by remote sensing systems can provide significant
information. Each pixel of HSI contains a continuous spectrum with hundreds or even thousands of
spectral bands, of which the width of each band is about 5–10 nm, to detect and characterize target of
interest in the scene [1,2]. Target detection is one of the most wide applications of hyperspectral image
processing, and it plays an important role in the real world, such as detecting humanmade objects
in reconnaissance applications, searching rare minerals in geology, and researching environmental
pollution [3–5]. Based on specific spectral signatures (prior information), the purpose of target detection
is to decide whether a target of interest is present or not present (background) in a pixel-under-test,
which can be viewed as a binary classifier [6,7].

A number of classical target detection algorithms have been proposed in HSI analysis. Most of
them are based on the linear models and statistical hypothesis tests, which can maximize the detection
probability for fixed false alarm probability, such as orthogonal subspace projection (OSP) and adaptive
cosine/coherence estimator (ACE). The former OSP method proposed by Harsanyi et al. [8] suppresses
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the background signatures by projecting each pixel’s spectrum onto a subspace, which is orthogonal
to the background signatures. The well-known ACE method proposed by Kraut et al. [9] assumes
that the additive noise has been included in background, which is an unstructured background
detector. However, most classical algorithms depend on the specific statistical hypothesis tests, and
may only perform well under certain conditions, e.g., the ACE detector assumes that the background
is homogeneous, which is unrealistic in the real world.

In recent years, the machine learning techniques have been introduced into HSI target detection,
which has been paid great attention [10,11]. Typical examples of these methods are kernel-based
detectors, such as the kernel matched subspace detectors (KMSD) [12], kernel spectral matched
filter (KSMF) [13], and kernel OSP [14]. The kernel-based methods map the original feature space
into a potentially high-dimensional kernel space to solve the linearly inseparable problem in the
original space. Apparently, as mentioned in the article [15], kernel-based methods are also based on
statistical hypothesis test, and inherit the shortcomings of traditional target detection methods. It can
be concluded that kernel-based methods attempt to find a stable and credible feature space (distance
metric) for separating potential target pixels and background ones [16–18].

Otherwise, the spectral resolution of HSIs is so high that these spectral bands are often highly
correlated. For decreasing spectral redundancy and releasing computational complexity, it is necessary
to reduce dimension by discarding redundant features for HSI target detection [19,20]. There are such
few target pixels of interest that HSI target detection rarely takes into consideration dimensionality
reduction, which may hide the accuracy of detecting targets. That is to say, target detection is usually
in a dilemma whether to reduce spectral redundancy or preserve discriminative information [21,22].
Thus, how to develop a proper metric with a low dimensionality for measuring the separability
between target pixels and background ones becomes the key for HSI target detection [23].

In fact, metric learning methods have proved to be a more straightforward and effective way
to obtain such a distance metric [24–26]. To date, there are a few metric learning methods that have
been proposed for HSI target detection. For example, Zhang et al. [15] learned an objective function of
the supervised distance maximization by putting a similarity propagation constraint and imposing a
manifold smoothness regularization. Dong et al. [27] presented the maximum margin metric learning
(MMML) method, which utilizes the maximum margin framework as the objective function to learn
distance metric space and can maximally separate target samples from background ones without
certain assumptions. Dong et al. [28] presented random forest metric learning (RFML) method, which
adopts random forests as the underlying representation of the metric learning, to deal with limited
numbers of target samples by merging the standard relative position and the absolute pairwise position.
In general, by using metric learning, we can find the distance metric matrix, so as to transform the
original space into the metric feature space. Then, we can detect the desired targets, especially when
the samples are imbalanced and the number of target samples is very limited.

In addition, a number of metric learning methods have been proposed to learn the distance metric,
such as neighborhood component analysis (NCA) method [29], large margin nearest neighbor (LMNN)
method [30], and so on. For each instance, NCA method expresses the probability of selecting the same
class instances as the neighbors, which can maximize the stochastic variance of leave-one-out k-nearest
neighbor (KNN) score on the training samples. LMNN method aims to find a distance metric such that
the instances from different classes are effectively separated by a large margin within the neighborhood,
where the margin is defined as the difference between the between-class and within-class distances.
Furthermore, the information-theoretic metric learning (ITML) method, proposed by Davis et al. [31],
expresses the weakly supervised metric learning problem as a Bregman optimization problem and can
handle a variety of constraints and incorporate a priori information on the distance function.

