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Abstract: Rising global temperatures tied to increases in greenhouse gas emissions are impacting
high latitude regions, leading to changes in vegetation composition and feedbacks to climate through
increased methane (CHy) emissions. In subarctic peatlands, permafrost collapse has led to shifts in
vegetation species on landscape scales with high spatial heterogeneity. Our goal was to provide a
baseline for vegetation distribution related to permafrost collapse and changes in biogeochemical
processes. We collected unmanned aerial system (UAS) imagery at Stordalen Mire, Abisko, Sweden
to classify vegetation cover types. A series of digital image processing routines were used to
generate texture attributes within the image for the purpose of characterizing vegetative cover
types. An artificial neural network (ANN) was developed to classify the image. The ANN used all
texture variables and color bands (three spectral bands and six metrics) to generate a probability
map for each of the eight cover classes. We used the highest probability for a class at each pixel to
designate the cover type in the final map. Our overall misclassification rate was 32%, while omission
and commission error by class ranged from 0% to 50%. We found that within our area of interest,
cover classes most indicative of underlying permafrost (hummock and tall shrub) comprised 43.9%
percent of the landscape. Our effort showed the capability of an ANN applied to UAS high-resolution
imagery to develop a classification that focuses on vegetation types associated with permafrost status
and therefore potentially changes in greenhouse gas exchange. We also used a method to examine
the multiple probabilities representing cover class prediction at the pixel level to examine model
confusion. UAS image collection can be inexpensive and a repeatable avenue to determine vegetation
change at high latitudes, which can further be used to estimate and scale corresponding changes in
CH,4 emissions.

Keywords: unmanned aerial system (UAS); artificial neural network; mire vegetation; Stordalen;
tundra; drone; classification
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1. Introduction

Subarctic regions are experiencing warming trends that result in permafrost thaw and collapse,
which leads to large changes in the vegetative landscape [1]. The collapse of permafrost in
peatlands often results in a transition from dry palsa and shrub communities to partially thawed,
Sphagnum-dominated bogs and fully thawed, sedge-dominated fens [2]. These changes in vegetation
composition can result in large increases in methane (CHy4) emissions [3-5], driven by changes in peat
chemistry that support increased CHy production rates [6] as well as more efficient transport through
sedges [7]. Changes in plant functional types and hydrology associated with thaw also correspond
with changes in microbial communities including a change in the dominant methanogenic production
pathway, which results in a shift in the isotopic composition of CH,4 emissions [8]. In addition,
this changing vegetative and hydrologic landscape causes thaw ponds and open water to provide
additional anoxic conditions that further drives methane release [2].

Vegetation mapping using optical satellites provides insight into plant species composition
across broader spatial scales [9-11]. Landsat and MODIS provide moderate-resolution spectral and
temporal coverage, as well as historical depth in time for understanding vegetation change [12-15];
however, for site-specific vegetation mapping applications, the coarse spatial resolution and inconsistent
temporal resolution caused by cloud cover is insufficient [16]. Airborne optical and lidar imagery offer
higher spatial resolution than satellite sensors but can be extremely expensive and still may lack
the spatial resolution needed to untangle the complexity of landscape variability in these northern
ecosystems [17]. Hyperspectral imagery, where the spectral range is divided into hundreds of bands,
provides an additional opportunity due to the ability to discern vegetative species and foliar nutrients.
Still, hyperspectral imagery is costly and has limited spatial coverage, often with a spatial resolution
not sufficient for some vegetation characterization [18]. Others have coupled high-resolution satellite
imagery with topography or digital elevation maps developed from stereo images [19]. At Stordalen
Mire, a previous effort to classify vegetation functional type composition relied on airborne lidar [20].
Though the approach had success, even this method had limitations due to the inability to effectively
capture at spatial scales less than one meter, when fine scale changes in topography drive vegetation
composition [21].

High-resolution localized image collection coupled with field-based classification efforts is
necessary to provide cover class and error estimates at scales useful for understanding permafrost
collapse, thermokarst pond development, and vegetation change in high northern latitude
ecosystems [22,23]. Because of recent developments of smaller GPS systems, gyroscopes, magnets
to drive motors, miniaturization of sensors, and increases in data storage, there have been new
avenues in the deployment of unmanned aerial systems (UASs) to study the environment [24].
UASs provide unique opportunities to collect high-resolution spatial data at relatively low cost.
Though there have been thorough reviews of the benefits of using UAS image data in geological and
ecological studies, there are inherent difficulties [25,26], including deployment in adverse weather
conditions, instrument calibration, limited spatial coverage, terrain issues, and experience in flying.
Additionally, proper location and georectification, image stitching, image processing, and statistical
analysis coupled with linkage to field-based data are required [27,28]. Nonetheless, UAS-collected
imagery has fundamentally changed the ability to rectify our understanding of vegetation distribution
spatially across this landscape [17,29].

