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Abstract: The utility of remote sensing data in crop yield modeling has typically been evaluated at
the regional or state level using coarse resolution (>250 m) data. The use of medium resolution data
(10–100 m) for yield estimation at field scales has been limited due to the low temporal sampling
frequency characteristics of these sensors. Temporal sampling at a medium resolution can be
significantly improved, however, when multiple remote sensing data sources are used in combination.
Furthermore, data fusion approaches have been developed to blend data from different spatial and
temporal resolutions. This paper investigates the impacts of improved temporal sampling afforded by
multi-source datasets on our ability to explain spatial and temporal variability in crop yields in central
Iowa (part of the U.S. Corn Belt). Several metrics derived from vegetation index (VI) time-series
were evaluated using Landsat-MODIS fused data from 2001 to 2015 and Landsat-Sentinel2-MODIS
fused data from 2016 and 2017. The fused data explained the yield variability better, with a higher
coefficient of determination (R2) and a smaller relative mean absolute error than using a single data
source alone. In this study area, the best period for the yield prediction for corn and soybean was
during the middle of the growing season from day 192 to 236 (early July to late August, 1–3 months
before harvest). These findings emphasize the importance of high temporal and spatial resolution
remote sensing data in agricultural applications.
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1. Introduction

Accurate estimation of crop yields before harvest is critical for sustaining agricultural markets
and ensuring food security. Over the past several decades, ground-based remote sensing data have
been demonstrated as a useful tool for estimating crop yield [1–4]. In the early 1980s, Tucker et al. [2]
reported that the normalized difference vegetation index (NDVI) for a five-week period from stem
elongation to anthesis explained about 64 percent of the grain yield variation of wheat. Pinter et al. [3]
summed the NDVI for wheat and barley from heading to full senescence, and found that the integral of
NDVI explains 88 percent of yield variation. Daughtry et al. [3] found that a single observation of leaf
area index (LAI) or greenness has limited value in predicting corn yield, but the accumulated absorbed
solar radiation over the growing season explained approximately 65 percent of the variation in corn
yields. Wiegand et al. [5] concluded that yields could be predicted through spectral observations of crop
canopies, because high yields require sufficient crop canopy development to maximize the interception
of incident insolation. Wiegand et al. [5] further demonstrated that the relationships between
crop yields and vegetation indices are strongest through the early grain filling stage; the senesced
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or photosynthetically inactive tissues that develop after the grain filling phase can degrade the
relationship. Phytomass production is proportional to the cumulative absorbed photosynthetically
active radiation (APAR) when nutrients and water are not limiting [4–6]. The fraction of incoming
PAR that is absorbed by the plant canopies can be estimated by remotely sensed multispectral data,
and phytomass production can be estimated as a function of cumulative APAR. Although these pioneer
studies were typically focused on specific crops and were conducted over small fields, they generally
covered the major crop development phases. Those early field experiments demonstrate the importance
of frequent remote sensing observations for estimating crop yields.

In the recent era of rich satellite data availability, numerous studies have been published using
satellite imagery to estimate crop yields. Many of these used empirical relationships between yields and
various vegetation indices (VIs) [7–9]. The empirical approach builds a relationship between ground
yield survey samples and the remote sensing derived parameters, and then applies the relationship
to remote sensing imagery to map yield over the entire area. VI-based metrics (e.g., maximum VI,
integral VI from the entire growing season or for a specific growth period) have been used for
estimating crop yield (see review by Funk and Budde [8]). Although an empirical model built for
a specific region has limited applicability to different areas or years [9,10], the empirical method is
simple and effective for the local region if ground survey samples are representative and accurate.
In the early stage, Advanced Very High Resolution Radiometer (AVHRR) sensors were the main data
sources used for yield estimation [11–21]. Rasmussen [14,15] integrated the NDVI from AVHHR to
build a yield regression model for operational uses. Wall et al. [21] demonstrated that NDVI based on
AVHRR data from 1987 to 2002 predicted wheat yield four weeks earlier than a model that used the
cumulative moisture index. Since 2000, Moderate Resolution Imaging Spectroradiometer (MODIS) data
products have been widely used in forecasting crop yield [7–9,22–31]. Becker-Reshef et al. [26] used the
maximum NDVI from MODIS and built a generalized regression model for forecasting winter wheat
yields. Franch et al. [28] further improved this approach by adjusting NDVI before the peak date using
growing degree day (GDD) information for earlier prediction. This approach has been investigated
by the Group on Earth Observations Global Agricultural Monitoring Program (GEOGLAM [32]).
Zhang and Zhang [29] used greenness metrics derived from daily two-band enhanced vegetation
index (EVI2) time series from AVHRR (1981–1999) and MODIS (2000–2013) sensors, and built a yield
prediction model for cereal at 0.05 degrees (~5 km) resolution globally.

Routine daily satellite observations would capture the entire crop development phase and enable
the evaluation of crop yield variability. The daily observations currently available, however, are coarse
(a few hundred meters and coarser). Application of coarse spatial resolution imagery to a low
intensity agricultural area or an area with small field size may have limitations [22,29]. In contrast,
Landsat satellites provide routine observations at 30 m spatial resolution every 16 days, and they
have been used for the routine mapping of crop types and area [33]. Landsat data have also been
considered for crop yield estimation, but to date, generally with a focus only on relatively small
regions due to data volume and computational demands [9,23,34–37]. Recently, however, large area
mapping with Landsat has been enabled using cloud computing technologies [30,38,39]. Success in
mapping crop yields at the field scale sometimes depends on the frequency of clear-sky Landsat data
availability [7]. Azzari et al. [30] compared results from MODIS and Landsat, and found that the
relative benefit of the temporal resolution of MODIS and the spatial resolution of Landsat depends
on location. In the United States and India, correlations are consistently high for both Landsat and
MODIS. In Zambia, clear Landsat observations are limited due to high cloud contamination during
the growing season. Even though the area is very heterogeneous, the benefit of temporal frequency
from MODIS outperformed the benefit of the fine spatial resolution from Landsat [30].