However, the existing metric learning based methods still have some obstacles to be addressed.
The major problem is that most methods mentioned above are global metric learning with global
constraints, making decisions by comparing their Mahalanobis distance d and judging d is lower or
higher than the a fixed threshold b, which is insufficient and suboptimal. Therefore, in this paper, ITML
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method, which works in a weakly supervised manner, is innovatively introduced for hyperspectral
target detection with adaptively local constraints (ITML-ALC, for short). The proposed ITML-ALC
method explores adaptively local constraints to relax the fixed threshold, which can be used to compute
the Mahalanobis distance d and judge if given samples are targets by considering both b and the changes
between the distances before and after metric learning. By considering local constraints and avoiding
adopting those conflicting constraints, the separability between target samples and background ones
can be enhanced. Besides, non-square matrix W can be found for handling high-dimensional data
problems by transforming the original space into a metric learning space with a low dimensionality.
Compared with existing algorithms, ITML-ALC has several obvious advantages:

1. The proposed ITML-ALC algorithm can use limited numbers of target samples to detect targets
without certain assumptions, compared with traditional target detection methods.

2. ITML-ALC needs only one parameter to be adjusted, and the detection results are relatively
stable for different values of parameter.

3. ITML-ALC can remain the locality information and improve the detection performance via
considering both the threshold and the changes between the distances before and after metric
learning, while existing metric learning based methods uses fixed threshold to make decision.

The rest of this paper is organized as follows. In Section 2, a briefly introduce of the original
ITML method is provided, and the proposed ITML-ALC method is then presented. The experimental
results of the proposed method using several challenging HSIs are detailed in Section 3, followed by
the discussion and conclusions in Sections 4 and 5.

2. Methods

2.1. Related Work

The ITML methodology minimizes the LogDet divergence subject to linear constraints. There are
two key techniques of ITML. One is the ability to handle a wide variety of constraints and to optionally
incorporate a priori information on the distance function. The other key technique is that it is fast
and scalable.

Suppose that we have a set of L-dimensional training samples {x1, x2, · · · , xn} ∈ RL×n, in which
n represents the number of training samples and L is the number of feature dimensions. zij ∈ (+1,−1)
denotes the relationship between the training samples xi and xj. Considering relationships of the
similarity or dissimilarity between pairs of samples, distances between samples in the same class can
be constrained as similar, and ones in different classes can be constrained as dissimilar. Then, we have
a set of similar constraints S and a set of dissimilar constraints D as Equation (1):

S : ∀(xi, xj) ∈ S xi, xj ∈ same class, zij = 1,
D : ∀(xi, xj) ∈ D xi, xj ∈ different class, zij = −1.

(1)

Metric learning aims to learn metric matrix M, which specifies the Mahalanobis distance dM(xi, xj)

between any pairs of samples xi and xj as:

dM(xi, xj) =
√
(xi − xj)

TM(xi − xj). (2)

In order to ensure that dM(xi, xj) is a meaningful distance, the learned metric matrix M must be
symmetric and positive semidefinite (PSD) variance matrix, guaranteeing that dM(xi, xj) is symmetrical,
non-negativite, and has triangle inequality [32,33]. Considering the high dimensional of HSIs and M is
PSD matrix, a nonsquare matrix W ∈ RL×D(D � L), defining a mapping from the high-dimensional
space into a low-dimensional embedding, can be established, and M = WWT [34–36].

In the Equation (2), our objective is to find the PSD matrix M (or W) and the corresponding
distance threshold b such that for any pairs (xi, xj) ∈ S the distance between them is smaller than b,
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and for any pairs (xi, xj) ∈ D the distance between them is greater than b, which can be described as
Equation (3):

dM(xi, xj) ≤ b (xi, xj) ∈ S,
dM(xi, xj) ≥ b (xi, xj) ∈ D.