Use of remote sensing data can be used to develop models for continuous variables or discrete
classes [9]. The type of model used for remote sensing is determined by the specific questions that are
being addressed in the study, application, or the needs of the user [30,31]. Methods include simple
linear regressions, lookup tables, indices, user-classification, spectral unmixing, and decision trees,
to name a few [32]. Machine learning is increasingly being used to analyze satellite imagery with
promising results. Machine learning algorithms include decision trees, random forests, boosted trees,
vector machines, and artificial neural networks (ANNs) [33-35]. ANNs use a supervised classification
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to train and validate data, with intermediate nodes that develop a model [36,37] and have been used
in remote sensing [38,39].

Mapping vegetation by functional cover types in subarctic regions provides an advantage over
species-specific vegetation mapping because it simplifies the vegetation classification scheme as well
as provides a more direct link to ongoing studies of carbon cycling and ecological processes [19,40].
Furthermore, the development of cover classification models can be applied to new regions, where the
species might be slightly different but structurally share similar attributes and where overall ecosystem
processes for a cover type function in a similar manner [19]. One of the primary complicating factors
in estimating vegetation cover types across wetland ecosystems around the world is the high spatial
variability [21]. This is evident in the efforts to examine how image spectral diversity changes
with scale and impacts the predictive ability to determine species composition or diversity [41].
Characterization and quantification of vegetation cover types across a landscape that allows for
linkage to field-based in situ measurements of soil carbon [19], or potentially CH,4 emissions, would
also provide an opportunity to statistically link with coarser-resolution imagery at higher spectral,
temporal, and spatial coverage [21].

Given the demonstrated links between functional cover types and CHy emissions in high
latitudes, mapping vegetation using broad cover types that are related to CH4 emission is useful
for understanding the landscape change and provides context and evidence for changes in fluxes
related to climate change [3]. The spatial heterogeneity of vegetation is high in northern peatlands,
requiring methods to quantify vegetation composition on a landscape level [19]. Often, patch size of
vegetative cover types is on the submeter scale. Studies have measured CHy exchange for specific
cover types at high temporal resolution over multiple years [42]. A number of studies have provided
cover type classifications related to the changes in permafrost stability and the species compositional
response [20,43,44]. Working at Stordalen Mire in Sweden, Johansson et al. [2] provided a robust
classification scheme that not only relates to CHy emissions but provides definitive cover classes
that are easily distinguishable. Nonetheless, higher spatial resolution imagery that is contemporary
with ongoing field measurements is an important component in our drive to develop a vegetation
classification map for this site.

Estimation of vegetation cover types within a landscape is a key component of scaling CHy fluxes
from northern regions. In this paper, we used an unmanned aerial system (UAS) to characterize
subarctic mire vegetation located in the discontinuous permafrost region 200 km north of the Arctic
Circle at Stordalen Mire, Abisko, Sweden. This was achieved through the collection of ground control
points for georeferencing, development of a training dataset for classification, and use of texture
analysis for additional understanding of spatial attributes in the imagery. We used an artificial neural
network (ANN) to classify the imagery into one of eight classes. Because the ANN provides predictions
for each cover class, we also present a method to examine the first and second highest probabilities for
classes in an effort to understand potential confusion in the classification results.

2. Materials and Methods

2.1. Study Site

Our study was conducted at Stordalen Mire, a palsa peatland in the discontinuous permafrost
zone 11 km east of Abisko, Sweden (68°21'N,18°49’E) (Figure 1). The Abisko Scientific Research
Station has supported ecological research and environmental monitoring for over a century, and the
nearby Stordalen Mire has been a key research site for the study of the ecological impacts of permafrost
degradation [43]. In this system, permafrost loss causes hydrologic and vegetation shifts characterized
by the collapse of well-drained permafrost-supported palsas into wetter ecosystems characterized in
part by partially thawed moss-dominated (Sphagnum spp.) bogs and fully thawed sedge-dominated
(e.g., Eriophorum angustifolium and Carex spp.) fens [2]. Carbon flux measurements (carbon dioxide
(CO,), CHy, and total hydrocarbons) using static chambers, automatic chambers, and eddy-flux towers
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have been conducted at this site for several decades and have shown that each habitat type along
the thaw gradient has distinctive flux characteristics and that the thaw transition is accompanied by
changes in CHy and CO, fluxes and an overall increase in radiative forcing [3-5,8,45].

2.2. Vegetation Field Plots

In July 2014, 50 randomized square-meter plots were measured for vegetation composition across
the mire and individually classified into one of the five cover types (10 plots in each cover class).
Cover type classification of each plot was determined based on vegetation composition and the
hydrological state of the landscape. GPS coordinates were collected at all four corners of each plot.
These plots represented only a single cover type and did not consist of a mix of two cover types.
GPS data collection was not accurate enough to use in model training and prediction. These vegetation
field plots were only used in the development of species composition and dominant species for each
cover type, as well as to calculate a species richness index. We used Shannon’s index of entropy [46].
To examine the differences in species richness between vegetation cover types, we used a Tukey test
with an alpha value of 0.05 for indication of a significant difference. We used connecting letters to
indicate differences between groups (Table 1).

Russia

Sweden

68°20N

Finland

Norway

60

Figure 1. Overview of study region (left) and Abisko region (right, Landsat FCC); aerial image of
study area in Stordalen Mire acquired from an unmanned aerial system (UAS) (far right).

