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Abstract: Performance of the Origins, Spectral Interpretation, Resource Identification, Security–Regolith
Explorer (OSIRIS-REx) Visible and InfraRed Spectrometer (OVIRS) instrument was validated,
showing that it met all science requirements during extensive thermal vacuum ground testing.
Preliminary instrument radiometric calibration coefficients and wavelength mapping were also
determined before instrument delivery and launch using NIST-traceable sources. One year after launch,
Earth flyby data were used to refine the wavelength map by comparing OVIRS spectra with atmospheric
models. Near-simultaneous data from other Earth-orbiting satellites were used to cross-calibrate the
OVIRS absolute radiometric response, particularly at visible wavelengths. Trending data from internal
calibration sources and the Sun show that instrument radiometric performance has been stable to better
than 1% in the 18 months since launch.
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1. Introduction

The Origins, Spectral Interpretation, Resource Identification, Security–Regolith Explorer
(OSIRIS-REx) Visible and InfraRed Spectrometer (OVIRS) is a point spectrometer with a circular
4-mrad field of view, as shown in Figure 1. OVIRS is designed to obtain spectra of OSIRIS-REx mission
target asteroid (101955) Bennu from 0.4 to 4.3 microns to quantify space weathering, constrain surface
mineralogy, and measure contributions to the Yarkovsky effect [1]. To achieve these science objectives,
OVIRS has a required in-flight radiometric stability of <2.5% from 0.4 to 2.0 µm with a signal-to-noise
ratio (SNR) of >50 from 0.4 to 4 µm for a 3% solar reflectance target. As the expected Bennu spectral
features are broad, the required spectral resolution is 3 to 5 nm at visible wavelengths and 7 to 20 nm
at IR wavelengths. OVIRS spectra are acquired using Linear Variable Filters (LVFs) over a Teledyne
Hawaii-1RG (H1RG) detector [2,3]. The wavelength span is split into five separate LVF segments with
variable spectral resolution. For each filter, 512 columns are read out over 32-row pre-defined regions
of interest. Individual frames may be read out in full-frame mode or in ‘superpixel’ (SP) summing
mode. A full frame is 512 × 180 pixels, which includes 20 rows of dark pixels. There are ~64 pixels
within a spectral resolution element (two columns) to improve the SNR, and data may be summed
onboard, after known bad pixels are removed, to reduce data volume. The standard science mode
sums all data in 8-pixel averages in each column to reduce the frame to 512 × 23 pixels; it is possible to
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apply less onboard summing. In that case, data are subsequently summed during ground processing,
after outliers are rejected to improve the signal to noise.

OVIRS employs two internal sources and a solar calibration port to monitor radiometric performance
in flight [3]. Cruise calibration and trending activities occur about every six months, as well as during
the Earth Gravity Assist (EGA) one year after launch. Here, we describe ground calibration using
NIST-traceable sources, as well as the first in-flight calibration activities and instrument performance.
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Figure 1. (a) Mechanical drawing of the Origins, Spectral Interpretation, Resource Identification,
Security–Regolith Explorer (OSIRIS-REx) Visible and Infrared Spectrometer (OVIRS) instrument with
external features labeled. (b) Internal optical elements and light path (orange) (both reproduced from
Reuter et al. (2018)). Light enters either the primary aperture (green) or the solar calibrator aperture
(purple), which scatters multiple light beams off a nickel mesh and into the main light path. Not visible
are the internal filament sources, which are adjacent to the secondary mirror.

2. Materials and Methods

The initial OVIRS performance was predicted using component-level testing, including detector
response, filter transmissivity, and mirror reflectivity. Because OVIRS operates in the near-IR,
its detector must be cooled to reduce background signal, and it includes radiators for passive cooling.
The instrument was tested in a LN2-cooled thermal vacuum chamber (TVAC) to assess system-level
performance. During TVAC testing, a helium cryo-refrigerator with a cold finger to the second
stage radiator provided additional cooling for the detector to test performance over the full expected
operating temperature range (90–105 K), with limited additional data acquired at higher temperatures.
The instrument has no thermal stability requirements, but at temperatures above ≈135 K, the detector
saturates with hot pixels.

Instrument performance on the ground was measured with an in-chamber system designed
for radiometric and geometric testing [4]. This system includes a NIST-traceable infrared blackbody
flood source with 0.992 emissivity from 180 K to 360 K over a uniform field. A separate visible
integrating sphere provides calibrated output over the 0.5-to-1.6-µm wavelength range. An additional
IR blackbody source (up to 500 K) provides a collimated beam for angular testing with a variety of
beam sizes. Finally, line sources (laser, monochromator, and arc lamps) are available using an external
chamber feed coupled to the collimated light path for wavelength calibration, spectral resolution,
and line width evaluation.