In these previous studies, the remote sensing data used for yield estimation have generally
come from a single data source, which may have limitations in either temporal or spatial resolution.
However, by effectively combining information from multiple Landsat- and MODIS-like satellites,
these limitations can be mitigated [9]. For example, a recent study by Guan et al. [40] used a
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Landsat–MODIS data fusion approach to improve paddy rice yield estimation in Vietnam. As of
today, Landsat-7 is still in operation, even though it has suffered a failure in scan-line-correction
since May 2003. Landsat-8 has been operational since 2013 [41]. Together, they provide a spatial
resolution of 30 m with a combined 8-day repeat cycle. Two recently launched Sentinel-2 satellites
(A and B) provide global coverage every five days at a 10–60 m resolution, greatly improving the
frequency of observation at this critical sub-field scale [42]. Skakun et al. [43] combined Landsat-8 and
Sentinel-2A data for winter wheat yield assessment. Both Landsat and Sentinel-2 data are now freely
available. Even though a 10–60 m resolution is good enough for the most of agricultural regions in the
U.S., other regions dominated by smallholder agricultural systems may need even finer resolution
imagery [44].

In addition, fusion of medium resolution periodic Landsat data with near daily moderate
resolution MODIS data provides a means for further improving the temporal sampling of the imaging
data stream for agricultural applications [45], particularly in regions that are frequently cloud covered.
Spatiotemporal data fusion aims at blending data from low temporal but high spatial resolution
(e.g., Landsat) with high temporal but low spatial resolution (e.g., MODIS) data. Many spatiotemporal
data fusion approaches have been developed in recent years, with a comprehensive review given by
Zhu et al. [46]. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [47] is one of
the earliest developments of such a model. The STARFM approach uses Landsat–MODIS image pairs
acquired from the same day to predict Landsat-like images using a MODIS image from the prediction
day. STARFM can produce daily Landsat–MODIS images at Landsat spatial resolution and has been
used in numerous applications that require high spatiotemporal data (see reviews in [45,46]).

This paper extends on our previous work on mapping crop phenology using the Landsat–MODIS
data fusion approach [48]. The main objective of this paper is to assess the value to crop yield estimation
of a high temporal and spatial resolution remote sensing VI time-series developed from multiple
satellite data sources. Our hypothesis is that daily fused 30 m resolution VI time-series will provide
improved metrics for crop yield estimation in comparison with single-sensor approaches by better
capturing the timing and biomass conditions of phenologically critical stages of crop development.
Specifically, we aim to answer the following questions:

• Do high spatiotemporal resolution data (fused Landsat/Sentinel-2 MODIS) characterize crop
yield variability better than using Landsat, Sentinel-2, or MODIS data alone?

• What is the optimal time window for crop yield prediction?
• Which vegetation index (NDVI or EVI2, both of which can be computed using data fusion from the

250 m MODIS surface reflectance in red and near infrared bands) better explains the variability in
crop yield? Which time-series metric (maximum or cumulative VI) better explains the variability
in crop yield?

To answer these questions, we analyzed temporal variability in corn and soybean yields over a
study area in central Iowa (part of the U.S. Corn Belt) using long-term fused Landsat–MODIS surface
reflectance (SR) data from 2001–2015 (daily at a 30 m spatial resolution), and a shorter-term analysis
(2016–2017) fusing a new harmonized Landsat8–Sentinel2 surface reflectance dataset with MODIS.

2. Materials

2.1. Study Area

Our long-term temporal analyses were focused in central Iowa, USA—a rain-fed agricultural
area in the U.S. Corn Belt. Annual precipitation in central Iowa over the study period (2001–2015)
ranged from 633 mm to 1238 mm [49]. Precipitation for the growing season (from April to October)
was less than 500 mm for 2012, and above 1000 mm for 2008 and 2010. The major crops were corn and
soybean, typically rotated in consecutive years. Figure 1 shows the study area overlaid with the target
Landsat scene (WRS-2 path 26 and row 31) and Sentinel-2 tile (15TVG). The Landsat scene covers
major portions of 20 counties in central Iowa, while the Sentinel-2 tile covers most of eight counties.
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Figure 1. Study site in central Iowa (a) overlaid with the Landsat scene (path 26 and row 31, near 
infrared-red–green composite) containing the main portions of 20 counties (white polygons) and a 
Sentinel-2 tile (15TVG, yellow rectangle). The red box shows the zoom-in window for Figure 5. The 
yellow star shows the flux tower site. 

2.2. Satellite Datasets 

Studies were conducted using two datasets from 2001–2017. The first dataset used the Landsat–
MODIS data fusion approach from 2001–2015. The second dataset additionally incorporated Sentinel-
2 data for 2016–2017 from the Harmonized Landsat and Sentinel-2 (HLS) project into the data fusion 
process. The MODIS data products from 2001 to 2017 were downloaded from the NASA EarthData 
website [50]. Landsat surface reflectances from 2001 to 2015 were ordered from the U.S. Geological 
Survey (USGS) Earth Resources Observation and Science (EROS) Center. HLS surface reflectances 
from 2016–2017 were downloaded from the NASA Goddard Space Flight Center [51]. The yearly 
NASS Cropland Data Layers (CDL) from 2001–2017 were downloaded from the CropScape portal 
[52]. The processing of these datasets is described further in the following sections. 

2.2.1. Landsat, MODIS, and Fused Landsat–MODIS Data from 2001–2015 

Figure 2 shows the Landsat data that were used in this study. Each dot represents a Landsat 
acquisition, and the size of the dot represents the percentage of valid and clear Landsat pixels within 
the Landsat scene. Mostly clear Landsat images from each year were chosen to pair with MODIS 
images that were acquired from the same day to generate daily Landsat–MODIS surface reflectance 
as described in Gao et al. [48]. Partially clear Landsat images (small dots) were also used in generating 
the smoothed and gap-filled daily VI time-series. All available Landsat data, including data from 

Figure 1. Study site in central Iowa (a) overlaid with the Landsat scene (path 26 and row 31,
near infrared-red–green composite) containing the main portions of 20 counties (white polygons)
and a Sentinel-2 tile (15TVG, yellow rectangle). The red box shows the zoom-in window for Figure 5.
The yellow star shows the flux tower site.