2.3. UAS Image Data Collection

Aerial images of Stordalen Mire were collected on 11-12 July 2014 using cameras mounted on a
fixed-wing unmanned aircraft system. Our choice of these dates was because this is a time of the year
when vegetation is green, thaw ponds are evident, and there is no ice or snow. In addition, mid-July
is a time of relatively clear and warm weather, allowing for imagery to be collected. This time of
year also has a higher sun angle, providing better illumination and less shadow. A total of six flights
were conducted during this time frame. The area of interest was an approximately 1 x 0.5 km area of
the mire that has been rapidly undergoing permafrost thaw in the last decade and has been highly
studied [47]. The fixed-wing plane developed by Robota (www.robota.us) was the Triton XL. This is
a small compact vehicle that allows for 0.5 kg of payload. We used the Robota Goose autopilot for
automated flight line planning and flight tracking. The autopilots on both UASs provide real-time
telemetry of the UAS for tracking of the remaining battery charge, airspeed, altitude, and other UAS
diagnostics, allowing for fail-safe flight and planning.

The fixed-wing UAS was flown at a 70-m altitude with a speed of 12 m/s. Flight lines were
determined with 50% overlap between images based on designated flight speed, camera view angle,
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and altitude. Flight lines were extended well past the region of interest to both provide image overlap
and avoid angled or oblique images. This overlap allowed for image stitching to be conducted. Imagery
was collected using a three-band RGB Panasonic Lumix-GM1. Over 600 images were collected from
each 30-min flight, with flights taking place over this two-day period. Flight lines were flown twice
and images recorded every 2 s. Flights were begun at 11:30 a.m.

We used Photoscan to also estimate the quality of each image, which examines the sharpness
at the most focused region of each picture. Additionally, all images were manually inspected for
additional problems, such as tilt or blur, and only clear images were used in the final mosaic.
Only images from July 11 were used in our study due to it being cloud free and the least wind
during the time of flight. The six hundred images were stitched together using Photoscan Pro 1.2
by AgiSoft (www.agisoft.com) and resulted in a sub-centimeter photo mosaic. For the final product,
we used the medium-to-highest setting for all Photoscan image stitching steps. This included Align
Photos: Accuracy (High), Pair preselection (Generic), Build Dense Point Cloud: Quality (Medium),
Depth Filtering (Aggressive), Build Mesh: Surface Type (Arbitrary), Source Data (Sparse Cloud),
Face Count (Medium), Interpolation (Enabled), Build Texture: Mapping Mode (Adaptice Orthophoto),
Blending Mode (Mosaic), Texture Size (10,000), and Build Tiled Model: Source Data (Mesh), Pixel Size
(0.00074196), Tile Size (8192). An orthomosaic image was rendered from the stitched imagery. Though
this resulted in added computational loads, it provided the best image for analysis. Stitching with
lower setting was conducted on a laptop at the field site in order to determine if the collection of aerial
images provided sufficient overlap (Figure 2).

A total of 457 images were used for stitching and 411 were used in the final stitched image.
We used 161,125 tie points and generated a dense point cloud of 50,563,390 points. An orthomosaic
image was rendered from final stitched image.

Figure 2. Location of training samples across the Stordalen Mire, Sweden.

2.4. Georectification

Sixty-four ground control points (GCPs) were distributed throughout 25 hectares of the study
area, including approximately 1.3 km of installed raised boardwalk. GCPs were placed strategically at
boardwalk intersections or at board crosshatches that would be visible in imagery captured from the
UAS. GCP locations were collected in July 2014. GCPs were recorded using a Trimble® GeoXT™ 6000
handheld GNSS unit. An additional 78 GCPs were collected in July 2015 using a Trimble® Geo7X GNSS
receiver with a Tornado™ external antenna, where location accuracy was low in 2014. These data were
corrected for positional accuracy using SWEPOS® RINEX v2 navigation files collected from a GNSS
base station less than 10 km away. GCPs from 2014 collected with differential GNSS had Root Mean
Square Error (RMSE) between 36 and 140 cm (mean = 0.63 cm, standard deviation = 0.21 cm). GCPs
from 2015 collected with the improved GNSS unit had RMSE +13 cm. The image was further cropped
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to focus on research sites and a region with less error. The final mosaicked UAS image had spatial
dimensions of 0.3 x 0.6 km (14.2 ha) represented by 7724 x 20,357 pixels (Figure 2). Use of these GCPs
for image georectification resulted in accuracies that were higher around the boardwalk and decreased
in areas further from manmade features and in homogenous areas of vegetation. This corresponds with
larger areas of tall grasses, which we attribute to blur caused by wind. We note that the GCPs were not
solely limited to the boardwalk and were spread out across the area of study. The corrected GCPs were
then used within ArcGIS to georectify the stitched photo mosaic using a second-order polynomial
transformation. This allowed for the highest level of accuracy with the least amount of warping of the
mosaic. The georectified image had a pixel resolution of 3 cm. Agisoft errors in image stitching were
found in homogenous areas, such as water or when the plane banked while collecting images.

