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Abstract: As the basic feature of building, building edges play an important role in many fields such
as urbanization monitoring, city planning, surveying and mapping. Building edges detection from
high spatial resolution remote sensing (HSRRS) imagery has always been a long-standing problem.
Inspired by the recent success of deep-learning-based edge detection, a building edge detection
model using a richer convolutional features (RCF) network is employed in this paper to detect
building edges. Firstly, a dataset for building edges detection is constructed by the proposed most
peripheral constraint conversion algorithm. Then, based on this dataset the RCF network is retrained.
Finally, the edge probability map is obtained by RCF-building model, and this paper involves a
geomorphological concept to refine edge probability map according to geometric morphological
analysis of topographic surface. The experimental results suggest that RCF-building model can detect
building edges accurately and completely, and that this model has an edge detection F-measure
that is at least 5% higher than that of other three typical building extraction methods. In addition,
the ablation experiment result proves that using the most peripheral constraint conversion algorithm
can generate more superior dataset, and the involved refinement algorithm shows a higher F-measure
and better visual effect contrasted with the non-maximal suppression algorithm.

Keywords: richer convolution features; building edges detection; high spatial resolution remote
sensing imagery

1. Introduction

Buildings are one of the most important and most frequently updated parts of urban geographic
databases [1]. As an important and fundamental feature for building description, the building
edges detection plays a key role during building extraction [2,3]. Building edges detection has
extensive applications in real estate registration, disaster monitoring, urban mapping and regional
planning [4–6]. With the rapid development of remote sensing imaging technology, the number
of high spatial resolution remote sensing (HSRRS) imagery has increased dramatically. HSRRS
imagery have improved the spectral features of objects and highlighted information on the structure,
texture, and other details of the objects. At the same time, they also brought severe image noise,
“different objects with similar spectrum” and other problems [7]. In addition, due to the diversity of
the structure of the buildings themselves and the complexity of the surroundings, the detection of
building edges from HSRRS imagery is a challenge in the field of computer vision and remote sensing
urban application.
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In the rich history of edge detection, typically, the early edge detectors were designed by gradient
and intensity. Later, researchers began to use artificial design features to detect edges. But these
traditional edge detection algorithms mainly rely on handcrafted low-level features to detect edges,
whose accuracy are difficult to guarantee and cannot adapt to application. However, with the rapid
progress of artificial intelligence, deep learning has excellent performance in the field of natural
image edge detection. N4-fields [8], DeepContour [9], DeepEdge [10], HFL [11], HED [12], and richer
convolution features (RCF) network [13] were successively proposed. The accuracy of their test
results on the BSDS500 [14] dataset has been continuously improved, while the accuracy of the newly
proposed RCF network has even exceeded the human performance.

Lots of studies have shown that the deep-learning-based edge detection model can not only detect
the edge of the image effectively, but also generate a higher accuracy than the traditional edge detection
algorithm. However, it is not applicable to directly extract building edges from HSRRS imagery by
using pre-trained deep learning network. The reasons come as follows:

• The dataset used in network training is natural image rather than remote sensing imagery.
Remote sensing imagery has some features that natural images do not possess such as resolution
information [15] and spatial autocorrelation.

• The remote sensing imagery has other superfluous objects in addition to the building.
The network trained by the natural image cannot identify the edges of a certain object, so
it is difficult to obtain the building edges directly through the pre-trained deep learning network.

Although it is difficult to acquire a high quality building edges dataset for deep learning, the
limitation of the data can be overcome by modifying the existing datasets. Due to the special
architecture of RCF and its excellent performance in the deep-learning-based edge detection, this paper
presents a new method to detect building edges. Using the most peripheral constraint conversion
algorithm, a high-quality HSRRS imagery building edges dataset for deep learning is built for the
first time. This paper constructs a building edges detection model by fine-tuning the pre-trained RCF
network with this self-build dataset, and the generated RCF-building model can exclusively detect the
building edges. In the post-processing stage, this paper involves a geomorphological concept to refine
the edge probability map generated by the RCF-building model and obtains accurate building edges.
In particular, the advantage of the RCF network special architecture is exploited, which can make full
use of all the convolution layers to improve the edge detection accuracy.

The rest of this paper is organized as follows. In Section 2, we briefly present the related work.
RCF-based building edges detection model is described in Section 3. Section 4 presents the experiment
and contrast results and analyzes the performance of the proposed methods. Finally, the discussion
and conclusions are drawn in Sections 5 and 6, respectively.

2. Related Work

Although there are various edge detection algorithms and theories, but there is a great gap
between theory and application, only considering the edge detection algorithm cannot directly extract
buildings from imagery. As the edge detection algorithm does not have the function to distinguish
what kind of object the edge belongs to, it is difficult to obtain the building edges directly by the
edge detection. The previous building edges detection methods can be grouped into the following
3 categories:

• Edge-driven methods. This category usually extracts line segments by low-level edge detection
algorithm first, then, groups the building edges from the line segments based on various
rules [16–26]. Those rules, for example, can be perceptual grouping [16–19], Graph structure
theory [20,21], Markov random field models [22], geometry theory [23], circle detection [24],
heuristic approach [25], and dense matching [26]. Additionally, a series of models [27–30] have
been set up to directly detect the building edges. This kind of method, in comparison to the
classical methods, can detect building edges more accurately, and avoid the boundaries of features
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in the building neighborhood such as streets and trees. Snake model [31], also called active
contour model, was widely applied in fields of building edges detection [27–29]. The research in
Garcin et al. [30] built a shape-model using Markov Object processes and a MCMC Algorithm,
and this model used perspective of the whole building to detect the building.