(3)

The ITML method can minimize the differential relative entropy between two multivariate
Gaussians and handle a variety of constraints on the distance function via a natural information-
theoretic approach. Thus, given a Mahalanobis distance parameterized by M, its corresponding
multivariate Gaussian can be expressed as:

p(x; M) =
1
Z

exp(−1
2

dM(x,µ)), (4)

where µ is the mean of Gaussians, Z is a normalizing constant in the Equation (4). By using the
bijection, the distance between two Mahalanobis distance functions parameterized by M0 and M can
be measured by the differential relative entropy of corresponding multivariate Gaussians:

KL(p(x; M0)||p(x; M)) =
∫

p(x; M0) log
p(x; M0)

p(x; M)
dx, (5)

In the Equation (5), M0 is a given Mahalanobis distance function, such as identity matrix.
In conjunction with given pairs of similar points S and pairs of dissimilar points D, the distance
metric learning can be summarized as the following optimization problems:

min
M

KL(p(x; M0)||p(x; M))

subject to dM(xi, xj) ≤ b1 (xi, xj) ∈ S,
dM(xi, xj) ≥ b2 (xi, xj) ∈ D,

(6)

where b1, b2 are given upper and lower bounds, respectively.
Some research has shown that the differential relative entropy of corresponding multivariate

Gaussians is equivalent to the LogDet divergence between the covariance matrices [37]:

KL(p(x; M0)||p(x; M)) =
1
2

dlog det(M
−1
0 , M−1) =

1
2

dlog det(M, M0), (7)

where M−1
0 , M−1 are the covariance of the distributions.

Taking into account that a feasible solution of Equation (6) may not exist, we incorporate slack
variable ξ into Equation (6) to guarantee the existence of the metric matrix M. Thus, the Equation (6)
can be represented as the following optimization problem with Equation (7):

min
M≥0,ξ

dlog det(M, M0) + γ·dlog det(diag(ξ), diag(ξ0))

s.t. tr(M(xi − xj)(xi − xj)
T) ≤ ξc(i,j) (xi, xj) ∈ S,

tr(M(xi − xj)(xi − xj)
T) ≥ ξc(i,j) (xi, xj) ∈ D,

(8)

where ξ0 denotes initialized slack variables, and c(i, j) is the index of the (i, j)− th constraint. γ is the
tradeoff parameter, which controls the tradeoff between satisfying the constraints and minimizing
dlog det.

2.2. Combining ITML and Adaptively Local Constraints

The ITML method uses fixed threshold to make decision, which makes it less effective to handle
data with complex distributions even if the associated metric is correct. To address this issue, this paper
proposes an adaptively local decision rule to design pairwise constraints to relax the fixed threshold
for target detection. We design a local decision function f (dij) to achieve this goal, where dij is the
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distance of a similar or dissimilar pair (xi, xj). The principle for designing f (dij) is: that the greater the
distance between similar pairs, the more f (dij) should shrink, while the smaller the distance between
dissimilar pairs, the more f (dij) should expand. Based on this principle, the local constraints can be
redefined to make better decision by considering both the threshold b and the changes between the
distances before and after metric learning. As a result, we can form the local decision constraints to
compute the adaptive upper/lower bounds for (xi, xj) as:

fS(dij) = dij − (d(1/NS)
ij /dc) (xi, xj) ∈ S,

fD(dij) = dij + (dc/d(1/ND)
ij ) (xi, xj) ∈ D,

(9)

where NS ≥ 1 and ND ≥ 1 are the scale factors that separately control shrinkage and expansion. dc ≥ 1
is the constant.

From Equation (9), we can see that the smaller the NS is, the faster fS(dij) will shrink, while the
greater the ND is, the faster fD(dij) will expand. Then we set dc = dmax (where dmax is the maximal
distance between all the pairs). Clearly, we want to maximize the shrinkage and expansion of f (dij).
Considering that NS 1 cannot guarantee that the constraints are positive, we set NS = 1 to ensure that
fS(dij) can shrink as fast as possible, while setting ND = 1/ log2(dc/(dc − 2)) to guarantee the faster
expansion of fD(dij). Thus, Equation (9) can be transformed as:

fS(dij) = dij − (dij/dmax) (xi, xj) ∈ S,

fD(dij) = dij + (dmax/ ND

√
dij) (xi, xj) ∈ D,

(10)

For relaxing the fixed threshold of ITML method in the Equation (8), we can substitute the original
fixed bound of ITML with the above-mentioned local decision constraints of Equation (10), and we
finally obtain the adaptive ITML with local constraints (ITML-ALC) detector:

min
M≥0,ξ

dlog det(M, M0) + γ · dlog det(diag(ξ), diag(ξ0))

s.t. dM(xi, xj) ≤ fS(dM(xi, xj)) + ξc(i,j) (xi, xj) ∈ S,
dM(xi, xj) ≥ fD(dM(xi, xj)) + ξc(i,j) (xi, xj) ∈ D,

ξc(i,j) ≥ 0, ∀(i, j), d ≥ 0,

(11)

In addition, combining Equation (1) with Equation (11), we can set the following Equation (12):

f (dij, zij) =

{
fS(dM(xi, xj)) xi, xj ∈ same class, zij = 1,
− fD(dM(xi, xj)) xi, xj ∈ different class, zij = −1.