2.5. Texture Analysis

Code was developed to examine the relationship between each pixel and its neighbors. This is
termed textural analysis and uses the spatial arrangement of pixels to determine additional properties
of the image [48-52]. In computer vision applications, texture analysis is often used to segment the
image [53-56]. We calculated entropy (ENT), evenness (EVN), and angular second momentum (ASM)
as a moving window (17 x 17 pixels) for every pixel in the fully stitched-together image. The equations
for these textural analyses are found in Hall-Beyer [57] and are common equations used in species
diversity indices as well [46]. We tested red and blue bands and, due to correlation of spectral bands,
we used only the green band for texture analysis used in the statistical model. The mean, mode,
maximum, minimum, range, and standard deviation of pixel values were also calculated using the
same moving window. These digital image processing routines provided additional metrics used in
the development of the statistical model. Our routines were coded with first-order analysis, meaning
that all pixels within a moving window were included in the analysis and no other spatial information
within that moving window was included. Grey-level co-occurrence matrix (GLCM) often allows for
second-order analysis in which the location within the moving window is included as an additional
facet of the analysis [57]. With our moving window, the same resolution of the imagery was maintained,
as the result of the moving window provided a value for the central pixel. Examples of imagery for the
textural analysis are presented in Figure 3. Texture analysis was coded in Python (v. 2.7) using NumPy
and SciPy extensions, along with Geospatial Data Abstraction and OGR Simple Feature Libraries.

Figure 3. UAS imagery collected over a research shack at Stordalen Mire. Left is RGB imagery and the
right is entropy calculated on a 17 x 17 pixel moving window on just the green band.

2.6. Data Extraction and Statistical Analysis

Two hundred randomly selected locations (0.5 x 0.5 m, corresponding to 71 x 71 pixels) were
generated over the UAS imagery. Researchers familiar with both the vegetation at Stordalen Mire
as well as the general landscape classified each of these training samples as one of eight classes
(Figure 2). These classes included five vegetation classes, two nonvegetative classes, and open water
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(Figure 4. Table 1). All cover classes were represented in the randomly selected manual classified
plots. Once the image was clipped, only 114 plots remained in our core region of study. This broke
down to the numbers of samples for each cover type, with number in parenthesis: HyO-Water (3),
HM-Hummock (25), OT-Other (3), RK-Rock (5), SW-Semi-Wet (20), TG-Tall Graminoid (24), TS-Tall
Shrub (24), and WT-Wet (8). Each plot consisted of 289 pixels with a total of 32,940 pixels with 12 bands
used in our classification model. Zonal statistics were used to extract pixel values at these locations
along with the user-defined cover class. All pixel values from these locations were imported into JMP
Pro 12 statistical software to develop a statistical model for image classification that could then be
applied across the entire UAS image. Graphs were generated using SigmaPlot 10.

Tall Shrub (TS) Hummock (HM) Semi-Wet (SW)

Wet (WT) Tall Graminoid (TG)

Field Photos
im

UAS Imagery
iom

Figure 4. Five vegetation cover classes determined in our study. They range from permafrost to thawed
peat, forming wetlands with carex or tall graminoid as the dominate species. Additional land cover
types included water, rock, and other (usually manmade structures and research equipment).

Table 1. Attributes of the five vegetation cover classes in our study. Rock cover type is defined as
granite rock and stone pits. The Other cover type is human structures, boardwalk, and buildings.

Cover Soils and Dominant o Second Dominant o Diversity Connecting
Type Vegetation Vegetative Species ° Vegetative Species ° Index Letter Report
Ombrotrophic, .
TallShrub  found in Duwarf Birch 187 Cloudberry 114 153 A
(Betula nana) (Rubus chamaemorus)
dry areas
Hummock Ombrotrophic, ~ Crowberry (Empetrum 16.9 ‘ Hares Talll 161 144 A
on permafrost hermaphroditun) (Eriophorum vaginatum)
. Ombrotrophic Hares Tail
Semi-Wet or minerotrophic Spagnin sp. 431 (Eriophorum vaginatum) 156 0.61
Wet Ombrotrophic Open Water 43.1 Spagnum 8.2 0.70
Tall . . Cotton Tail
Graminoid Wet minerotrophic Carex sp. 30.7 (Eriophorum angustafolium) 115 0.90

Data was extracted for the randomly selected plots for manual interpretation into one of the eight
cover classes (Figures 3-5) and all pixels were extracted within a polygon. Using the data extracted
from the imagery and the manually interpreted cover class, we developed a Bayesian artificial neural
network [37]. Because training sample locations were randomly selected, no spatial component was
included in the analysis. For training, we used 66% of that data and withheld 33% of the data for
validation. This is a common split in supervised classification efforts with validation. Our hidden
layer structure used five nodes with the hyperbolic tangent function (TanH) (Supplemental Material,
Figure S1). We used a squared over-fitting penalty and ran the ANN for 100 tours. A probability
map was generated for each of the eight classes (Supplemental Figure S2a-h), with the highest
probability for each class indicating the final classification (Figure 6). A confusion matrix allowed
us to determine which classes were erroneously classified and to which classes they were assigned.
The individual probability maps allow us to also determine the error associated with the overall
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landcover classification. We report the training and validation confusion matrices as well as statistical

estimate of correct class estimation.
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Figure 5. Image band and textural analyzed raster data used in our artificial neural network (ANN)
determining eight cover types. HyO-Water, HM-Hummock, OT-Other, RK-Rock, SW-Semi-Wet, TG-Tall

graminoid, TS-Tall shrub, WT-wet.
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Figure 6. Classification across the landscape of Stordalen Mire into seven cover class (five of which
are vegetation cover types) using an artificial neural network. HyO-Water, HM-Hummock, OT-Other,
RK-Rock, SW-Semi-Wet, TG-Tall Graminoid, TS-Tall Shrub, WT-Wet.