In flight, detailed instrument performance is monitored with internal source exposures throughout
a science sequence and with solar exposures every 6 months. In September 2017, data for the Earth and
Moon were acquired at set intervals after closest approach, covering multiple ranges and phase angles
(Table 1) and included spacecraft scans in both instrument axes, as well as distant point-and-stare
mosaics. As outlined below, the Earth flyby data were used to check the wavelength and radiometric
calibration, as well as to confirm the boresight pointing direction.
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Table 1. Earth Gravity Assist (EGA) data.

Sequence
(Target)

Min. Range to
Target (106 km) Phase Angle (◦) Apparent Diameter (mrad) Data Acquired

22 September
(Earth) 0.15 20-24 84.9 N-S, E-W scans,

8-mrad step between scans
25 September

(Earth) 1.37 32 9.3 N-S, E-W scans,
8-mrad step between scans

25 September
(Moon) 1.17 42 3.0 N-S, E-W scans,

2-mrad step between scans
29 September

(Earth) 2.90 33 4.4 N-S, E-W scans,
4-mrad step between scans

2 October
(Earth) 5.09 35 2.5 4 × 4 mosaic,

1.8-mrad step between positions

3. Results

3.1. Wavelength Calibration

Initial wavelength calibration was based on vendor (JDS Uniphase, now Viavi Solutions)–supplied
measurements of the filter transmission, resolving power, and wavelengths (Table 2). A quadratic fit of
the measurements in each filter segment was used to assign initial wavelengths. At the instrument
level, measurements were acquired using external (to the chamber) sources to provide distinct line
sources. First, a monochromator was used with an uncalibrated IR source to provide multiple orders
of light over the full spectral region. The monochromator was also stepped in small wavelength
increments (8 to 12 nm) to determine line width, using Gaussian line fits. The monochromator data
were supplemented with Hg and Kr/Ar arc lamps and visible lasers at several wavelengths for quick
checks of wavelength vs. detector pixel location. Short wavelength measurements were challenging
due to blockage by the chamber window and reflectance losses in the coupling system optics, several of
which are gold-coated. Thus, wavelengths below 0.5 µm could not be fully characterized.

Flight data from the Earth flyby provided an absolute check on wavelengths below ~2.3 µm,
where sufficient signal and spectral features could be identified. Atmospheric lines in these spectra
were compared with their known wavelengths using a model atmosphere from MODTRAN [5]. Fits to
identified lines were used to adjust the spectral coverage on a filter-by-filter basis. The measured
short wavelength adjustments were then bootstrapped to calibrate the TVAC monochromator data
and adjust the longer wavelength values. Final wavelength values for each LVF segment are shown
in Table 2. The filters have a very slight temperature dependence, 5 ppm/K for LVFs 1a, 1b, 3, and 4
and 50 ppm for LVF2, resulting in a negligible shift over the OVIRS operating temperatures (~0.5 nm,
much smaller than the required spectral resolution of 7 to 12 nm in this filter).

Table 2. Wavelengths in each filter segment.

Filter Rows (CDS Array)

JDSU Supplied In Flight Measurement Resolving Power *
(λ/∆λ)

Start λ (µm)
Column 1

End λ (µm)
Column 512

Start λ (µm)
Column 1

End λ (µm)
Column 512 Required JDSU

Dark 1 to 20 - - - -
1b 21 to 52 1.086 0.654 1.090 0.652 >125 136–156

4 53 to 84 4.304 2.878 4.284 2.850 >350
>200

360–385
330–360

3 85 to 116 2.998 1.082 2.936 1.764 >200 240–264
2 117 to 148 1.792 1.076 1.801 1.075 >150 177–195

1a 149 to 180 0.658 0.397 0.670 0.392 >125 139–176

* For LVF4, Rp > 350 is required from 2.9 to 3.6 µm, and > 200 from 3.6 to 4.3 µm.
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3.2. Radiometric Calibration

Detector noise response is linear with temperature, providing an overall background level [3].
Above ~135 K, no signals can be detected due to detector saturation (~60,000 counts). In addition to
the background level, some pixels are permanently inoperable or saturated, while others have poor
response at higher temperatures, resulting in a temperature-dependent bad-pixel map (BPM). In flight,
an onboard BPM is used to exclude these pixels before SP summing. Ideally, different BPMs should be
used for the expected detector operating temperature; a cold BPM excludes fewer pixels and could
corrupt SP sums if the detector is warm, whereas a warm BPM can exclude good pixels if the detector
is cold. In flight, the detector temperatures have consistently been near 105 K, with heating during
expected events (such as Earth in the field of view of the passive thermal radiator) up to 115 K and
higher. The most conservative 115 K BPM was chosen for use during EGA and beyond, retaining the
option to do less onboard summing. Local deep space observations obtained in conjunction with each
science observation provide the background level for later removal.