• Region-driven methods. The building region feature and the edge feature are the important
elements of the building description. Under certain circumstances, building edges can be
converted from building region. Various classification strategies were utilized to extract building
region, here are only a few classification strategies for HSRRS imagery:

u Object-based image analysis (OBIA) extraction method has gradually been accepted as
an efficient method for extracting detailed information from HSRRS imagery [7,32–39].
For example, references [7,32–37] comprehensively used object-based image segmentation
and various features of objects such as spectrum, texture, shape, and spatial relation
to detect buildings. Due to the scale parameter has an important influence on OBIA,
Guo et al. [38] proposed a parameter mining approach to mine parameter information for
building extraction. In addition, Liu et al. [39] adopted the probabilistic Hough transform
to delineate building region which extract by multi-scale object oriented classification,
and result showed that with the boundary constraint, most rectangular building roofs can
be correctly detected, extracted, and reconfigured.

u Extraction method based on deep learning is a long-standing problem in recent
years [40–48]. References [40–45] designed an image segmentation using convolutional
neural network, full convolutional network or other network, to effectively extract
building region from imagery. The above research is still pixel-level-based,
references [46–48] proposed superpixel-based convolution neural network (SML-CNN)
model in hyperspectral image classification in which superpixels are taken as the
basic analysis unit instead of pixels. Compared to other deep-learning-based methods,
superpixel-based method gain promising classification results. Gao et al. [49] combined
counter map with fully convolutional neural networks to offer a higher level of
detection capabilities on image, which provided a new idea for building detection.
In addition, constantly proposed theories, such as transfer hashing [50] and structured
autoencoders [51] can also be introduced into this application field to solve problems, such
as data sparsity and data mining.

u Extraction method based on mathematical morphology [52–58]. Huang et al. and
Rongming et al. [52,53] used morphological building index by differential morphological
profile to extract buildings and optimized methods are proposed in references [54–58].

• Auxiliary-information-based methods. Due to the complexity of the structure and surrounding
environment of the building, many scholars have proposed the method of extracting the building
by the shadow, stereoscopic aerial image or digital elevation model (DEM) data to assist the
building extraction. Liow et al. [59] pioneering proposed a new idea of using shadow to extract
buildings. Later, research in [59–62] proposed to identify and extract buildings based on the
shadow features and graph based segmentation in high-resolution remote sensing imagery.
In addition, local contrast in the image where shadow and building interdepend will be increase.
Based on this principle, references [63,64] proposed PanTex method with gray level co-occurrence
matrix contrast features, which is practically used to identify buildings and build-up areas.
Hu et al. [65] used the shadow, shape, color features, similarity of angle between shade lines
and so on multiple cues to extract buildings. In addition, stereo information can provide great
convenience for the extraction of buildings information [5,66–78].

Among the methods mentioned above, the first category normally used semantic analysis to
grouping lines segments, and they have shown relatively good performance on moderate and low
spatial resolution remote sensing imagery because of its high signal noise ratio (SNR). However, for
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HSRRS imagery, the high spatial resolution and low SNR substantially increases the difficulties of
locating and identifying the accurate building edges [39]. For the second category, they have many
advantages, such as a comprehensive consideration of prior knowledge, image features, pattern
recognition theory and other factors. However, the related methods still have the problems of
cumbersome workflow, which requires more prior knowledge, and unable to meet the practical
requirements of buildings extraction from high spatial resolution images with high scene complexity.
The applicability is also limited by buildings type, density, and size. Moreover, the edge of extraction
results is not ideal, so it is difficult to ensure the edge integrity of complex objects. For the last category,
although the accuracy of building extraction can be improved based on stereo information, it is greatly
limited by multiple data sources scarcity and data misalignment.

Therefore, to overcome these limitations of single data, building structure, surrounding complexity
and prior knowledge, this paper tries to detect building edges using state-of-the-art method of edge
detection with deep learning, which is only based on two-dimensional HSRRS imagery, also needs no
prior knowledge once the deep supervision based dataset is perfectly built.

3. Methodology

As shown in Figure 1, the workflow of proposed method is mainly divided into three stages.
In the dataset construction stage, the initial dataset is processed by conversion, clipping, rotation,
and selection into a special dataset which can be dedicated to deep-learning-based edge detection.
The second stage is network training. Based on the training set, the RCF network is retrained to
generate a RCF-building edges detection model. The third stage is detecting and post-processing.
The edge probability map is obtained by using RCF-building model. Subsequently, the edge probability
map is refined by the involved algorithm, so that the building edges are obtained.
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Figure 1. Workflow of fine-tuning RCF network.

3.1. Dataset Construction

As mentioned previously, in the field of deep learning, there is no experimental HSRRS imagery
dataset available to building edges detection. Therefore, this paper builds an edge based sample
dataset that satisfies the training and testing requirements of the RCF network by pre-processing
Massachusetts Building Dataset [79]. The Massachusetts Building dataset is constructed by Mnih and
publicly available at http://www.cs.toronto.edu/vmnih/data/. This dataset has a resolution of 1 m
and sizes of 1500 × 1500 pixels. It contains 137 training images, 10 testing images, and four validation
images between which has no intersection. Each set of data includes an original remote sensing image
and a manually traced building region map, as shown in Figure 2a,b. Since the output of RCF network
is based on the fusion of multi layers, RCF network is tolerable to slight overfitting. Thus, RCF network
does not need validation sets.

http://www.cs.toronto.edu/vmnih/data/
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Figure 2. Dataset sample. (a) Original image; (b) building region map; and (c) building edges ground
truth map.

Edge detection is different from region extraction, and the location shift of only one pixel may
cause the model fail to extract features and reduce the overall precision. To ensure that there is no
error occurred when convert building region to building edges, this paper proposes most peripheral
constraint algorithm. With constraint of “most peripheral”, it emphasizes on only extracting the
outermost pixels of the building region features as building edges, and the width of edge is only one
pixel. Figure 3 shows the diagram of this conversion algorithm. The steps come as follows:

(1) Binarization of the building region map. Supposing the building pixel value is 1, and the
non-building pixel is 0;

(2) Generating an image with the same size as the original image, and all the pixel values are 0.
Scanning the building region map row by row to find all pixels (marked as Pr) satisfying two
conditions: the pixel value is 1, and the pixel value shifts from 1 to 0 or from 0 to 1. In the newly
generated image, setting the pixel values at the same locations with Pr as 1. Thus, building edge
pixels on each row are detected;

(3) Generating an image with the same size as the original image, and all the pixel values are 0.
Repeating step 2 to detect all building edge pixels on each column;

(4) All building edge pixels on each row and each column are combined. Thus, the building edge is
finally detected.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 

 

   
(a) (b) (c) 

Figure 2. Dataset sample. (a) Original image; (b) building region map; and (c) building edges ground 

truth map. 