In addition to calculating a confusion matrix, we assessed the ANN by calculating the receiver
operating characteristic (ROC) to examine the performances of classifiers in discriminating the ANN
to predict cover classes [36]. The receiver operating characteristics (ROC) were used to assess the
performances of classifiers. The ROC curves represent rapid convergence to the best model among
the eight cover classes used, indicating good model prediction (Supplemental Material Figure S2).
The ROC uses true negatives, true positives, false negatives, and false positives to determine model
prediction rates. A value of 1 indicates extremely good model prediction, while a value of 0.5 is
considered to be chance performance.

A generalized r? value was determined for the training and validation datasets as a criterion
to determine model strength [58]. Nagelkerke [58] discussed the modification of earlier definitions
of 72 as an indicator of the proportion of explained variance for different models. Paliwal and
Kumar [59] reviewed studies’ statistical techniques for neural networks, assessing the validation
methods and error measures, with 12 being one of the methods. Others have looked at 72 as a method
for looking at generalized linear mixed-effects models [60,61]. Our ANN predicted categorical data
and Nagelkerke [58] showed that it is possible to calculate an r* value for categorical models. This is
sometimes referred to as a Nagelkerke or Craig and Uhler 72 [58,62]. The deviation from the true
class is used to determine the error in calculating the r?> value but is scaled so that a value of one
indicates a perfect fit, also known as a Cox and Snell pseudo 7> [63]. Other measures of our ANN were
also calculated, such as RMSE and an overall misclassification rate. We also calculated commission
and omission errors by class. Pontius et al. [64] suggest using a disagreement estimate for accuracy
assessment. We determined an overall disagreement estimate which included both quantity and
allocation disagreement [64]. We also developed a prediction profiler to examine which parameters
were used in determining specific cover classes.

We recoded the ANN in Python (v. 2.7) to classify all pixels in our image (Figure 6). For error
estimation, we applied the confusion matrix to each pixel (Figure 7). We also examined the probability
for each of the classes and made a composite image of the highest probability, which was used in our final
classification for that pixel. In an effort to explore and utilize the multiple probability maps generated by
the ANN for each cover class, we developed two methods. First, we calculated the difference between
the probability of the highest ranked class and the second ranked class for each pixel. To examine
these, we extracted the maximum probability (highest) and the second ranked class probability from the
eight different cover type results and present this information as maps (Figure 8a). This is similar to
the work done by Tapia and Bijker [65]. Second, we calculated the difference between the two values
and generated a normalized difference, where the difference was divided by the highest probability
(Figure 8b, Supplemental Material Figures S2-59). The rationale for this was that although a difference
might be small, if the maximum probability is low, the relative probability distance could be as large as
two high probabilities. By utilizing two probabilities output from the ANN, we suggest that additional
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insight into model performance may be gleaned. This method, to look at model predictive confusion,
indicates issues in the model when two classes have similar probabilities, indicating that it is harder to
discern which is correct and warrants further examination by the researcher. We display these results as
maps (Figure 8), scatterplots (Figure 9a,b), and box and whisker plots (Supplemental Material Figures
512 and S13). Our results when viewed across the spatial domain could indicate that certain cover types
exhibit patterns of error or confusion reflective in the spatial pattern seen in cover class types.

Figure 7. Prediction rate mapped across the mire based on training prediction rates.

<25% 25-35% 35-45% 45-55% 55-65% 65-75% 75-85% 85-95% >95%

Figure 8. Error analysis of image classification. (Panel A) highest probability. (Panel B) difference
between two highest probability classes. (Panel C) normalized difference in probability of two highest
ranked classes.
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Figure 9. (A) Scatterplot of maximum and second ranked probability for classes, (B) maximum
probability and difference between first and second ranked probability for classes.

3. Results

Across the manually interpreted plots, texture and reflectance values varied between and within
cover classes for all metrics calculated and pixel values extracted for use in the ANN development
(Figure 5). Because these plots were based on the image itself, there was no need to address errors
between field plots and image data. Of the vegetation classes, Semi-Wet exhibited the highest
green-band reflectance values on average. For textural metrics, Wet vegetation exhibited the lowest
entropy, angle of second momentum (ASM), and evenness for vegetation classes, while Tall Shrubs
tended to have higher texture values (Figure 6). Texture values were lowest for Water when comparing
all classes.

Within the bounds of the image, cover classes indicative of permafrost (indicative of a thin
active layer), i.e., Hummock and Tall Shrub, comprised 43.9% of the landscape (Figure 5 and Table 2).
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Tall Graminoid comprised 24.4% of the total area of our collected image and Semi-Wet was 22.0%.
Cover classes of Rock and Other accounted for 3.7% of the landscape area and Water for 0.5% (Figure 5).