2.2. Satellite Datasets

Studies were conducted using two datasets from 2001–2017. The first dataset used the
Landsat–MODIS data fusion approach from 2001–2015. The second dataset additionally incorporated
Sentinel-2 data for 2016–2017 from the Harmonized Landsat and Sentinel-2 (HLS) project into the
data fusion process. The MODIS data products from 2001 to 2017 were downloaded from the NASA
EarthData website [50]. Landsat surface reflectances from 2001 to 2015 were ordered from the U.S.
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. HLS surface
reflectances from 2016–2017 were downloaded from the NASA Goddard Space Flight Center [51].
The yearly NASS Cropland Data Layers (CDL) from 2001–2017 were downloaded from the CropScape
portal [52]. The processing of these datasets is described further in the following sections.

2.2.1. Landsat, MODIS, and Fused Landsat–MODIS Data from 2001–2015

Figure 2 shows the Landsat data that were used in this study. Each dot represents a Landsat
acquisition, and the size of the dot represents the percentage of valid and clear Landsat pixels within
the Landsat scene. Mostly clear Landsat images from each year were chosen to pair with MODIS
images that were acquired from the same day to generate daily Landsat–MODIS surface reflectance as
described in Gao et al. [48]. Partially clear Landsat images (small dots) were also used in generating
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the smoothed and gap-filled daily VI time-series. All available Landsat data, including data from
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8
Operational Land Imager (OLI), were used in this study.
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Figure 2. Landsat-5 (2001–2011, red), Landsat-7 (2001–2015, yellow), and Landsat-8 (2013–2015, green)
images used in Study #1. The size of the dot represents the percentage of valid and clear pixels from
the Landsat images.

MODIS Collection6 data products from 2001 to 2015 were downloaded and processed.
These include the daily surface reflectance at both 250 m (MOD09GQ) and 500 m (MOD09GA)
resolutions [53], the MODIS Bidirectional Reflectance Distribution Function (BRDF) parameters at 500
m resolution (MCD43A1) [54], and the MODIS land cover types at 500 m resolution (MCD12Q1) [55].

The Landsat-MODIS data fusion results for 2001–2014 were generated in a previous study [48].
The mean absolute differences between the fused Landsat-MODIS and actual Landsat observations
(not used in the data fusion) were less than 0.026 for the red band, 0.052 for the near infrared (NIR)
band, and 0.083 for NDVI. The mean biases were within±0.01 for the red band,±0.02 for the NIR band,
and in the range of −0.011 to 0.028 for NDVI from the previous study [48]. Data fusion results for 2015
were generated using Landsat 8 OLI images from days 194, 226, 258, and 338 in this study. Cloud masks
were extracted from Landsat and MODIS QA layers, and were used to exclude cloud, cloud shadow,
and snow pixels. Since Landsat 5 TM operational imaging ended in November 2011, and Landsat 8
OLI was not launched until February 2013, Landsat 7 ETM+ Scan Line Corrector (SLC)-off images were
the only available Landsat data. For this reason, 2012 was not included, even though 2012 represented
an extremely dry year which could have been valuable in the analysis.

2.2.2. Fused Landsat8–Sentinel2-MODIS Data from 2016–2017

Sentinel-2A and -2B were launched on 23 June 2015 and 7 March 2017 respectively. The Sentinel-2
Multi-Spectral Instrument (MSI) includes shortwave spectral bands very similar to Landsat-8 OLI.
The combined Sentinel-2A and -2B platforms observe the entire Earth every five days. Since Sentinel-2
was not in full capacity in the early mission stage, for many areas in the U.S. the Sentinel-2 acquisition
repeated every 10–20 days or even longer. The NASA HLS project processed Sentinel-2 and Landsat-8
using the consistent methods and data formats. The HLS Sentinel-2 Level-1 TOA reflectances were
atmospherically corrected, co-registered, and re-sampled to match Landsat 30 m resolution images
over the selected tiles. Band pass adjustments and BRDF corrections were applied to the HLS products
to further harmonize Landsat-8 and Sentinel-2 [56]. The HLS project adopted the Sentinel-2 tiling grid
to organize Landsat and Sentinel-2 images. Each tile is about 100 × 100 km2. One pre-processed HLS
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tile (15TVG) is located within the central Iowa study area. Both Sentinel-2 and Landsat-8 data from
this tile were used. MODIS daily surface reflectance and 16-day BRDF parameters from 2016 and 2017
were also downloaded and processed for fusing with Landsat-8 and Sentinel-2 surface reflectance.

2.3. Crop Type and Yield Data

The USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) has
provided annual crop type information for the continental U.S. at a 30 m spatial resolution since
2008 [33]. CDL data for Iowa are available since 2000 and were downloaded [52] and used to identify
corn and soybean pixels for generating statistical metrics. CDL products are generated using multiple
sensors, including Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI, the IRS-P6 Advanced Wide Field
Sensor (AWiFS), the ResourceSat-2 LISS-3, the Disaster Monitoring Constellation (DMC) satellites,
and Sentinel-2 MSI. In Iowa, the overall classification accuracies for major crops (soybeans and corn)
were generally above 96%, except for 2001 (92–95%). CDL data for Iowa for all years were reprojected
and resampled to match the extent of the Landsat scene and Sentinel-2 tile.

USDA NASS reports monthly yield forecasts during the growing season (August through
November for corn and soybeans) at the national and state level. These yield estimates are finalized and
published in the following January. Most of this information is collected from two large, ongoing panel
surveys known as the Agricultural and Objective Yields Surveys. Regional MODIS-based model
information is also used internally by NASS to supplement the on-the-ground reporting, particularly
when there are yield anomalies. After the growing season has ended, and farmers have a better handle
on their yields, an additional large survey is directed at them to establish county-level statistics [57,58].
This county-level information is reconciled with the already established state numbers, and then
published in February [7]. For this work, all of the relevant annual county-level grain yield data from
2001 to 2017 for the study area were downloaded from the USDA NASS QuickStats database [59].