During ground testing, several of the NIST sources were used to calibrate instrument response to
an absolute radiance. First, the IR flood source was used to produce blackbody curves at temperatures
of 320 K, 340 K, and 360 K; data at 360 K were saturated at long wavelengths. After background
frame subtraction, the calculated Planck blackbody radiance curves at these temperatures were
used to provide a radiance conversion from measured counts/s to W/cm2/sr/µm for wavelengths
greater than 2.5 µm. Similarly, for wavelengths from 0.4 to 1.6 µm, the visible integrating sphere
included a Labsphere-provided absolutely calibrated response curve, though with coarse spectral
sampling. Many integration times and power settings were used to provide adequate dynamic range
at most wavelengths, though the signal was low below 0.5 µm and above 1.5 µm due to optical fiber
absorption. Additionally, the optical fibers had OH absorption features and suffered from an epoxy
failure that blackened the fibers that potentially affected the source signal. Thus, ground calibration
below 1.5 µm was suspect and required flight data for validation. The calibrated chamber sources
did not allow for proper validation of the calibration between 1.5 and 2.5 µm, and the predicted
instrument response (built up from component-level tests) was used at these wavelengths for the final
ground characterization.

In addition to the radiometric coefficients, the IR flood source was used to characterize observed
out-of-band leakage at short wavelengths. After background subtraction and radiance calibration, the
320 K, 340 K and 360 K blackbody curves were converted into photon radiance units. To estimate the
out-of-band signal, we integrated under the photon radiance curve in LVF4 (2.85 to 4.28 µm) at each
temperature using the trapezoidal rule. Blackbody radiances were substituted for the saturated portion
of the 360 K curve (above 3.8 µm). A linear fit was then performed to correlate each short wavelength
pixel’s out-of-band response with the integrated long-wavelength photon radiance. This value was
then subtracted to correct the calibrated radiance spectrum. Although it would be more precise to
perform a fit to each filter segment after measuring a variety of known spectral shapes and powers,
this was not possible with the available chamber sources. However, the out-of-band effect is small
(<0.8%) and is expected only for the hottest asteroid surfaces; these should be most similar to the
blackbody curves at 360 K. Thus, the final calibration provides a pixel-by-pixel conversion for all
wavelengths from counts/s to W/cm2/sr/µm:

Ii,j = Ri,j * (DNi,j − Bi,j)/t − S * OBi,j * Ei,j

where I is corrected radiance, DN is the measured counts, B is the background signal, t is exposure
time, R is the radiometric coefficient, S is the integrated long-wavelength photon radiance, OB is
the out-of-band coefficient, and E is the wavelength-dependent photon energy for each pixel (i,j).
Only wavelengths < 2.2 µm have an OB correction (the value is set to zero otherwise).

During the EGA, thousands of Earth spectra were obtained, as presented in Table 1, primarily over the
ocean, but also over western North America and East Asia, with varying cloud cover. Near-simultaneous
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data from several Earth-viewing (EV) imagers—Earth Observing System Aqua/Moderate Resolution
Imaging Spectroradiometer (MODIS), Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS),
and DSCOVR/Earth Polychromatic Imaging Camera (EPIC)—allowed for a cross-platform radiometry
check over multiple overlapping wavelength bands [6–8]. These EV imagers are narrowband instruments;
therefore, each measurement corresponds to a spectral channel which is a near-box filter over a certain
wavelength range. The channels are calibrated using either radiance (IR) or reflectance (VIS, SWIR) space
as appropriate, with typical uncertainties of 2% or better [6–8]. For each of the EV imager channels,
we reported a mean reflectance (or radiance), standard deviation, measurement count, and measurement
histogram on a 0.1◦ resolution lat-lon grid. The histograms were included in order to provide an estimate
of scene homogeneity that is more accurate than a standard deviation. As there are many OVIRS spectral
elements within a single EV imager bandpass, OVIRS data had to be converted into an effective EV
instrument measurement by applying the EV channel spectral response function to the OVIRS spectrum.
The resultant effective radiance was then converted to radiance (Reff) or reflectance (dividing I by solar
flux) for the particular EV channel by integrating over the bandpass:

Re f f =

∫ λ2
λ1 I(λ) ∗ SRFEV(λ)dλ∫ λ2

λ1 SRFEV(λ)dλ

where SRFEV is the spectral response function for the EV channel. To correct the OVIRS data, EV data
were selected to be close in zenith angle and time, and the OVIRS effective radiance was ratioed to that
of the corresponding EV channel. As the OVIRS data were not simultaneous with every EV platform,
and there could be residual pointing uncertainties, we focused on clear regions over the ocean to avoid
variable cloud cover. We then fit a curve to all the data from the satellites within each of the LVFs
(except LVF4 where there are no bands with sufficient signal) and applied that fit as a correction to our
radiometric coefficients. It was necessary to fix the values at the ends of each filter segment to ensure
the radiances matched.