Edge detection is different from region extraction, and the location shift of only one pixel may 

cause the model fail to extract features and reduce the overall precision. To ensure that there is no 

error occurred when convert building region to building edges, this paper proposes most peripheral 

constraint algorithm. With constraint of “most peripheral”, it emphasizes on only extracting the 

outermost pixels of the building region features as building edges, and the width of edge is only one 

pixel. Figure 3 shows the diagram of this conversion algorithm. The steps come as follows: 

(1) Binarization of the building region map. Supposing the building pixel value is 1, and the non-

building pixel is 0; 

(2) Generating an image with the same size as the original image, and all the pixel values are 0. 

Scanning the building region map row by row to find all pixels (marked as Pr) satisfying two 

conditions: the pixel value is 1, and the pixel value shifts from 1 to 0 or from 0 to 1. In the newly 

generated image, setting the pixel values at the same locations with Pr as 1. Thus, building edge 

pixels on each row are detected; 

(3) Generating an image with the same size as the original image, and all the pixel values are 0. 

Repeating step 2 to detect all building edge pixels on each column; and 

(4) All building edge pixels on each row and each column are combined. Thus, the building edge is 

finally detected. 

 

Figure 3. Diagram of conversion from building region into building edges. 

Figure 2c shows the conversion result of Figure 2b. After conversion, in order to improve the 

accuracy of the training network, we augment the data by rotating the imagery by 90, 180, and 270 

degrees. Meanwhile, to avoid memory overflow and invalid imagery, this paper ultimately 

constructs the dataset after image clipping and choosing. The final dataset contains 1856 training 

images with size of 750 × 750 pixels and 56 testing images with size of 750 × 750 pixels, named 

Massachusetts Building-edge dataset. 

Figure 3. Diagram of conversion from building region into building edges.

Figure 2c shows the conversion result of Figure 2b. After conversion, in order to improve the
accuracy of the training network, we augment the data by rotating the imagery by 90, 180, and 270
degrees. Meanwhile, to avoid memory overflow and invalid imagery, this paper ultimately constructs
the dataset after image clipping and choosing. The final dataset contains 1856 training images with
size of 750 × 750 pixels and 56 testing images with size of 750 × 750 pixels, named Massachusetts
Building-edge dataset.
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3.2. RCF Network

The RCF network was originally proposed by Liu in 2017 [13]. It was optimized on the basis of
VGG16 [80] network. The input of the RCF network is an RGB image with unlimited size, and the
output is the edge probability map with the same size. Figure 4 shows the architecture of RCF network
when the input image size is 224 × 224 pixels. The main convolutional layers in RCF (as shown in the
red dashed rectangle) are divided into five stages and the adjacent two stages are connected through
the pooling layer. After the down sampling of the pooling layer, different scales of features can be
extracted, and useful information can be obtained while reducing the amount of data. Different from
VGG16 network, the RCF network discards all the fully connected layers as well as the fifth pooling
layer, and each main convolution layer is connected to a convolution layer with kernel size 1 × 1 and
channel depth 21. Then, RCF network sets an element_wise layer for accumulation after each stage.
Afterwards, each element_wise layer is connected to a convolution layer with kernel size 1 × 1 and
channel depth 1. The difference between the RCF network and the traditional neural network lies
in: for the boundary extraction, the previous neural networks only use the last layer as the output,
and lose many feature details, while the RCF network fuses the convoluted element_wise layers of
each stage (convoluted element_wise layers of 2, 3, 4, and 5 stages need to be restored to its original
image size by deconvolution) with the same weights to get a fusion output. This special network
architecture allows the RCF network to make full use of semantic information and detailed information
for edge detection.
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3.3. Refinement of Edge Probability Map

The test results of the RCF network are gray-scale edge probability map, on which the greater
the gray value is, the higher the probability that the pixel is on an edge. To accurately detect the
building edges, it is necessary to refine edge probability map. In computer vision filed, non-maximal
suppression (NMS) algorithm is a commonly used refining method. However, as observed in Figure 5,
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the results show that using NMS algorithm to refine building edges has the following problems: broken
outliers, isolated points and flocculent noises.
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Therefore, this paper involves a geomorphological concept to refine edge probability map
according to geometric morphological analysis of topographic surface. As illustrated in Figure 6,
our basic idea is to regard the edge probability value as elevation, according to the principles of
geometric morphology, and the points with maxima elevation (i.e., the watershed point) on the
topographic profile curve are extracted as accurate edges.
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As described in Figure 7, the procedures of this refinement algorithm are as follows:

(1) Scanning from four directions (vertical, horizontal, left diagonal, and right diagonal) to find the
local maxima points as candidate points;

(2) Setting a threshold to discard the candidate points whose probability is less than 0.5 (After many
experiments, the highest accuracy is obtained under this threshold. For gray image, the threshold
value is 120.);

(3) Calculating the times that each candidate point is detected out. When a candidate point is
detected at least twice, it is classified as an edge point;

(4) Checking the edge points got by step (3) one by one. When there is no other edge point in an
eight neighborhood, this point is determined as an isolated point and deleted;

(5) Generating edge mask map based on the edge point map got by step (4) to refine the edge
probability map and obtain the final edge refinement map.
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4. Experiments and Analysis

The experimental environment for RCF network re-training and testing is the Caffe framework [81]
in Linux system with support of NVIDIA GTX1080 GPU. The learning rate refers to the rate of descent
to the local minimum of the cost function, and the initial learning rate is 1 × 10−7. Every ten thousand
iterations, the learning rate will be divided by 10 in training process. The experimental data are the
self-processed Massachusetts Building-edge dataset which has been introduced in Section 3.1.