3. Methods

3.1. Landsat and MODIS VI Metrics from 2001–2015

To generate high spatiotemporal surface reflectance, the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) was used to fuse frequent yet coarse resolution MODIS and
infrequent but fine Landsat data [47]. The STARFM approach uses spatial information from Landsat
and temporal information from MODIS to produce daily Landsat-MODIS images at Landsat spatial
resolution. It has been used in numerous applications that require high volumes of spatiotemporal
data [45,48]. In this study, Landsat surface reflectance and the 250 m MODIS daily Nadir-BRDF
Adjusted Reflectance (NBAR) were fused for the red and NIR bands. The MODIS daily NBAR at 250 m
resolution was produced in this study using the daily 250 m surface reflectance product (MOD09GQ),
and the 16-day 500 m MODIS BRDF product (MCD43A1) through the MODIS BRDF magnitude
inversion approach [54]. MODIS daily NBAR products at 500 m resolution are available in Collection
6 [60]. We generated the 250 m NBAR for red and NIR bands in this study to preserve the MODIS
original spatial resolution. Note that even though the 250 m MODIS daily bi-directional surface
reflectances were corrected to the nadir view, the effective spatial resolution for off-nadir pixels was
coarser than 250 m [61]. MODIS pair images with smaller view zenith angles tend to perform better as
an input to STARFM [62].

In this study, the Landsat–MODIS data fusion approach was applied to reflectances in the red
(ρred) and near-infrared (ρnir) bands. This enabled the computation of both the NDVI and EVI2 indices
from the original Landsat, MODIS, and the fused Landsat–MODIS surface reflectances:

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

EVI2 = G ∗ (ρnir − ρred)/(ρnir + C ∗ ρred + L) (2)
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where G, C and L are the adjustment factors for EVI2. The standard values (G = 2.5, C = 2.4 and L = 1.0)
from Jiang et al. [63] were used in this study. As is well known, NDVI can saturate during the peak
growing season [63,64], especially when NDVI is computed from the surface reflectance. The red
band surface reflectance for dense green vegetation can be very small after atmosphere correction.
EVI2 introduces adjustment factors and is normally lower than NDVI during the peak growing
season. Based on the index formulas (Equations (1) and (2)), if the red band reflectance is close to
zero, NDVI will be always close to 1 regardless of NIR reflectance. However, EVI2 can still capture
variations from the NIR band due to the introduced adjustment factor. Despite the known deficiencies
of NDVI, we included it here because it is still widely used in operational agricultural monitoring.

Due to possible cloud contamination in the Landsat and MODIS images, the fused
Landsat–MODIS results still may have invalid values or gaps. This can affect the computation of
maximum and cumulative values if there are significant data gaps present during the growing season.
To fill these gaps, a modified Savitzky–Golay (SG) filter approach was built and applied to smooth
and gap-fill the NDVI and EVI2 time-series on a pixel-by-pixel basis. The SG filter is a moving fitting
approach. Each point is smoothed using the value computed from the polynomial function fit to the
observations within the moving window. In contrast with traditional fitting approaches that use a fixed
size of the moving window, our modified SG filter computed polynomial function used a fixed number
of samples available around the target date. Since remote sensing time-series are typically not evenly
distributed, some periods may have been observed more frequently and some periods less frequently,
depending on the season and region. In our modified approach, the period with frequent observations
would have a smaller moving window, and thus small variations could be preserved. For the period
when valid observations are sparse, a large size of moving window was used to ensure that enough
samples could be obtained; thus, continuous time-series could be produced. In the implementation,
samples were collected from the central day and then moved one day before and after for each iteration
until the minimum number of samples (adjustable threshold, default 15 samples) was reached or
the maximum moving window (adjustable threshold, default ±75 days) was reached. The program
removes spike points if the fitting errors are larger than the predefined threshold (default 3 standard
deviation). The modified SG filter allowed us to retain small variations, but it also filled large gaps in
an unevenly distributed time-series VI. Figure 3 shows the EVI time-series for a corn and a soybean
pixel around the flux tower sites (yellow star in Figure 1) from the different datasets. Data fusion
results fill the gaps between Landsat observations. The SG filter further removes noise, smooths the
time-series, and generates the daily VI.
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Figure 3. Two examples from Landsat, Landsat–MODIS data fusion, and the SG filter-smoothed result
for corn (a) and soybean (b) in 2011 near the flux tower sites (yellow star in Figure 1).

Maximum and cumulative (integral) NDVI and EVI2 metrics at a 30 m resolution for each year
from 2001–2015 were computed using the smoothed and gap-filled daily VI time-series during the
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active growing months. The cumulative VIs were computed based on the cumulative period (from start
to end date) and a base VI value as:

Cum_VI =
end

∑
i=start

(VIi − base) (3)

The base VI was included to reduce background or low value effects. Both large and small
cumulative VIs were computed. The large cumulative (LCum) VI was defined as the cumulative
value from all VIs (base = 0) during the period. The small cumulative (SCum) VI was defined as the
cumulative value above the base value. We used the annual averaged VI at the green-up time as the
base value. The green-up dates for corn and soybean were produced from our previous study [48].
The base value varied from year to year for each crop.

By defining the base value, the SCum VI emphasized the growing period by excluding days
with lower VI values. The concept of large and small cumulative value has long been used in remote
sensing time-series analysis, and our small cumulative value was similar to the small integral value
in the TIMESAT software package [65]. Cumulative NDVI and EVI2 were not computed for Landsat
and Sentinel-2 data, since time gaps between the actual observations were too large to produce any
meaningful integral values. The annual maximum MODIS NDVI and EVI2 were computed using the
daily NBAR at 250 m resolution produced for the central Iowa Landsat scene (path 26 and row 31).