(12)

Thus, the final ITML-ALC objective function can be simplified as:

min
M≥0,ξ

dlog det(M, M0) + γ · dlog det(diag(ξ), diag(ξ0))

s.t. zijdM(xi, xj) ≤ f (dij, yij) + ξc(i,j)
ξc(i,j) ≥ 0, ∀(i, j), M ≥ 0,

(13)

Obviously, ITML-ALC has the same complexity and can be solved using the same algorithm
as ITML.
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2.3. Final Sketch of ITML-ALC Algorithm

In the Equation (13), the metric matrix M can be projected into the PSD cone by adopting spectral
decomposition. To compute the linear projections, we solve the following generalized eigenvector
problem as:

M =
m

∑
i=1

λiν
T
i νi (14)

In the Equation (14), we start with setting the negative eigenvalues λ to zero, then we can obtain
metric matrix M by using the remaining positive eigenvalues and the corresponding eigenvectors ν.
Then, we can further learn a linear projection matrix W ∈ RL×D(D � L) for the dimensionality
reduction. For an arbitrary test pixel vector xi ∈ RL×n, we compute the final metric feature
representation in the final ITML-ALC feature space with the equation M = WWT by:

x′ = WTx (15)

By applying Equation (15), the original data x can be transformed into the Mahalanobis metric
space. Finally, the target detection result is obtained by using a detection algorithm. In our method,
the ACE detector is used because of its simplicity and effectivity.

Algorithm 1: Procedure of ITML-ALC

Input: A set of pairwise training data points
{
(xi, xj, zij) ∈ (S∪D)

}
, the trade–off parameter γ

Output: Metric matrix M

Step (1): Initialization: input Mahalanobis matrix M0 = I, initialized slack variable ξ0, dc = dmax, NS = 1,
ND = 1/ log2(dc/(dc − 2)).

Set: M = M0, λij = 0.

{
ξc(i,j) ← fS(dij), (xi, xj) ∈ S

ξc(i,j) ← fD(dij), (xi, xj) ∈ D
Step (2): Repeat {Main loop}

(a) p← (xi − xj)
TM(xi − xj)

(b) α← min(λij,
zij
2

(
1
p −

γ
ξc(i,j)

)
) ,

{
zij = 1, (xi, xj) ∈ S

zij = −1, (xi, xj) ∈ D

(c) β← zij α/(1− zij αp)

(d) ξc(i,j) ← γξc(i,j)/
(

γ + zijαξc(i,j)

)
(e) λij ← λij − α

(f) M←M + βM(xi − xj)
T(xi − xj)M

Until: convergence is attained
Return: M

The proposed ITML-ALC algorithm is the integration of the ITML method and adaptively local
constraints. Thus, ITML-ALC can be solved by using the same algorithm as the procedure of ITML.
Refer to the reference [31], and we can obtain the procedure of the proposed ITML-ALC algorithm,
summarized as Algorithm 1.

2.4. Workflow of ITML-ALC Algorithm

The schematic diagram of the proposed ITML-ALC method for HSI target detection is shown in
Figure 1. Given a hyperspectral image, a priori information of the ITML-ALC algorithm including target
samples (red points) and background samples (green points and blue points) is needed. The flowchart
of the proposed algorithm consists of the following steps: (1) The ITML metric feature framework is
constructed, which can transform the original HSI data into the Mahalanobis metric space. (2) The
adaptively local decision constraints are applied into ITML framework. Unlike the fixed decision
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paradigm, which may be easily misclassified, we can classify the pairs according to the adaptively
local decision constraints, with which the distance of the similar pair shrinks while the distance of the
dissimilar pair expands as much as possible, illustrated in the solid box. Thus, it allows us to make a
correct decision by considering both the threshold b and the changes between the distances before and
after metric learning. (3) For achieving target detection, we transform the original HSI data into the
ITML-ALC low-dimensional metric feature space, in which target samples can be maximally separated
from the background ones. (4) We apply the specific detector to obtain the target detection results.
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3. Experiments Analysis and Results