4.1. Experimental Results

In this paper, a trained model generated by 40,000 iterations is selected to extract the building
edges. Some example of the building edges detection results are shown in Figure 8(e1–e3). From the
visual perspective, the RCF-based building edges detection method adapts to the background very
well. As can be seen from the third line of data (Figure 8(a3,b3,c3,d3,e3), which are highlighted by red
rectangle, the fine-tuned RCF-building model can not only detect building edges correctly, but also
extract building edges that the human unrecognized. Additionally, the refinement results of involved
refinement algorithm (Figure 8(e1–e3) are experimentally compared with the results of NMS algorithm
(Figure 8(d1–d3). There are less isolated points and flocculent noises in the building edges detection
results by the involved refinement algorithm.
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Figure 8. RCF based building edges detection results. (a1–a3) Original imagery; (b1–b3) building edges
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4.2. Precision and Recall Evaluation

In this paper, inspired by references [82–84], we used recall, precision, and F-measure as the
criteria for RCF-building model. The evaluation indices can be descripted by Equations (1)–(3):

Recall =
TP

TP + FP
(1)

Precision =
TP

TP + FN
(2)

F-measure =
2 × Precision × Recall

Precison + Recall
(3)

where true positive (TP) represents the number of coincident pixel between detected edges and
referenced building edges of ground truth. False positive (FP) represents the number of non-coincident
pixel between detected edges and referenced building edges of ground truth. False negative (FN)
represents the number of non-coincident pixel between detected non-building objects and non-building
edges in the referenced ground truth. F-measure is a synthetic measurement of precision and recall.
Actually, the precision and the recall are two contradictory measurements. Generally, they are
negatively correlated [85,86]. Based on recall and precision, the precision-recall curve (P-R curve) can
be drawn.

As shown in Figure 9, it can be noted that our RCF-building model has an F-measure of 0.89 on
the test set, which is higher than the 0.51 from the original RCF network. In addition, compared with
the original RCF network, the precision of RCF-building model increases at least 45%. It means that
the retraining RCF network has the function of recognizing the edges of buildings. The generated
RCF-building model can exclusively detect the building edges, and effectively avoid the superfluous
objects edges.
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4.3. Comparison with Other Building Extraction Methods

In this paper, four remote sensing images with different characteristics from the testing set
are selected to compare the performance of our method with other three representative building
detection methods. Figure 10 illustrates the visual results of our method, OBIA-based ENVI
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Feature Extraction [87], Superpixel-based SML-CNN [47] and CNN-based Saito’s Method [43].
The ENVI Feature Extraction was implemented through ENVI’s Example-Based Classification [88].
The segmentation scale and merge level parameters were set respectively as 40, 30, 30, 40 and 50, 40,
50, 80. Classification was accomplished by training the nearest neighbor classifier with the selected
samples of building and non-building objects point. The scale parameters of the SML-CNN are set to
15. In addition, image1 has similar characteristics to the image3, so the model generated by image1
was selected to classify image3. The sample sizes of the data are shown in Table 1. The results of the
Saito’s Method are derived from the experimental results in the reference [43] which uses the same
dataset as this paper. To ensure fair comparison, this paper cuts the related image data into the same
size with those used in this paper.

Table 1. Number of sample points marked on the Figure 10 original images.

Sample Category Image1 Image2 Image3 Image4

Building 1200 194 1200 1954
Non building 2088 1298 2088 1774

It can be clearly seen from Figure 10 that the method used in this paper has better visual effects
than ENVI Feature Extraction and SML-CNN. Compared with the overall view results of Saito’s
Method, although our results have more broken line segments inside the building, as can be seen from
the last row in Figure 10, the detailed image shows that the method we used can maximize the integrity
of the building edges. In the corner part of the building, the angular characteristics are preserved
better by our method.

Table 2 shows the evaluation results of building edges detected by ENVI Feature Extraction [87],
SML-CNN [47], Saito’s Method [43] and the proposed method in four images. It can be seen from
the comparison of the F-measure values that the RCF network has the best performance regardless
of whether the building group is high-density (image1) or low-density (image2), or the structure of
the building is simple (image3) or complicated (image4). ENVI Feature Extraction is a traditional
module for extracting information from high-resolution panchromatic imagery by spatial, spectral,
and texture characteristics. Although we manage to cover all types of buildings in the selection of
samples, the classification results of buildings still have serious noises and misclassifications, and the
building edges extracted by this method would be mixed with more non-architectural edges and
closed noise lines inside the building. Compared to traditional building edge detection methods based
on image processing, RCF-building is more robust and it is applicable in complicated environment
because this model depends on not only image but also supervised dataset. Manually labeled building
samples implement deep supervision of each layer of network to achieve optimal fitting of building
edge information at different scales, and enhance the saliency-guided building feature learning.
Thus the method of ENVI Feature Extraction has similar Recall as the proposed method but much
lower Precision. SML-CNN first divides the image into superpixels, and then uses CNN network
in classification. Therefore, SML-CNN can extract building edges completely, but at the same time,
it might have misclassification. This method has a slightly higher recall and much lower precision than
the method we proposed. Saito’s Method is a CNN network which simultaneously extracts multiple
kinds of objects. Due to the limitation of network architecture, only region features are emphasized
while line features are ignored. Although this method can roughly locate buildings in the imagery,
the boundaries between the buildings and the non-buildings are not accurate, and present lower Recall
value and higher precision value. The method proposed in this paper has a good performance on both
precision and recall. Compared to deep-learning-based building extraction methods, RCF-building
could better retain building edges angular characteristics.
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Table 2. Evaluation results of four different methods on four typical images.