3.2. Landsat-8, Sentinel-2 and MODIS Data Fusion Metrics from 2016–2017

For 2016 and 2017, Landsat-8 and Sentinel-2 surface reflectances from the HLS project were used.
The MODIS daily NBAR at 250 m resolution were first produced using the MODIS daily surface
reflectance (MOD09GQ, 250 m) and MODIS BRDF parameters (MCD43A1, 500 m). Landsat-8 surface
reflectance, Sentinel-2 surface reflectance, and the MODIS daily NBAR (250 m) were used to generate
daily 30 m resolution surface reflectance using the STARFM data fusion approach. Four maximum
EVI2 datasets were produced for this analysis, including the maximum EVI2 derived using Landsat-8
(L8) only, Sentinel-2 (S2) only, the Harmonized Landsat-8 and Sentinel-2 (HLS) combination, and the
MODIS–L8–S2 (MLS) time-series. The maximum EVI2 for MLS was generated using a daily time-series
that was composed of the observed L8, the observed S2, and the MODIS–L8–S2 fused data if both L8
and S2 were not available.

3.3. Evaluation Metrics

NDVI and EVI2 metrics (maximum and cumulative) for each year at a 30 m resolution were
averaged for corn and soybean pixels as classified in the CDL over each county. The averaged values
of each metric at the county level were used to compute linear regression statistics using NASS crop
yields at the county level from all covered counties. Most empirical yield models use a linear regression
approach because fAPAR is linearly related to NDVI [66,67] and crop yield is linearly related to APAR
(PAR*fAPAR) [3]. Since the objective of this study is to assess the explanatory ability of high temporal
and spatial resolution remote sensing data for crop yield rather than to build an empirical model,
we used a simple linear equation to compute the coefficient of determination (R2) and the relative
mean absolute error (RMAE) for evaluation. The RMAE was computed relative to the reported yield
using Equation (4):

RMAE =
1
n
∗

n

∑
i=1

(
∣∣y′i − yi

∣∣/yi) ∗ 100% (4)

where yi is the reported yield for county I, y′i represents the predicted yield from the linear regression
model for county I, and n is the total number of counties. Using relative errors allows for comparisons
of performance from different years.

The statistics were calculated separately for corn and soybean pixels as identified in the annual
CDL. The assessments were applied to the original single-sensor data and the data fusion results for
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two periods (2001–2015 and 2016–2017). Corn and soybean yields from 2001–2015 were modelled
based on Landsat, MODIS, and the fused Landsat-MODIS data using a simple linear regression
approach. The cross-validation was performed by random selecting 80% of samples for training
and the remaining 20% for validation using the Cubist software [68]. The cross-validation repeated
100 times for each dataset, and the averaged R2 and RMAE were computed. The p-value for each
regression was computed to test statistical significance.

To investigate the contributions of NDVI and EVI2 from different growing periods, R2 and RMAE
plots were computed as a function of end date and cumulative interval days similar to the accumulating
approach used in Lopez-Lozano et al. [69].

4. Results

4.1. Yields and High Spatiotemporal Data

4.1.1. Landsat-MODIS Data Fusion versus Single Data Source

Statistics between yields and VIs from a single data source (Landsat or MODIS) were generated
and compared to the performance of a fused VI data set. An annual maximum EVI2 image was
produced using all available Landsat scenes from that year. Since clear Landsat dates and pixels were
different for each year, the annual maximum EVI2 value may come from different dates in different
years. Figure 4 shows the scatter plots between the yields and the maximum EVI2 from a single
data source (Landsat or MODIS), and from the fused data for corn and soybeans. From the plots,
Landsat–MODIS data fusion results (right panel) showed a good linear relationship to yields for most
years. The Landsat-only data (left panel) show scattered distributions, especially for corn. In the
plots, two years (2003 and 2010) that had lower yields are highlighted (circles). The year of 2010
was a wet year (1064 mm rainfall during growing season), which caused lower yields in corn while
soybean yields were normal. The year of 2003 was a drought year (596 mm rainfall during the growing
season) which caused lower yields for soybeans but normal yields for corn. This also indicates that
the impact of extremes in water availability (drought or pluvial) could be different for different crops
depending on the timing of extreme events during crop growth and development. Table 1 shows
R2 and RMAE for corn and soybean from Landsat, MODIS, and the fused Landsat–MODIS data
averaged from cross-validations. For corn, the fused Landsat–MODIS data showed better relationships,
especially compared to the Landsat data alone. For soybean, the results from Landsat and the fused
Landsat–MODIS were similar when using all of the samples from 2001–2015. However, when the
samples from 2003 (drought year) were excluded, statistics for MODIS and fused Landsat–MODIS
were substantially improved. Even though 2003 for soybean was different from the rest of the years,
the spatial variability for 2003 was still well captured by the data fusion results.

Table 1. The coefficient of determination (R2) and the relative mean absolute error (RMAE) of yields and
maximum EVI2 separated by training (_t) and validation (_v) results for corn and soybean (all linear
regressions are statistically significant with p-value < 0.01).

Dataset R2_t RMAE_t R2_v RMAE_v p-Value

Corn (2001–2015)

Landsat 0.46 7.40 0.46 7.40 <0.0001
MODIS 0.57 6.09 0.58 6.40 <0.0001

Landsat–MODIS 0.63 5.98 0.59 6.11 <0.0001

Soybean (2001–2015)

Landsat 0.41 8.97 0.37 9.93 <0.0001
MODIS 0.31 9.03 0.27 10.25 <0.0001

Landsat–MODIS 0.38 8.98 0.39 9.07 <0.0001
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Table 1. Cont.

Dataset R2_t RMAE_t R2_v RMAE_v p-Value

Soybean (2001–2015, excluding 2003)

Landsat 0.47 6.14 0.46 6.31 <0.0001
MODIS 0.63 5.28 0.62 5.22 <0.0001

Landsat–MODIS 0.58 5.45 0.58 5.43 <0.0001

Soybean (2003 only)

Landsat 0.34 6.49 0.0088
MODIS 0.46 5.65 0.0014

Landsat–MODIS 0.72 3.82 <0.0001
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Landsat observation close to the peak VI time may not be available, and because the timing of clear 
Landsat observations varies from year to year. This suggests that Landsat data alone are inadequate 
in generating reliable relationships of yield–VI in the study area. 