In this section, a synthetic dataset and two real datasets are performed to evaluate the effectiveness
of the proposed method. The first one is a synthetic HSI dataset created through implanting alunite
object spectra into the specific locations. The second and third ones are real HSI datasets with
complex background distributions. For comparison, a series of existing state-of-the-art target detection
algorithms, i.e., ACE and OSP detectors, are used to thoroughly evaluate the performance of the
proposed algorithm. We also compare the proposed algorithm with three classical metric learning
methods, i.e., LMNN, NCA, and ITML, which can also be applied to dimensionality reduction. In all
the detectors (except ACE), we apply the same given training samples, including the target signatures
and background signatures, which are randomly selected from the datasets. For ACE algorithm,
we only implement the same target signatures as the proposed algorithm. In addition, we apply
the ACE detector as the basic detector in the LMNN, NCA, and ITML algorithms like the proposed
algorithm. As for the adjustment of parameters, trade-off parameters in the LMNN, NCA and ITML
algorithms are tuned via threefold cross validation according to relative references [30], [29], and [31],
respectively. All the experiments are implemented on a computer with an Intel(R) Core(TM) i7-7700
Central Processing Unit (CPU) at 3.60 GHz (8 GPUs), 16-GB Random Access Memory (RAM) and
64-bit Windows 10 Operating System (OS).

3.1. Dataset Description

Three hyperspectral datasets were used in this study to evaluate the performance of the proposed
method introduced in Section 3.

(1) AVIRIS LCVF dataset: This image was acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor, operated by National Aeronautics and Space Administration
(NASA), USA, covering the Lunar Crater Volcanic Field (LCVF) in Northern Nye County, NV,
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USA. This dataset is a synthetic dataset and is available from the website of NASA website.
Many studies used this dataset for HSI processing [38,39]. The spatial resolution of the LCVF
image is 20 m per pixel, and the spectral resolution of the image is 5 nm, with 224 spectral
channels in wavelengths ranging from 370 to 2510 nm. An area of 200× 200 pixels is used for the
experiments, as shown in Figure 2a, including red oxidized basaltic cinders, rhyolite, playa (dry
lakebed), shade, and vegetation. We implant the alunite spectrum, which is obtained from the U.S.
Geological Survey (USGS) digital spectral library, into the image for simulating target detection
in the considered scene. Figure 2b shows corresponding locations of the implanted target panels.
The added target panels have the same size, i.e., two pixels for each target panel, and the detailed
coordinates of all 30 target pixels are given in Table 1. In this table, all the implanted target pixels
are mixed pixels, and each spectrum x of the HSI is mixed with the pure prior target spectrum
t and the original background spectra b by the following equation: x = pt + (1− p)b, where p
is the implanted fraction, which varies from 10% to 50%, as indicated in Table 1. The adopted
pure target spectrum and some representative background samples spectra (denoted as A to
H) are shown in Figure 2c, and the locations of the background samples given in Figure 2c are
highlighted in Figure 2d.
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Table 1. Details of the implanted target panels for the AVIRIS LCVF dataset. 

Color of Target Panel Sample Index Line Index Fraction 

 50 (75, 76) (100, 101) (125, 126) 10% 

 75 (75, 76) (100, 101) (125, 126) 20% 

 100 (75, 76) (100, 101) (125, 126) 30% 

 125 (75, 76) (100, 101) (125, 126) 40% 

 150 (75, 76) (100, 101) (125, 126) 50% 

(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 
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Figure 2. AVIRIS LCVF dataset for the experiment. (a) Image scene; (b) Implanted target locations in
the image; (c) Implanted pure target spectrum and some representative background samples spectra;
(d) Locations of the background samples given in (c).

Table 1. Details of the implanted target panels for the AVIRIS LCVF dataset.