Approach Index Image1 Image2 Image3 Image4 Mean

ENVI
Feature

Extraction

Precision 0.35 0.71 0.44 0.45 0.49
Recall 0.97 0.90 0.96 0.87 0.93

F-measure 0.52 0.80 0.61 0.60 0.63

SLIC-CNN
Precision 0.51 0.54 0.57 0.35 0.49

Recall 0.99 0.97 0.97 0.96 0.97
F-measure 0.68 0.70 0.72 0.52 0.65

Saito’s
Method

Precision 0.99 1.00 0.99 0.78 0.94
Recall 0.55 0.72 0.50 0.75 0.63

F-measure 0.70 0.84 0.67 0.77 0.74

RCF-building
Precision 0.85 0.96 0.88 0.74 0.86

Recall 0.94 0.82 0.93 0.94 0.91
F-measure 0.89 0.89 0.91 0.82 0.88
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5. Discussion

5.1. Ablation Experiment

To verify the effectiveness of different steps of the proposed method, this paper compares the
performance of RCF model trained by the self-processing dataset (Massachusetts Building-edge
dataset) with the RCF model trained by Canny algorithm [89] converted dataset on all testing
set. We also quantitatively compare the performance of the involved edge refining algorithm with
NMS edge refining algorithm. Table 3 lists the evaluation results of different pre-processing and
post-processing methods. Our methods present the best performance in the Precision, Recall and
F-measure. The experimental results verify the effectiveness of proposed conversion algorithm for
dataset pre-processing, which proves that the superior dataset has positive influence on RCF network.
Furthermore, comparison results also reveal that the good performance of our approach takes the
advantage of the involved refinement algorithm. For all testing set, the refining algorithm presented in
this paper has better performance.

Table 3. The performance of training set generated by different conversion methods and performance
comparison of different refinement algorithms.

Conversion Algorithm Refinement Algorithm Precision Recall F-Measure

Canny algorithm NMS 0.46 0.99 0.63
Canny algorithm Our refinement algorithm 0.70 0.94 0.80

Our conversion algorithm NMS 0.60 0.98 0.75
Our conversion algorithm Our refinement algorithm 0.85 0.89 0.87

5.2. Influence of the RCF Fusion Output

To explore why RCF-building can recognize the edge of building, this paper compares the average
Precision, Recall and F-measure values of all testing set imagery at each stage of network. As shown in
Figure 11, with the deepening of the network, the precision and recall value rises gradually during
the first three stages, and then the precision and recall value descend (or roughly descend) during the
fourth and fifth stage. During the first three stages, the network gradually learns the characteristics
of the building edge, so the precision and recall of the detected building edges increase gradually.
However, during the fourth and fifth stages, the network is overfitting and regards the characteristics
of one training sample as the general nature of all the potential samples. This phenomenon of reduced
generalization performance eventually leads to the failure of detecting some parts of the building
edges. On the other hand, the overfitting of edge detection is different from the overfitting in other
fields, which means after overfitting, if one pixel is judged as edge, the probability of actually being
edges is higher. Above all, to make full use of the information generated at each stage, the RCF network
utilizes a special architecture that the traditional neural networks do not have: the fusion output layer.
The fusion output layer fuses all the output of each stage with the same weight, so that it can perfectly
inherit the advantages of each stage and suppress the useless information at first two stages. Thus, the
fusion output guarantees the highest precision and recall value.
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Take a test image as an example, the output of the each stage and fusion output images are shown
in Figure 12. It is clear that with the deepening of the network stages, the model can gradually extract
the edge of the building and eliminate the edges of other superfluous objects, but in the fourth or fifth
stage, the edge of the building cannot be completely extracted in the image. The visual result of the
fusion output image has the best performance, and the edge of the building can be extracted completely
and accurately compared with other stages output. Therefore, RCF’s special fusion output architecture
makes it suitable for building edges extraction from high resolution remote sensing images.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 

 

 

Figure 11. Comparison of precision, recall and F-measure of the output maps at different stages. 

Take a test image as an example, the output of the each stage and fusion output images are 

shown in Figure 12. It is clear that with the deepening of the network stages, the model can gradually 

extract the edge of the building and eliminate the edges of other superfluous objects, but in the fourth 

or fifth stage, the edge of the building cannot be completely extracted in the image. The visual result 

of the fusion output image has the best performance, and the edge of the building can be extracted 

completely and accurately compared with other stages output. Therefore, RCF’s special fusion output 

architecture makes it suitable for building edges extraction from high resolution remote sensing 

images. 

 
(a) (b) (c) (d) (e) (f) 

Figure 12. Output images of each stage and fusion output image. From (a–f): stage1 output, stage2 

output, stage3 output, stage4 output, stage5 output, and fusion output. 

6. Conclusions 

This paper proposes a method for detecting building edges from HSRRS imagery based on the 

RCF network. The highlights of this work are listed as follows: 

• The RCF network is firstly combined with HSRRS imagery to detect building edges and then an 

RCF-building model that can accurately and comprehensively detect the building edges is built. 

Compared to the traditional building edge extraction method, the method used in this paper can 

make use of high-level semantic information and can get a higher accuracy evaluation value and 

better visual effects. Compared to deep-learning-based building extraction methods, RCF-

building could better retain the corner part building edges. In addition, this paper also analyzes 

the influence of the RCF fusion output architecture on the building edges detection accuracy, 

and the precision and recall lines affirm that this unique architecture of RCF can perfectly inherit 

the advantages of each stage and has a strong applicability to the detection of building edges. 

• In the preprocessing stage, on the basis of Massachusetts Building dataset, we proposed the most 

peripheral constraint edge conversion algorithm and created the Massachusetts Building-edge 

dataset specifically for deep-learning-based building edges detection. The comparison result 

Figure 12. Output images of each stage and fusion output image. From (a–f): stage1 output, stage2
output, stage3 output, stage4 output, stage5 output, and fusion output.

6. Conclusions

This paper proposes a method for detecting building edges from HSRRS imagery based on the
RCF network. The highlights of this work are listed as follows:

• The RCF network is firstly combined with HSRRS imagery to detect building edges and then
an RCF-building model that can accurately and comprehensively detect the building edges is
built. Compared to the traditional building edge extraction method, the method used in this
paper can make use of high-level semantic information and can get a higher accuracy evaluation
value and better visual effects. Compared to deep-learning-based building extraction methods,
RCF-building could better retain the corner part building edges. In addition, this paper also
analyzes the influence of the RCF fusion output architecture on the building edges detection
accuracy, and the precision and recall lines affirm that this unique architecture of RCF can
perfectly inherit the advantages of each stage and has a strong applicability to the detection of
building edges.
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• In the preprocessing stage, on the basis of Massachusetts Building dataset, we proposed the most
peripheral constraint edge conversion algorithm and created the Massachusetts Building-edge
dataset specifically for deep-learning-based building edges detection. The comparison result
shows that the dataset produced by the most peripheral constraint algorithm can effectively
improve the performance of RCF-building model, and affirms the positive impact of accurately
labeled data on network training. This Massachusetts Building-edge dataset makes the foundation
for future research on deep-learning-based building edges detection.