Table 2. Percentage and pixel number for each of the eight cover classes. H;O-Water, HM-Hummock,
OT-Other, RK-Rock, SW-Semi-Wet, TG-Tall Graminoid, TS-Tall Shrub, WT-Wet.

Cover Type Abbrev. Pixels Percent
Other oT 1,028,465 0.7%
Rock RK 4,882,573 3.1%
Tall Graminoid TG 38,379,784 24.4%
Hummock HM 42,193,103 26.8%
Tall Shrub TS 26,852,493 17.1%
Water H,0 787,946 0.5%
Wet WT 8,538,871 5.4%
Semi-Wet SW 34,574,233. 22.0%
Total TT 157,237,468 100.0%

Error Analysis and Cover Class Assessment

Our training dataset had a generalized 72 of 0.899 and our validation dataset result was 0.897.
Our misclassification rate was 0.319 for our training dataset and 0.323 for the validation dataset.
We calculated two different estimates of error from our model. Root mean square error for training was
0.509 and 0.512 for validation. Training and validation data are presented in Tables 3 and 4 and provide
insight into how the ANN performed for specific cover classes and what classes were erroneously
assigned for a pixel. Commission and omission errors for each class are presented in Table 5 for both
training and validation efforts. Overall classification error was low, except for a few classes. This was
primarily due to misclassification between two classes, Tall Graminoid and Tall Shrub. Tall Shrub
was often classified as Tall Graminoid, while Tall Graminoid was often interpreted as Hummock
or Tall Shrub. The Wet vegetation cover class was often classified as Hummock, Tall Graminoid,
or Tall Shrub. All other classes had prediction rates higher that 75% (Table 3). The overall cover
classification map is presented in Figure 6. Using the ROC to examine of our models’ predictive power,
we found our models predicted well, with class Water being the strongest model and Tall Graminoid
being the poorest model (Supplemental Material Figure S10). Our prediction profiler is presented in
Supplemental Figure S11 and indicates specific responses of the model’s parameters to estimation of
individual cover classes.

Table 3. Confusion matrix for training prediction rates from the ANN for cover type. HyO-Water,
HM-Hummock, OT-Other, RK-Rock, SW-Semi-Wet, TG-Tall Graminoid, TS-Tall Shrub, WT-Wet.

Training Prediction Rate
Classes H,O HM oT RK SW TG TS WT
H,O0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HM 0.00 0.82 0.00 0.00 0.07 0.08 0.02 0.00
oT 0.00 0.00 0.96 0.04 0.00 0.00 0.00 0.00
RK 0.00 0.01 0.02 0.79 0.01 0.03 0.13 0.02
SW 0.00 0.13 0.00 0.01 0.77 0.08 0.00 0.02
TG 0.00 0.13 0.00 0.01 0.11 0.50 0.25 0.00
TS 0.00 0.04 0.00 0.02 0.03 0.32 0.59 0.00

WT 0.00 0.19 0.00 0.00 0.13 0.12 0.01 0.55
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Table 4. Confusion matrix for validation prediction rates from the ANN for cover type. HyO-Water,
HM-Hummock, OT-Other, RK-Rock, SW-Semi-Wet, TG-Tall Graminoid, TS-Tall Shrub, WT-Wet.

Validation Prediction Rate

Classes H,O0 HM oT RK SW TG TS WT

H,O0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HM 0.00 0.84 0.00 0.00 0.07 0.08 0.02 0.01
OoT 0.00 0.00 0.95 0.05 0.00 0.00 0.00 0.00
RK 0.00 0.01 0.02 0.79 0.01 0.03 0.13 0.02
SW 0.00 0.14 0.00 0.00 0.75 0.08 0.00 0.02
TG 0.00 0.14 0.00 0.00 0.11 0.50 0.25 0.00
TS 0.00 0.04 0.00 0.02 0.03 0.33 0.58 0.00
WT 0.00 0.20 0.00 0.00 0.13 0.11 0.01 0.55

Table 5. Omission and commission errors for each cover class. H,O-Water, HM-Hummock, OT-Other,
RK-Rock, SW-Semi-Wet, TG-Tall Graminoid, TS-Tall Shrub, WT-Wet.

Training Error Validation Error
Classes

Omission Comission Omission Comission
H,O 0.00 0.00 0.00 0.00
HM 0.29 0.18 0.30 0.16
oT 0.03 0.04 0.02 0.05
RK 0.20 0.21 0.17 0.21
SW 0.29 0.23 0.29 0.25
TG 0.52 0.50 0.52 0.50
TS 0.32 0.41 0.32 0.42
WT 0.13 0.45 0.15 0.46

We mapped the prediction rate for each class from the ANN confusion matrix using the validation
prediction rates (Supplemental Material, Figures 52-59). This was done for each pixel across the
landscape and provides an estimate of overall error that may have been made in the model prediction
(Figure 7). The second estimate of error is to map the highest class probability for each pixel based
on the ANN (Figure 8a). Each pixel had a probability of being in one of the classes, but we chose
the highest class estimate for each pixel to be assigned that class. This provides an estimate of the
predictive power of our model across the landscape.