Color of Target Panel Sample Index Line Index Fraction
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 

CA, USA, was recorded by the AVIRIS sensor, as shown in Figure 3a [32]. The spatial resolution 

of this image is 3.5 m per pixel. The image has 224 spectral channels in wavelengths ranging 

from 370 to 2510 nm. A total of 189 bands are used in the experiments after removing the bands 
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 

CA, USA, was recorded by the AVIRIS sensor, as shown in Figure 3a [32]. The spatial resolution 

of this image is 3.5 m per pixel. The image has 224 spectral channels in wavelengths ranging 

from 370 to 2510 nm. A total of 189 bands are used in the experiments after removing the bands 

that correspond to the water absorption regions, low-signal noise ratio (SNR), and bad bands 

(1–6, 33–35, 97, 107–113, 153–166, and 221–224). An area of 100 100  pixels is used for the 
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 

CA, USA, was recorded by the AVIRIS sensor, as shown in Figure 3a [32]. The spatial resolution 
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego, 

CA, USA, was recorded by the AVIRIS sensor, as shown in Figure 3a [32]. The spatial resolution 
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(2) AVIRIS San Diego airport dataset: This image capturing an airport in the region of San Diego,
CA, USA, was recorded by the AVIRIS sensor, as shown in Figure 3a [40]. The spatial resolution
of this image is 3.5 m per pixel. The image has 224 spectral channels in wavelengths ranging from
370 to 2510 nm. A total of 189 bands are used in the experiments after removing the bands that
correspond to the water absorption regions, low-signal noise ratio (SNR), and bad bands (1–6,
33–35, 97, 107–113, 153–166, and 221–224). An area of 100× 100 pixels is used for the experiments,
including roofs, bare soil, grass, road, airstrip, and shadow, which contains more complicated
background land-cover classes. There are three airplanes in the image denoted as the targets of
interest, which consist of 58 target pixels, and are denoted with the white target mask in Figure 3b.
Figure 3c shows the spectra of mean target pixels and some representative background samples.
We select the target spectra of the centers of airplanes as a priori target spectra, and we randomly
select eight background spectra as the background samples.
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Figure 3. AVIRIS San Diego airport dataset for the experiment. (a) Image scene; (b) The true locations
of the targets; (c) Spectra of mean target pixels and some representative background samples.

(3) HYDICE urban dataset: This image is a Hyperspectral Digital Imagery Collection Experiment
(HYDICE) airborne sensor dataset, sponsored by the U.S. Navy Space and Warfare Systems
Command, covering a suburban residential area [41,42], as illustrated in Figure 4a. The scene
mainly covers grass fields with some forest, and the rest of the scene is mixed with a parking
lot with some vehicles, a residential area, and a roadway where some vehicles exist. The spatial
resolution of this image is approximately 3 m, and the spectral resolution of the image is about
10 nm. The image scene contains an area of 80× 100 pixels, with 210 spectral bands in wavelengths
ranging from 400 to 2500 nm. There are 17 pixels of desired targets, the vehicles, which are
contained in the parking lot and the road, as shown in Figure 4b. Besides, the spectra of
mean target pixels and some representative background samples are illustrated in Figure 4c.
We randomly select a target spectrum as a priori target spectrum, and seven background spectra
as the background samples.
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Figure 4. HYDICE urban dataset for the experiment. (a) Image scene; (b) The true locations of the
targets; (c) Spectra of mean target pixels and some representative background samples.

Taken together, we summary the details of experimental images acquired from different sensors,
illustrated in Table 2.

Table 2. Details of the experimental images acquired from different sensors.

Experimental Dataset LCVF Dataset San Diego Airport Dataset Urban Dataset

Sensor AVIRIS ACIRIS HYDICE
Spectral band 224 224 210

Spatial resolution 20 m 3.5 m 3 m
Wavelength 370–2510 nm 370–2510 nm 400–2500 nm
Image size 200× 200 100× 100 80× 100
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3.2. Parameter Analysis

In this subsection, we evaluate the effect of the parameters on the detection performance of the
proposed ITML-ALC algorithm. Similar to LMNN, NCA and ITML, the proposed algorithm also has
a trade-off parameter, i.e., γ, which can be tuned via threefold cross validation. However, according
to experimental studies, it can be observed that the AUCs of different γ values are relatively stable,
which inspired us to set γ = 1 for all the experiments, illustrated in Figure 5.
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Figure 5. The AUCs of the proposed ITML-ALC method with respect to parameter γ. (a) AVIRIS LCVF
dataset; (b) AVIRIS San Diego airport dataset; (c) HYDICE urban dataset.