• In the post-processing stage, this paper involves a geomorphological concept to refine edge
probability map according to geometric morphological analysis of topographic surface. Compared
to the NMS algorithm, the involved refinement algorithm could balance the precision and recall
value, and get a higher F-measure. It can preserve the integrity of the building edges to the
greatest extent and reduce noise points. However, there are still some broken lines, as well as
some discontinuities in the detected building edges results after the post-processing.

Additionally, it is worth noting that building edges detection is not the terminal goal of building
extraction from HSRRS imagery. The future work will include: (1) connection of the broken edges of the
building; (2) vectorization of building edges features; (3) the improvement of RCF network architecture;
and (4) using various strategies to ensure that large images can be processed in memory [90].

Author Contributions: T.L. and D.M. conceived and designed the experiments; T.L., D.M., and X.L. performed
the experiments; Z.H. contributed dataset construction; T.L. wrote the paper, and X.B. and J.F. contributed to
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (41671369),
the National Key Research and Development Program (2017YFB0503600) and the Fundamental Research Funds
for the Central Universities.

Acknowledgments: The authors would like to thank Volodymyr Mnih, from University of Toronto, Canada, for
providing the Massachusetts Building Dataset used in the experiments

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Du, S.; Luo, L.; Cao, K.; Shu, M. Extracting building patterns with multilevel graph partition and building
grouping. ISPRS J. Photogramm. Remote Sens. 2016, 122, 81–96. [CrossRef]

2. Li, Y.; Wu, H. Adaptive building edge detection by combining lidar data and aerial images. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 197–202.

3. Hu, X.; Shen, J.; Shan, J.; Pan, L. Local edge distributions for detection of salient structure textures and
objects. IEEE Geosci. Remote Sens. Lett. 2013, 10, 4664–4670. [CrossRef]

4. Yang, H.-C.; Deng, K.-Z.; Zhang, S. Semi-automated extraction from aerial image using improved hough
transformation. Sci. Surv. Mapp. 2006, 6, 32.

5. Siddiqui, F.U.; Teng, S.W.; Awrangjeb, M.; Lu, G. A robust gradient based method for building extraction
from lidar and photogrammetric imagery. Sensors 2016, 16, 1110. [CrossRef] [PubMed]

6. Wu, G.; Guo, Z.; Shi, X.; Chen, Q.; Xu, Y.; Shibasaki, R.; Shao, X. A boundary regulated network for accurate
roof segmentation and outline extraction. Remote Sens. 2018, 10, 1195. [CrossRef]

7. Ming, D.-P.; Luo, J.-C.; Shen, Z.-F.; Wang, M.; Sheng, H. Research on information extraction and target
recognition from high resolution remote sensing image. Sci. Surv. Mapp. 2005, 30, 18–20.

8. Ganin, Y.; Lempitsky, V. N 4-fields: Neural network nearest neighbor fields for image transforms.
In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; Springer:
Berlin, Germany, 2014; pp. 536–551.

9. Shen, W.; Wang, X.; Wang, Y.; Bai, X.; Zhang, Z. Deepcontour: A deep convolutional feature learned by
positive-sharing loss for contour detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3982–3991.

10. Bertasius, G.; Shi, J.; Torresani, L. Deepedge: A multi-scale bifurcated deep network for top-down contour
detection. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 4380–4389.

http://dx.doi.org/10.1016/j.isprsjprs.2016.10.001
http://dx.doi.org/10.1109/LGRS.2012.2210188
http://dx.doi.org/10.3390/s16071110
http://www.ncbi.nlm.nih.gov/pubmed/27447631
http://dx.doi.org/10.3390/rs10081195


Remote Sens. 2018, 10, 1496 16 of 19

11. Bertasius, G.; Shi, J.; Torresani, L. High-for-low and low-for-high: Efficient boundary detection from deep
object features and its applications to high-level vision. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 504–512.

12. Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403.

13. Liu, Y.; Cheng, M.-M.; Hu, X.; Wang, K.; Bai, X. Richer convolutional features for edge detection.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 5872–5881.

14. Martin, D.R.; Fowlkes, C.C.; Malik, J. Learning to detect natural image boundaries using brightness and
texture. Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–13 December 2003;
pp. 1279–1286.

15. Chen, Z.; Zhang, T.; Ouyang, C. End-to-end airplane detection using transfer learning in remote sensing
images. Remote Sens. 2018, 10, 139. [CrossRef]

16. Lin; Huertas; Nevatia. Detection of buildings using perceptual grouping and shadows. In Proceedings of
the IEEE Computer Vision & Pattern Recognition, Seattle, WA, USA, 21–23 June 1994.

17. Jaynes, C.O.; Stolle, F.; Collins, R.T. Task driven perceptual organization for extraction of rooftop polygons.
In Proceedings of the Second IEEE Workshop on Applications of Computer Vision, Sarasota, FL, USA,
5–7 December 1994; pp. 152–159.

18. Mohan, R.; Nevatia, R. Using perceptual organization to extract 3d structures. IEEE Trans. Pattern Anal.
Mach. Intell. 1989, 11, 1121–1139. [CrossRef]

19. Turker, M.; Koc-San, D. Building extraction from high-resolution optical spaceborne images using the
integration of support vector machine (SVM) classification, hough transformation and perceptual grouping.
Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 586–589. [CrossRef]

20. Kim, T.; Muller, J.P. Development of a graph-based approach for building detection. Image Vis. Comput. 1999,
17, 31–34. [CrossRef]

21. Tao, W.B.; Tian, J.W.; Liu, J. A new approach to extract rectangle building from aerial urban images.
In Proceedings of the 2002 6th International Conference on Signal Processing, Beijing, China, 26–30 August
2002; Volume 141, pp. 143–146.