Cross-calibrated Earth spectra are shown in Figure 2 against MODTRAN models [5].
The low-reflectance spectrum (blue line) is a reasonable match to a MODTRAN model with no clouds
and 11% surface reflectance (green line). The addition of 40% cumulus cloud cover to the MODTRAN
model (red line) approximately matches a brighter OVIRS spectrum (black line). The mismatch at the
shortest wavelengths results from the fact that the EV imagers have discrete broad passbands relative to
the higher spectral resolution of OVIRS, and there were no EV satellite data below ~400 nm. Even a second-
or third-order polynomial fit cannot perfectly correct the OVIRS data, as the EV data set did not adequately
sample the full wavelength-dependent structure in each OVIRS LVF; we used 11 bands in LVF1a, ten in
LVF1b, five in LVF2, and two in LVF3. Further examination of other EV and OVIRS flight data, including
solar data, will be used to improve the few remaining mismatches in the future.
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Figure 2. Calibrated OVIRS Earth spectra acquired near the OSIRIS-REx closest approach. The blue
line represents a cloud-free view over the ocean, and the black line is a nearby footprint that contained
cloud cover. Model atmospheres from MODTRAN (green and red lines) are shown for comparison.

3.3. Radiometric Stability and Instrument Performance

A full set of calibrations are performed about every six months in cruise, as well as around critical
activities, to monitor instrument performance in flight. OVIRS uses three in-flight calibration sources:
internal blackbodies, internal tungsten lamps, and a solar calibration port. The solar calibration port is
designed to approximate the signal level from the asteroid surface, scattering <3% of the solar light
into the main optical path. Illuminating the solar calibration port requires slewing the spacecraft, so it
is used less frequently to check absolute radiometric performance. The design of the solar calibrator,
and separate light path, forms a non-uniform pattern at the detector, and thus it cannot be directly
compared to a solar spectrum; this transfer function may be analyzed in the future.

The two internal sources allow for checks of relative performance changes throughout a science
observation, as well as long-term trending. Each source is located at a different position along
the optical path and has a different spectral response. This distribution allows some diagnostic
capability for determining where a potential change may be occurring in the instrument, including the
sources themselves. The internal lamps and blackbody sources are activated frequently throughout an
observation sequence, when relative radiometric monitoring is needed.

Data acquired after launch were compared with ground data to assess post-launch performance.
The only sources useful for trending from TVAC are the internal lamps, as the blackbodies require
burn-in after launch and the Sun was not observed before launch. To date, filament performance is
identical to ground data, indicating no changes post-launch. After launch, the blackbody burn-in was
completed, as well as a check of the solar port pointing direction. Data acquired from these sources are
now also monitored for stability and show no radiometric changes over time.

As mentioned above, OVIRS has a requirement for radiometric stability (±2.5%) and SNR
performance (>50). Instrument radiometric stability has been stable to better than ±1% from
TVAC through EGA, based on filament measurements, as can be seen in Figure 3. Figure 3 also
shows an example of the measured flight radiometric stability from solar calibrations. As the solar
spectra approximate the Bennu signal, the measured SNR of >100 also exceeds the requirement at
all wavelengths.
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(b) filaments and (c) solar spectra from observations taken at launch + 6 and + 18 months show stability
to within ±1% (dashed lines show the ±2.5% requirement). (d) The fractional root mean square (RMS)
within the L + 18-month solar spectra indicate that the signal to noise ratio is ~100, better than the
required SNR = 50 (dashed line).

4. Conclusions

OVIRS radiometric calibration coefficients and wavelength maps were determined before
instrument delivery and launch. Internal filament sources have shown no changes post-launch
and radiometric stability is ±1% in the 18 months since launch, exceeding the ±2.5% requirement.
Solar data show that the SNR response also exceeds the requirement by a factor of two. Flight spectra
obtained during the September 2017 Earth flyby were used to refine the wavelength map, and data
acquired by other Earth-orbiting satellites were used to cross-calibrate the OVIRS absolute radiometric
response, particularly below 2 µm. Further investigation of flight data will improve the calibration
coefficients in the future.
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