Our method of examining probabilities for the highest and second highest class predictions at
the pixel level are presented in Figure 8b,c. These maps indicate areas of red when the individual
probabilities of two classes are small. Areas seen in blue are areas that have greater values between
the highest and second highest probabilities and are class independent. Scatterplots of data from
individual pixels (data from Figure 8a—c) are presented in Figure 9a,b. These plots indicate the limits
of the model, better predictive regimes, and pixels that exhibit confusion because the probability space
is similar between the best predictive classes. Colors of individual points in the scatterplots indicate
cover class.

4. Discussion

Image Classification and Error Estimates

Our efforts to develop techniques for UAS-based mapping and cover type classification provided
a robust, inexpensive, and repeatable method for examining subarctic vegetation in peatlands.
Cover classes have an advantage for scaling to new areas and linkage to coarser-resolution remote
sensing [21]. Because functional cover types have been linked to CH, emissions in high latitudes,
mapping vegetation using broad cover types that are related to CHy emissions is useful for



Remote Sens. 2018, 10, 1498 14 of 20

understanding landscape change and provides context and evidence for changes in fluxes related to
climate change as well as ties to field observations [3,42,66].

The spatial resolution of the UAS collection and subsequent georeferencing of the image provided
the ability to examine the complex spatial heterogeneity of vegetation across the mire. The textural
analysis that we used expanded upon the three optical bands, which are often highly correlated.
The majority of the eight cover types had low misclassification rates. The ROC and AUC values
indicated that the model was predicting better than random. A confusion matrix helped to identify
issues with discriminating between Tall Graminoid and Tall Shrub classes.

The prediction profiler indicates that Water was classified primarily by one variable—Evenness.
Some cover classes, like Other and Rock, primarily leveraged two remote sensing variables in the ANN.
Hummock and Tall Graminoid show responses in model prediction from almost all remote sensing
parameters. Cover types that leverage more variables indicated from the prediction profiler primarily
had higher misclassification rates, indicating that these cover types might be more complex, both in
species and structural diversity. This is supported in the species richness values in Table 1 for the
cover types. Tall Shrub and Hummock had significantly higher diversity indices than the three other
classes when compared using a Tukey test (Table 1). Understanding these complexities in classification
could provide insight into what additional variables could be derived that might further improve
classification for those specific cover types.

Water had the lowest omission and commission errors for both training and validation results,
with no pixels being erroneously assigned. The Other cover class had the next lowest error in
classification. These two cover classes tend to be defined by smooth, even pixel variation and relied on
the texture features in the prediction profiler. We suggest that texture features are useful indicators of
these classes and could be used singularly if only those cover classes were necessary to quantify in
the landscape. The highest errors were found for Tall Graminoid. The Wet cover class had differences
between omission and commission errors (0.13, 0.45 training and 0.15, 0.46 validation). This indicates
that less Wet pixels were omitted in prediction but more pixels of other classes were erroneously
assigned the Wet cover class. The number of samples differed between classes. Water, Rock, and Other
had low sample numbers by high classification rates. This suggests that sampling these cover classes
might not require as many samples as other cover classes. The Wet cover class only had eight plot
samples and though the number of pixels was 2312 used in the ANN, they might still might have
been improved with a higher number of samples in this class. We suggest that using the omission and
commission errors can provide insight into cover class model strengths and weaknesses when used in
conjunction with the prediction profiler. Our method for looking at confusion predictions based on the
two highest probable cover classes for a pixel provide addition insight.

By comparing the two highest probable cover class values from the ANN, it is possible to
determine when the model distinctions in predictive power between two classes are low at the
pixel level. This has been defined as confusion estimate in defining predictive power for a model,
again at an individual pixel level between two classes [65]. Tapia and Bijker [65] used a K-means
unsupervised classification to determine the ideal number of classes when analyzing continuous
variables (topography, slope, and normalized difference vegetation index). They termed this a
confusion estimate and used it to develop a sampling strategy. We used the confusion estimate
in an effort to examine model results for cover classes that have potential problems and as a means to
suggest further remote sensing analytical development for those classes. We also plotted our results as
a scatter plot, allowing for use to discern areas of confusion for cover classes. Finally, we developed
a normalized confusion estimate because the probability distances between two classes that are 90%
and 80% are not different than two classes that are 45% and 40%. This rationale is that though the
model prediction might be low, it is still much better than the second best classification probability.
Figure 9a,b shows areas in the scatterplot where the model provides better prediction and areas in the
scatterplot that are more prone to confusion. Both the omission and commission error calculations
and our estimate of difference between model predictive probabilities on a pixel level still require the
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need for interpretation and understanding based on field-based data. Even though our model has high
spatial resolution at 3 cm, structural components of vegetative species may display a mix of optical
properties or similarity between species.