22. Krishnamachari, S.; Chellappa, R. Delineating buildings by grouping lines with mrfs. IEEE Trans.
Image Process. 2002, 5, 1641–1668. [CrossRef] [PubMed]

23. Croitoru, A.; Doytsher, Y. Right-angle rooftop polygon extraction in regularised urban areas: Cutting the
corners. Photogramm. Rec. 2010, 19, 3113–3141. [CrossRef]

24. Cui, S.; Yan, Q.; Reinartz, P. Complex building description and extraction based on hough transformation
and cycle detection. Remote Sens. Lett. 2012, 3, 1511–1559. [CrossRef]

25. Partovi, T.; Bahmanyar, R.; Krauß, T.; Reinartz, P. Building outline extraction using a heuristic approach
based on generalization of line segments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 9339–9347.
[CrossRef]

26. Su, N.; Yan, Y.; Qiu, M.; Zhao, C.; Wang, L. Object-based dense matching method for maintaining structure
characteristics of linear buildings. Sensors 2018, 18, 1035. [CrossRef] [PubMed]

27. Rüther, H.; Martine, H.M.; Mtalo, E.G. Application of snakes and dynamic programming optimisation
technique in modeling of buildings in informal settlement areas. ISPRS J. Photogramm. Remote Sens. 2002, 56,
269–282. [CrossRef]

28. Peng, J.; Zhang, D.; Liu, Y. An improved snake model for building detection from urban aerial images.
Pattern Recognit. Lett. 2005, 26, 5875–5895. [CrossRef]

29. Ahmadi, S.; Zoej, M.J.V.; Ebadi, H.; Moghaddam, H.A.; Mohammadzadeh, A. Automatic urban building
boundary extraction from high resolution aerial images using an innovative model of active contours. Int. J.
Appl. Earth Obs. Geoinf. 2010, 12, 1501–1557. [CrossRef]

30. Garcin, L.; Descombes, X.; Men, H.L.; Zerubia, J. Building detection by markov object processes.
In Proceedings of the International Conference on Image Processing, Thessaloniki, Greece, 7–10 October
2001; Volume 562, pp. 565–568.

31. Kass, A. Snake: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [CrossRef]
32. Zhou, J.Q. Spatial relation-aided method for object-oriented extraction of buildings from high resolution

image. J. Appl. Sci. 2012, 30, 511–516.

http://dx.doi.org/10.3390/rs10010139
http://dx.doi.org/10.1109/34.42852
http://dx.doi.org/10.1016/j.jag.2014.06.016
http://dx.doi.org/10.1016/S0262-8856(98)00092-4
http://dx.doi.org/10.1109/83.481683
http://www.ncbi.nlm.nih.gov/pubmed/18285102
http://dx.doi.org/10.1111/j.0031-868X.2004.00289.x
http://dx.doi.org/10.1080/01431161.2010.548410
http://dx.doi.org/10.1109/JSTARS.2016.2611861
http://dx.doi.org/10.3390/s18041035
http://www.ncbi.nlm.nih.gov/pubmed/29596393
http://dx.doi.org/10.1016/S0924-2716(02)00062-X
http://dx.doi.org/10.1016/j.patrec.2004.09.033
http://dx.doi.org/10.1016/j.jag.2010.02.001
http://dx.doi.org/10.1007/BF00133570


Remote Sens. 2018, 10, 1496 17 of 19

33. Tan, Q. Urban building extraction from vhr multi-spectral images using object-based classification. Acta Geod.
Cartogr. Sin. 2010, 39, 618–623.

34. Wu, H.; Cheng, Z.; Shi, W.; Miao, Z.; Xu, C. An object-based image analysis for building seismic vulnerability
assessment using high-resolution remote sensing imagery. Nat. Hazards 2014, 71, 151–174. [CrossRef]

35. Benarchid, O.; Raissouni, N.; Adib, S.E.; Abbous, A.; Azyat, A.; Achhab, N.B.; Lahraoua, M.; Chahboun, A.
Building extraction using object-based classification and shadow information in very high resolution
multispectral images, a case study: Tetuan, Morocco. Can. J. Image Process. Comput. Vis. 2013, 4, 1–8.

36. Mariana, B.; Lucian, D. Comparing supervised and unsupervised multiresolution segmentation approaches
for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96,
67–75.

37. Tao, C.; Tan, Y.; Cai, H.; Du, B.; Tian, J. Object-oriented method of hierarchical urban building extraction
from high-resolution remote-sensing imagery. Acta Geod. Cartogr. Sin. 2010, 39, 394–395.

38. Guo, Z.; Du, S. Mining parameter information for building extraction and change detection with very
high-resolution imagery and gis data. Mapp. Sci. Remote Sens. 2017, 54, 38–63. [CrossRef]

39. Liu, Z.J.; Wang, J.; Liu, W.P. Building extraction from high resolution imagery based on multi-scale object
oriented classification and probabilistic hough transform. In Proceedings of the 2005 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS’05), Seoul, Korea, 25–29 July 2005; pp. 250–253.

40. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105.

41. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 2481–2495. [CrossRef] [PubMed]

42. Huang, Z.; Cheng, G.; Wang, H.; Li, H.; Shi, L.; Pan, C. Building extraction from multi-source remote sensing
images via deep deconvolution neural networks. In Proceedings of the Geoscience and Remote Sensing
Symposium, Beijing, China, 10–15 July 2016; pp. 1835–1838.

43. Saito, S.; Yamashita, T.; Aoki, Y. Multiple object extraction from aerial imagery with convolutional neural
networks. Electron. Imaging 2016, 2016, 1–9.

44. Zhong, Z.; Li, J.; Cui, W.; Jiang, H. Fully convolutional networks for building and road extraction: Preliminary
results. In Proceedings of the Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016;
pp. 1591–1594.

45. Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building extraction in very high resolution remote sensing imagery using
deep learning and guided filters. Remote Sens. 2018, 10, 144. [CrossRef]

46. Cao, J.; Chen, Z.; Wang, B. Deep convolutional networks with superpixel segmentation for hyperspectral
image classification. In Proceedings of the Geoscience and Remote Sensing Symposium, Beijing, China,
10–15 July 2016; pp. 3310–3313.

47. Zhao, W.; Jiao, L.; Ma, W.; Zhao, J.; Zhao, J.; Liu, H.; Cao, X.; Yang, S. Superpixel-based multiple local cnn for
panchromatic and multispectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4141–4156.
[CrossRef]

48. Liu, Y.; Cao, G.; Sun, Q.; Siegel, M. Hyperspectral classification via deep networks and superpixel
segmentation. Int. J. Remote Sens. 2015, 36, 3459–3482. [CrossRef]

49. Gao, J.; Wang, Q.; Yuan, Y. Embedding structured contour and location prior in siamesed fully convolutional
networks for road detection. In Proceedings of the IEEE International Conference on Robotics and
Automation, Singapore, 29 May–3 June 2017; pp. 219–224.

50. Zhou, J.T.; Zhao, H.; Peng, X.; Fang, M.; Qin, Z.; Goh, R.S.M. Transfer hashing: From shallow to deep.
IEEE Trans. Neural Netw. Learn. Syst. 2018, PP, 1–11. [CrossRef] [PubMed]

51. Peng, X.; Feng, J.; Xiao, S.; Yau, W.Y.; Zhou, J.T.; Yang, S. Structured autoencoders for subspace clustering.
IEEE Trans. Image Process. 2018, 27, 5076–5086. [CrossRef] [PubMed]

52. Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution
imagery over urban areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1611–1672. [CrossRef]

53. Rongming, H.U.; Huang, X.; Huang, Y. An enhanced morphological building index for building extraction
from high-resolution images. Acta Geod. Cartogr. Sin. 2014, 43, 514–520.

http://dx.doi.org/10.1007/s11069-013-0905-6
http://dx.doi.org/10.1080/15481603.2016.1250328
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.3390/rs10010144
http://dx.doi.org/10.1109/TGRS.2017.2689018
http://dx.doi.org/10.1080/01431161.2015.1055607
http://dx.doi.org/10.1109/TNNLS.2018.2827036
http://www.ncbi.nlm.nih.gov/pubmed/29993900
http://dx.doi.org/10.1109/TIP.2018.2848470
http://www.ncbi.nlm.nih.gov/pubmed/29994115
http://dx.doi.org/10.1109/JSTARS.2011.2168195


Remote Sens. 2018, 10, 1496 18 of 19

54. Huang, X.; Yuan, W.; Li, J.; Zhang, L. A new building extraction postprocessing framework for
high-spatial-resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017,
10, 654–668. [CrossRef]

55. Lin, X.; Zhang, J. Object-based morphological building index for building extraction from high resolution
remote sensing imagery. Acta Geod. Cartogr. Sin. 2017, 46, 724–733.

56. Jiménez, L.I.; Plaza, J.; Plaza, A. Efficient implementation of morphological index for building/shadow
extraction from remotely sensed images. J. Supercomput. 2017, 73, 482–489. [CrossRef]

57. Ghandour, A.; Jezzini, A. Autonomous building detection using edge properties and image color invariants.
Buildings 2018, 8, 65. [CrossRef]

58. Cardona, E.U.; Mering, C. Extraction of buildings in very high spatial resolution’s geoeye images,
an approach through the mathematical morphology. In Proceedings of the Information Systems and
Technologies, Nashville, TN, USA, 12–13 November 2016; pp. 1–6.

59. Liow, Y.T.; Pavilidis, T. Use of shadows for extracting buildings in aerial images. Comput. Vis. Graph.
Image Process. 1989, 49, 242–277. [CrossRef]

60. Shi, W.Z.; Mao, Z.Y. Building extraction from high resolution remotely sensed imagery based on shadows
and graph-cut segmentation. Acta Electron. Sin. 2016, 69, 11–13.

61. Wang, L. Development of a multi-scale object-based shadow detection method for high spatial resolution
image. Remote Sens. Lett. 2015, 6, 596–598.

62. Raju, P.L.N.; Chaudhary, H.; Jha, A.K. Shadow analysis technique for extraction of building height using
high resolution satellite single image and accuracy assessment. ISPRS Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci. 2014, XL-8, 1185–1192. [CrossRef]

63. Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic
rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 1, 180–192.
[CrossRef]

64. Pesaresi, M.; Gerhardinger, A. Improved textural built-up presence index for automatic recognition of human
settlements in arid regions with scattered vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4,
162–166. [CrossRef]

65. Hu, L.; Zheng, J.; Gao, F. A building extraction method using shadow in high resolution multispectral images.
In Proceedings of the Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011;
pp. 1862–1865.

66. Fraser, C. 3D Building Reconstruction from High-Resolution Ikonos Stereo-Imagery; Automatic Extraction Of
Man-Made Objects From Aerial And Space Images (iii); Balkema: London, UK, 2001.

67. Gilani, S.; Awrangjeb, M.; Lu, G. An automatic building extraction and regularisation technique using lidar
point cloud data and orthoimage. Remote Sens. 2016, 8, 27. [CrossRef]

68. Uzar, M.; Yastikli, N. Automatic building extraction using lidar and aerial photographs. Boletim De
Ciências Geodésicas 2013, 19, 153–171. [CrossRef]

69. Awrangjeb, M.; Fraser, C. Automatic segmentation of raw lidar data for extraction of building roofs.
Remote Sens. 2014, 6, 3716–3751. [CrossRef]

70. Shaker, I.F.; Abdelrahman, A.; Abdelgawad, A.K.; Sherief, M.A. Building extraction from high resolution
space images in high density residential areas in the great cairo region. Remote Sens. 2011, 3, 781–791.
[CrossRef]

71. Sportouche, H.; Tupin, F.; Denise, L. Extraction and three-dimensional reconstruction of isolated buildings in
urban scenes from high-resolution optical and sar spaceborne images. IEEE Trans. Geosci. Remote Sens. 2011,
49, 3932–3946. [CrossRef]
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