In this area, MODIS data at a 250 m spatial resolution could capture the spatial variability of 
yield at county scale, which ranged in area from 1107 to 1885 km2 (about 17,714 to 30,164 MODIS 250 
m pixels). The field sizes were relatively large in Iowa, with an average area of 0.33 km2 [70]. The 
effect of the mixed pixels at the 250 m pixel scale (with an area of 0.0625 km2) may be less severe than 
for other areas in the world that normally have smaller field sizes. Even though this area was 

Figure 4. Corn and soybean yields and maximum normalized difference vegetation index (NDVI) and
maximum two-band enhanced vegetation index (EVI2) for each county and year using Landsat only
(left), MODIS only (middle), and Landsat–MODIS data fusion results (right). The fused data showed
better explanatory ability even at the very coarse county level. The circles show samples from the flood
year (2010) for corn (a–c,g–i) and the drought year (2003) for soybean (d–f,j–l). Statistics in the plots
were computed using all available samples.
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The weaker yield-VI relationships developed from Landsat data may due to the fact that a clear
Landsat observation close to the peak VI time may not be available, and because the timing of clear
Landsat observations varies from year to year. This suggests that Landsat data alone are inadequate in
generating reliable relationships of yield–VI in the study area.

In this area, MODIS data at a 250 m spatial resolution could capture the spatial variability of yield
at county scale, which ranged in area from 1107 to 1885 km2 (about 17,714 to 30,164 MODIS 250 m
pixels). The field sizes were relatively large in Iowa, with an average area of 0.33 km2 [70]. The effect
of the mixed pixels at the 250 m pixel scale (with an area of 0.0625 km2) may be less severe than for
other areas in the world that normally have smaller field sizes. Even though this area was relatively
homogeneous and the 250 m resolution MODIS data captured the spatial variability of the yield at the
county level, the resolution was still too coarse to reliably capture the spatial variability at sub-field
scales. Figure 5 illustrates corn yields estimated from MODIS (250 m) and the Landsat–MODIS
data fusion results (30 m) over a subset area in 2010 (red box in Figure 1). The yield map from
the Landsat–MODIS fusion result shows detailed within-field spatial variability in yield, which is
important for field level management. Even though the MODIS yield map at 250 m resolution showed
a similar spatial pattern and can capture yield variability at county level, the pixel blocks and mixed
pixels around field boundaries could be identified. Since yield data at the field scale were not available
for this study, validation at the field scale could not be performed.
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Figure 5. Corn yields estimated from MODIS (a) and the Landsat–MODIS data fusion results (b) using
a simple linear model (Figure 4b) at the county level in 2010 for a subset area in Figure 1 (red box).
The Cropland Data Layer (CDL) for 2010 was used to mask out non-corn classes (black).

4.1.2. Landsat8-Sentinel2-MODIS Data Fusion versus Single Data Source

Figure 6 shows scatter plots between the yields and maximum EVI2 extracted from four datasets
averaged at the county level for 2016 and 2017. The maximum EVI2 values were computed using
Landsat-8 alone, Sentinel-2 alone, the Harmonized Landsat-8 and Sentinel-2 (HLS) combination,
and the MODIS–L8–S2 (MLS) data fusion. For both years, there was no clear Landsat-8 or Sentinel-2
image around the peak greenness time. Sentinel-2 was not in full acquisition capability for 2016 and
2017 in the U.S. Therefore, the maximum EVI2 from L8, S2 and HLS was always lower than from MLS,
which was generated from the daily fused product. The relationships between the yield and maximum
EVI2 from single sensors were weak. This is because that the maximum EVI2 was composited from
different clear dates due to clouds. The maximum value composition may interrupt the spatial
continuity of image. The HLS dataset improves the relationship. For MLS, the maximum EVI2 values
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were generated from the actual observations and daily data fusion results at 30 m resolution, and thus
improved the relationships for both corn and soybean. However, there were some counties (Marshall,
Hardin and Polk for corn in 2017) that showed lower EVI2 but higher yields. Although this tile
only included eight counties from two years, the benefits of high temporal and spatial resolution are
still noticeable.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 22 
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Figure 6. Relationship between yield and maximum EVI2 for Landsat-8 (L8), Sentinel-2 (S2),
the Harmonized Landsat-8 and Sentinel-2 (HLS), and MODIS-L8-S2 (MLS) data fusion for corn and
soybeans from 2016–2017.

4.2. Optimal Time Window for Yield Prediction

To investigate the predictive value of VIs from different growth periods, we generated statistics
for small cumulative VIs using different time windows based on the fused Landsat-MODIS data from
2001–2015. Figure 7 shows R2 and RMAE between yield and cumulative NDVI and EVI2 for corn
and soybeans averaged from 2001–2015. The cumulative EVI2 shows higher R2 and smaller RMAE
in comparison with the cumulative NDVI plots. This suggests that EVI2 outperformed NDVI in the
yield-VI linear model when the same time windows were used. In peak correlation and low RMAE
areas (inside black contours), the end date (x-axis) varied from day 210 to 250 for corn, with interval
of 1 to 70 days for corn, which means that from day 180 (=250–70) to 250 was a good time window
for corn yield prediction. For soybean, the end date varied from day 220 to 260, and the interval
varied from 1 to 80 days. Thus, day 180 (=260–80) to 260 was a good time window for soybean yield
prediction. For central Iowa, the time window from day 180 (end of July) to 250 (early September)
was good for both corn and soybean yield predictions. While crop growth stages may vary from year
to year, this high R2 timeframe covered the silking to the dent stage for corn, and the blooming to
pod setting stage for soybean [58]—critical stages for yield development. The results revealed the
importance of the cumulative period for yield prediction. In this study area, the harvest dates for corn
and soybean were around days 270–300 [57,58]. A good prediction using remote sensing data can
therefore be expected at 1–3 months before harvest.