A confusion matrix (Tables 3 and 4) showed issues with determining Tall Graminoid and
Tall Shrub classes, which were often classified as each other. This misclassification may be due to both
classes containing a species from the same genus, both which look similar from an aerial view. The Tall
Graminoid cover class consists of open water, Carex spp., and E. angustifolium, with E. angustifolium
being the majority. The Tall Shrub cover class consists of mainly Betula nana and Betula pubescens,
however, Eriophorum vaginatum is often found mixed in with the birch shrubs. E. angustifolium and
E. vaginatum differ from one another in their habitat and morphology. E. angustifolium has multiple
flower heads and grows from rhizomes, while E. vaginatum has a single flower head and grows from
dense tussocks (Figure 10). The imagery was unable to differentiate between the number of flower
heads, thus misclassifying the Tall Graminoid and Tall Shrub classes. These two species also differ in
height. E. vaginatum grows 30-50 cm high (Wein 1973), while E. angustifolium grows 60-100 cm high
(Wein 1973). The tall thin linear vegetation structure was similar to Carex spp. and our texture analysis
appears to have results that were similar for two very different cover types.

Figure 10. Image of plants with similar structure found in palsa and mire locations. Left (Eriophorum

angustifolium) and right (Eriophorum vaginatum). Photos by Shaleen Humphreys and used with Creative
Commons License. Found on http:/ /arcticplants.myspecies.info.

Topography is a key feature in the permafrost collapse transition for vegetation cover, primarily
due to changes in the hydrology and inundation to water. Lidar has been used for understanding
forest structure and estimating microtopography [17,67-69], and specifically at Abisko and Stordalen,
Sweden, it was used in a cover type classification [19]. This is a highly useful method for classification
of mires and fens but is expensive and requires computation time and expertise in analysis [27].
In addition, optical spectra are often not included with such lidar collections and thus vegetation
cover may be difficult to discern. In future efforts, we suggest using optical imagery from a UAS with
overlapping images to examine the use of parallax and use Structure from Motion (SfM). From this,
a plant height model can be developed which may be used as an additional component in the machine
learning analysis [28].

The UAS imagery we collected does not include topography; therefore, vegetation height was
not used for the classification process. Since the most easily distinguishable difference between
E. angustifolium and E. vaginatum is plant height, topographical analyses may aid in the separation of
the Tall Shrub and Tall Graminoid cover classes [44]. Malhotra et al. [44] showed that microtopography
is related to litter decomposition rates, further suggesting the importance of topographic data from a
UAS in the understanding other ecosystem processes. The confusion between the two aforementioned
classes (Tall Shrub and Tall Graminoid) may be due to the difficulty in collecting tall shrub plots in the
field, thus underclassifying this cover type. B. pubescens ssp. czerepanovii grows as tall as 5-7 feet at
Stordalen Mire; therefore, it was not practicable to place the quadrat on these taller shrubs. If plots
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were able to be collected at these taller shrubs and thus be used for classification, then the Tall Shrub
cover class may have been better differentiated.

Environments like Stordalen Mire are associated with inconsistencies in UAS image data
acquisition caused by blur from wind, poor light conditions, and cloud cover. An examination
of Landsat imagery at Stordalen Mire over 35 years (1984-2018) (1624 images) indicates that at the
collection time, image tiles have an average of 57% cloud cover (Supplemental Material, Table S1).
This stresses the opportunistic advantage of UAS image collection at a specific location, with flying
specific clear days and even flying between passing clouds. To overcome these issues, we conducted
flights as close to solar noon as possible and made multiple passes over the area of interest. We stress
that multiple overpasses to collect images provides more data than is necessary but maximizes the
coverage area with quality images, while only marginally increasing the amount of time spent in the
field and the burden on the UAS.

Collection of data even without the ideal sensor package or issues with georeferencing still
provides an important contribution to the long-term understanding of a site. It is far better to have
some imagery than none, but we do stress the need to utilize best practices for georeferencing and
transparency in classification methods. ANN is sometimes considered a black box, but with presenting
software and parameter settings along with training and validation methodology, such a process can
be repeatable. We also suggest the use of other machine learning techniques such as random forest
for classification efforts. The characterization of this mire provides a much needed high-resolution
classification of this study site to examine submeter vegetation change associated with permafrost
thaw and collapse.

5. Conclusions

Arctic peatlands, including fens and mires, have great spatial heterogeneity in regard to vegetation
composition. Vegetative species have been tied to biogeochemical processes through associative
vegetation cover classes that have been instrumented and measured. Cover classes are advantageous
as they allow scaling and linkages to biogeochemical measurements and modeling efforts and allow
application to new locations. These species often are structurally similar across locations, allowing for
UAS classification to be a robust method for high-resolution image classification. We used a simple
RGB camera with texture analysis to develop an ANN to provide a cover classification map with
error estimates. Textural analysis of the image provided additional metrics for classification and
showed importance when classifying specific classes. Misclassification rates were higher for specific
classes, indicating a need for additional field plots as well as the potential value of using topographic
estimates provided by parallax on stereo images or lidar data. Presentation of probability maps for the
highest and second highest classes and difference between these two classes provides a method for
presenting the confusion of classification on a pixel by pixel level, allowing for cover type and spatial
influences on classification to be examined. We have developed a high spatial resolution (3 cm) cover
classification that focuses on vegetation cover types that represent biogeochemical processes related to
CH, production. Our classification provides a contemporary dataset to be used along with ongoing
field measurements that can be compared with historical classification efforts at the site.
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