3.3. Detection Results and Validation

In this subsection, the detection performance of the proposed ITML-ALC algorithm is evaluated
quantitatively by receiver operating characteristic (ROC) curves and target-background separation
maps [1,8]. ROC curves are widely used as a standard performance evaluation tool for target detection
applications, which can describe the relationship between the detection probability (the ratio of the
number of corrected-detected target pixels to the total number of target pixels in the image) and
false alarm rate (FAR, the ratio of the number of background pixels mistaken as targets to the total
number of pixels in the image) based on the ground truth. Obviously, for the same level of FAR,
the algorithm with the highest detection performs better, which locates further near the top left of the
coordinate plane. Target-background separation maps can intuitively show how the target pixels are
separated from the background ones. Generally speaking, good detector may highlight the targets
and suppress the background into a small range of values while distinguishing the targets. Moreover,
we can also consider the area under the ROC curve (AUC) to assess the accuracy, obtaining the average
behavior [43]. Meanwhile, we use the FAR under TDR = 100% to further evaluate the detection
performance [44].

For the AVIRIS LCVF dataset, the two-dimensional (2-D) detection maps and target detection test
statistic plots, being obtaining by the output value, of all the algorithms in comparison are shown in
Figure 6, in which the higher brightness implies that the probability of detecting the desired targets is
higher. As shown in Figure 6, OSP, ITML and ITML-ALC obtain a superior performance in background
suppression, while ITML and ITML-ALC can also obtain a superior performance in highlighting target
pixels. However, for ITML-ALC, the false alarm pixels are much fewer when the target locations of the
proposed algorithm are more obvious. Furthermore, the higher test statistic indicates a higher level
of probability that the desired target presents at a certain pixel, shown in Figure 6a–f. While, from
these plots it can be seen that the proposed ITML-ALC can suppress the background pixels to a low
and steady range. In general, for the proposed ITML-ALC algorithm, the background suppression
performance is outstanding, while all targets are successfully extracted.
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Figure 6. Detection maps and target detection test statistic plots of the AVIRIS LCVF dataset. (a) ACE;
(b) OSP; (c) LMNN; (d) NCA; (e) ITML; (f) ITML-ALC.

Figure 7 further provides the target detection ROC curves of all the reference algorithms in
log-scale. For all datasets, it can be observed that the ITML-ALC algorithm achieves superior detection
performance, since the 100% detection rate can be obtained when the FAR is rare (0–0.02), compared
with the other algorithms. Especially for the AVIRIS LCVF dataset, the FAR of ITML-ALC is nearly
equal to zero when the 100% detection rate can be obtained. For the AVIRIS San Diego airport dataset,
the ROC curve of ITML-ALC is always above those of the other detectors, besides, the ROC curves of
LMNN and NCA methods are away from the top left corner, which indicate they cannot detect all
target pixels within the reasonable FARs. For the HYDICE urban dataset, the ROC curve of ITML-ALC
lies under the curve of the NCA only in a very limited range at the beginning of the FAR. Besides this,
the ROC curve of NCA is relatively worse while ITML-ALC obtains best ROC curve when the FAR is
more than 3E-4.
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Figure 7. ROC curves of the different algorithms. (a) AVIRIS LCVF dataset; (b) AVIRIS San Diego
airport dataset; (c) HYDICE urban dataset.

According to ROC curves, we then show the AUC values and the FARs under 100% detection of
all algorithms for the three datasets in Figures 8 and 9, respectively. The AUC analysis shows that the
areas of the comparison algorithms are all less than the ITML-ALC algorithm for all three datasets.
The statistics of the FAR under 100% detection shows that the proposed ITML-ALC algorithm results
in the lowest FAR when all the target pixels have been detected. These two important evaluation
criteria further indicate that the ITML-ALC algorithm yields the best detection performance.

In order to better compare the separability of target and background, the separation diagrams are
shown in Figure 10. For the convenience of comparison, all detection results are normalized to [0–1],
where the lines at the top and bottom of each column are the extreme values. The red boxes represent
the distribution of the target pixels’ values, and the green ones represent the distribution of the
background pixels’ values. From Figure 10a, for the AVIRIS LCVF dataset, the gaps between the target
box and the background box for ACE, ITML, and ITML-ALC are very obvious, but ITML-ALC can
suppress the background information to the smallest range. For the AVIRIS San Diego airport dataset,
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as shown in Figure 10b, the ITML-ALC algorithm can separate target and background effectively,
and the background information can be enclosed in a very small range compared with the other
algorithms. For the HYDICE urban dataset, as shown in Figure 10c, it demonstrates that the ITML-ALC
algorithm has a more advanced performance when compared with the other algorithms. From these
results, we can conclude that the proposed ITML-ALC algorithm gives a superior performance relative
to distinguishing target from background.
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Figure 8. The AUCs of the different algorithms. (a) AVIRIS LCVF dataset; (b) AVIRIS San Diego airport
dataset; (c) HYDICE urban dataset.
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Figure 9. The FARs under 100% detection of the different algorithms. (a) AVIRIS LCVF dataset; (b)
AVIRIS San Diego airport dataset; (c) HYDICE urban dataset.
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Figure 10. Target-background separation maps of the different algorithms. (a) AVIRIS LCVF dataset;
(b) AVIRIS San Diego airport dataset; (c) HYDICE urban dataset.