To compare the performance of maximum and cumulative VI, we selected the best time window
for computing the cumulative VIs. The peak R2 in Figure 7 is located around the point (236, 45) (or day
191–236) for corn and around the point (250, 58) (or day 192–250) for soybean. Therefore, we chose the
best time window from day 192 to 236 (11 July to 24 August) to compute the cumulative VIs for both
corn and soybean, and compared these to results using maximum VI in the next sections.
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Figure 7. R2 and RMAE of the yield with the cumulative NDVI (left) and EVI2 (right) for corn and
soybean. The x-axis represents the end date and the y-axis represents the interval. The high R2 area
(highest 10%) and low RMAE area (lowest 10%) are highlighted by black contours.

4.3. Performance of VIs and Metrics

4.3.1. Performance of NDVI vs. EVI2 in Explaining the Yearly Spatial Yield Variability

The R2 and RMAE between the yield and VIs (NDVI and EVI2) were calculated for two metrics
(maximum and cumulative). Both small and large cumulative VIs were computed during the period
from days 192 to 236. Since VI values during this period are all larger than base VI values, results are
identical for large and small cumulative VIs. Figure 8 shows the R2 and RMAE between the yields
and VIs (maximum and small cumulative) from 2001–2015 for corn and soybeans from the study area.
Each symbol in Figure 8 shows the statistics for one year based on yield and VIs from 20 counties.
From this figure, we can see that R2 values for EVI2 were higher, and RMAEs were slightly lower than
NDVI, which meant that EVI2 better captured the spatial variability of yield for a given year.
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Figure 8. Comparison of R2 (a) and the relative mean absolute errors (RMAE) (b) between yield and
VIs (x-axis: with NDVI; y-axis: with EVI2). Each symbol shows the statistics from one year (2001–2015)
generated from 20 counties. Two VI metrics include cumulative VI (Cum_VI) and maximum VI
(Max_VI). EVI2 shows higher R2 (above the 1:1 line) and lower RMAE (below the 1:1 line) than NDVI.
Statistics that are not significant (p-value < 0.05) from both NDVI and EVI2 are excluded.

The relative MAEs for NDVI and EVI2 metrics (maximum, small and large cumulative) for both
corn and soybean are less than 8% when using a simple linear regression model. This means the linear
regression model works well within the year for each year from 2001–2015 in the study area. Since our
objective in this paper was to assess the explanatory ability of different remote sensing data for crop
yield rather than to build an empirical model, we have focused on the coefficient of determination
(R2) and fitting error (RMAE) of the simple linear model. To assess the quality of linear regression,
both metrics are important.

4.3.2. Performance of the VI Metrics in Explaining Yield Variability

Spatial Variability of Yield

To evaluate the explanatory ability of maximum and cumulative EVI2, we plotted the R2 and
RMAE for maximum and small cumulative values separately. Figure 9 shows that the statistics
using small cumulative values are similar to those from maximum EVI2. For many years, the small
cumulative EVI2 outperformed the maximum EVI2.
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Figure 9. Comparison of R2 (a) and RMAE (b) from small cumulative (day 192–236) and maximum
VIs for corn and soybeans from 2001–2015. Each point shows statistics for one year (2001–2015)
from 20 counties. Statistics that are not significant (p-value < 0.05) from both Max_VI and Cum_VI
are excluded.
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The cumulative NDVI and EVI2 in Figure 9 cover the growing period from day 192 to 236.
Figure 10 compares the maximum VIs and small cumulative VIs computed from the entire growing
season (day 150–300). The statistics from maximum VIs outperformed those from the cumulative VIs.
The performance of the cumulative VIs depended on cumulative time window, as also revealed in
Figure 7.
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Temporal Variability of Yield

The statistics derived for each year from the 20 counties mainly assessed the spatial explanatory
ability of VI for crop yield. To evaluate the temporal explanatory ability of VIs and to examine the
inter-annual variation of yield, we also generated statistics for each county using the historical yields
and VIs from 2001–2015. Figure 11 shows the R2 and RMAE for each county using small cumulative
and maximum VIs. The statistics were generated using 14 years of data for each county to assess the
capability of VIs and metrics in explaining temporal variability of yield. In Figure 11, the R2 for the
maximum and cumulative VIs were close. RMAE from cumulative VIs were slightly smaller (better)
than those from the maximum VIs.
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The temporal statistics in Figure 11 are not as good as the spatial statistics shown in Figure 9.
To compare results from temporal and spatial models, we generated a histogram of RMAE for both
models using small cumulative EVI2 (Figure 12). The simple temporal model shows larger errors for
both corn and soybeans, which further implies that temporal variability of yield is more difficult to
explain than spatial variability by using VIs alone.
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5. Discussion

5.1. Multi-Sensor Combination

This study shows the data fusion results outperform single sensor in explaining yield variability.
The Sentinel-2 MSI and Landsat-8 OLI have similar shortwave spectral bands and are freely available.
Many studies have shown the benefits when two datasets are used in combination [43]. However,
the direct combination of the different data sources could be complicated by differences between the
sensor characteristics and the data pre-processing procedures. NASA’s Harmonized Landsat and
Sentinel-2 (HLS) project produces the harmonized Landsat-8 and Sentinel-2 surface reflectance in a
consistent way [56]. Band pass differences and BRDF effects have been corrected. The HLS product
can be used directly for such analysis once the data product becomes available over a larger area in
the U.S, and over a longer timeframe. Two years (2016 and 2017) of Landsat-8 and Sentinel-2 data are
certainly not long enough for rigorous analysis. Additional years need to be processed and analyzed
in the future.