4. Discussion

In this paper, the proposed ITML-ALC algorithm is employed to transform the original feature
space into the metric feature space by introducing adaptively local constraints to the ITML model.
According to the experimental results presented in the previous section, we can observe that the
ITML-ALC algorithm has the better ability of suppressing background pixels and extracting the
target ones.
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(1) As metric learning-based methods, LMNN and NCA methods do not perform well (shown in
Figure 7), and the cause may be that LMNN and NCA methods both have problems with handling
high-dimensional data and are sensitive to the selection of initial points, leading to inability to
achieve the optimal value if the parameters are not selected appropriately. To date, only a few
researchers use distance metric learning for target detection. For example, reference [15] adopts
LMNN and NCA as the comparison algorithms to prove the effectiveness of proposed supervised
metric learning (SML) algorithm for the AVIRIS LCVF dataset. Though the implanted target
locations of reference [15] are a little different compared to this paper, LMNN and NCA have poor
similarity performance in both papers. When the value of FAR is equal to 10× 10−4, the detection
probabilities of LMNN in reference [15] and this paper are both about 80%. Similarly, in the two
articles, the detection probability of NCA reaches 100% when the FAR is about 1, respectively.
Moreover, although SML algorithm can recognize target pixels easily, the background pixels
cannot be suppressed to an even lower value, compared with the ITML-ALC algorithm. This
could be because that SML only use a similarity propagation constraint to simultaneously link
target pixels and background ones, while ITML-ALC adopts adaptively local constraints to
separate similar and dissimilar point-pairs.

(2) For the HYDICE urban dataset, the FAR is reduced to a 10−2 level when the detection probability
of ACE is at 80% in this paper, while FAR is reduced to a 10−2 level when the detection probability
of ACE is at 70% in the reference [45]. Though they use different prior information, the ACE
results of the different articles achieve a slightly different performance. Niu et al. [45] propose
an adaptive weighted learning method (AWLM) using a self-completed background dictionary
(SCBD) to extract the accurate target spectrum for hyperspectral target detection. When the FAR
is reduced to 10 × 10−3, the detection probability of the proposed algorithm in reference [45]
(named AWLM_SCBD+ACE) is at nearly 90%, while the detection probability of ITML-ALC
in this paper is also at 90%. However, ITML-ALC only has trade-off parameter to be adjusted,
but AWLM_SCBD+ACE additional parameters, i.e., κ and τ of adaptive weights, which can be
used to suppress the influence of irrelevant pixels.

(3) In addition, we compare ITML-ALC with MMML and RFML, which are previously proposed
in [27] and [28], respectively. Figure 11 shows the corresponding ROC curves for the AVIRIS
San Diego airport dataset. It can be found that ITML-ALC has similar performance when the
FAR is less than 10 × 10−3, and then ITML-ALC outperforms other methods. Maybe because
ITML-ALC can shrink the distances between samples of similar pairs and expand the distances
between samples of dissimilar pairs compared with MMML and RFML.
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5. Conclusions

In this paper, the adaptive information-theoretic metric learning with local constraints (ITML-ALC)
algorithm has been proposed. Based on limited numbers of prior samples, the ITML-ALC algorithm
constructs an efficient metric learning-based method without certain assumptions. Adaptively local
constraints are then introduced to indicate the discriminative information for separating similar and
dissimilar point-pairs with fewer parameters to be adjusted. By combining the ITML framework and
adaptively local constraints, decision can be made by considering both the threshold and the changes
between the distances before and after metric learning.

Extensive experiments, which are carried on three hyperspectral datasets for target detection,
confirm the superior performance of the proposed ITML-ALC algorithm, which can obviously separate
target samples from background ones. In general, the ITML-ALC algorithm presents a better detection
performance and separability than the other classical target detectors.
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