To fully investigate the value of high spatial and temporal information, crop yield data at the
field scale are needed. However, yield data at the field scale are scarce, and many datasets are not
available to the public. Even though we used yield data at the county level in this study, the value of
high temporal information can be observed. The daily observations from MODIS (250 m) described
the yield variability reasonably well at the county level; however, yield correlations improved when
MODIS is fused with Landsat data (Table 1). Even though Sentinel-2 was not in full capacity during
the study period, the direct combination of the harmonized Landsat-8 and Sentinel-2 show better
results than using any single sensor alone. The benefit of spatial resolution is more pronounced when
yield maps or validation are needed at field or sub-field scales. A fully integrated data fusion system
using Landsat, Sentinel-2, MODIS, and VIIRS (Visible Infrared Imaging Radiometer Suite) surface
reflectance can be expected to improve yield estimation.
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5.2. Time Window for Yield Prediction

Earlier research has suggested that the cumulative VI is effective in capturing yield
variability [3,6,14,15,71,72]. However, computation of the cumulative VI can be impacted by the
availability of clear satellite observations during the accumulation period. Using daily VI time-series
data generated through the MODIS–Landsat fusion, we found that NDVI and EVI2 from day 180 to
250 (29 June to 7 September) provided valuable information for capturing the spatial variability in
yield in this area. The best prediction time for the area from 2001 to 2015 is around day 192 to 236
(11 July to 24 August). An earlier study showed that the annual variation of corn grain yields at the
national and state levels in the U.S. can be predicted accurately in early August [73], which is within
the optimal time window from this study.

In this study, the maximum values of NDVI and EVI2 during the growing season have stronger
correlations to yield than do the cumulative indices from the entire growing season. Crops affected by
water stress or nutrient deficits will often have lower yields, and the ability to capture these impacts in
a given metric depends on the timing of the stress. If the stress event occurs before the peak of the
growing season, it will reduce growth (lower leaf area index) and result in lower peak VIs. In these
scenarios, the relationship between yield and peak VI may be more observable than between yield
and cumulative VI. If the stress happens after the peak of the growing season (e.g., during flowering,
grain filling and maturation stages), it may not affect the peak VI, and the relationship between yield
and VI could be weaker. The cumulative VI metrics integrate throughout the growing season, and they
may lessen the signal of short-term stress in the latter parts of the accumulation period. However,
a shorter cumulative period from day 192–236 generally outperforms maximum VI. This period
corresponds to the middle of the growing season at around the silking to the dent stage for corn,
and from blooming to the pod setting stage for soybean [58]—the reproductive stage in phenological
development. In addition to using a shorter cumulative period, another feasible approach is to use a
higher base value to compute the cumulative VI during the entire growing season, and thus to reduce
the dependence of time window.

5.3. Yield and VIs

In this study, we evaluated the relationships of corn and soybean yields to metrics derived from
NDVI and EVI2 image time-series. The MODIS 250 m surface reflectance product provides two
spectral bands (red and NIR), which limits our ability to produce other vegetation indices that require
additional spectral bands. The results showed that EVI2 derived from surface reflectance correlates
better with yield than does NDVI. This is likely because NDVI has a greater tendency to saturate
during the peak growing season [63,64].

Other red-NIR band based vegetation indices such as the Wide Dynamic Range Vegetation Index
(WDRVI) [64] introduce a weighting coefficient to the NIR band reflectance to increase the contribution
from red band in comparison with NDVI. Therefore, the WDRVI has a wider dynamic range than NDVI
in densely vegetated areas. WDRVI showed a strong linear relationship with corn green LAI [27,71,73].

This study was limited to a predominantly rain-fed agricultural area. For irrigated fields where
water stress is not a concern, the relationship between yield and VI could be different. A regional
irrigation map at similar spatial resolution is needed, and may be developed using remote sensing
approaches [74,75].

Using a process-based model, crop yields can be determined by APAR (PAR*fAPAR), light use
efficiency (LUE), and harvest index. Our central Iowa study area is relative small, and so spatial
variability of PAR is small. LUE is often parameterized as a crop-type dependent value, modified by
functionals describing impacts on moisture stress (conveyed by a normalized ET variable) and
surface temperature extremes at different stages of crop growth. The LUE for a given crop in a
small rain-fed region for a year may be spatially homogeneous if the moisture stress is relative uniform.
Since fAPAR is linearly related to VI, in theory, the spatial variability of crop yield in a small area
for a given year can be described by VI. This is the foundation for many VI-based yield prediction
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models. However, these relationships can change from year to year and from location to location
as many empirical crop yield models revealed [9]. VI alone cannot capture the temporal variability
of yield, which could additionally be affected by water and nutrient availability, seed improvement,
management enhancement etc. The harvest index can be highly variable between fields and over time,
especially when water stress occurs after the peak of the growing season. In this case, the grain yields
can be significantly reduced, but the above-ground biomass may not. More environmental variables
are needed for crop yield modeling. Evapotranspiration (ET) and normalized evaporative stress
index (ESI) products derived at the Landsat scale by similar data fusion methods may provide the
necessary additionally information to capture the temporal variability of crop yield [76–78]—this is a
topic of current investigation. For large areas, spatial variability of PAR, ET, temperature, seed species,
and management approach etc. needs to be considered in rigorous crop yield modeling.

6. Conclusions

The value of high temporal and spatial resolution remote sensing for describing the spatial and
temporal variability of crop yield was evaluated. This study was conducted in central Iowa from 2001 to
2015 using the Landsat-MODIS data fusion and from 2016–2017, using the Landsat8–Sentinel2–MODIS
data fusion. Our results show that:

• High temporal and spatial resolution data from the fused daily Landsat/Sentinel-2 MODIS results
explain crop yield variability better than do Landsat, Sentinel-2, or MODIS data alone.

• The optimal time window for crop yield prediction is from day 192–236 (early July to late August,
1–3 months before harvest) for corn and soybean in the study area.

• The two band Enhanced Vegetation Index (EVI2) explains the variability of crop yield better than
the Normalized Difference Vegetation Index (NDVI) when derived from surface reflectance.
The cumulative VIs from the optimal time window outperforms maximum VIs. However,
the cumulative VIs from the entire growing season underperforms maximum VIs.

Our findings highlight the importance of high temporal and spatial remote sensing data for
crop yield estimation, and to support the development of new medium resolution sensors for
agricultural applications.
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