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Abstract: High-throughput phenotyping technologies have become an increasingly important topic
of crop science in recent years. Various sensors and data acquisition approaches have been applied to
acquire the phenotyping traits. It is quite confusing for crop phenotyping researchers to determine
an appropriate way for their application. In this study, three representative three-dimensional (3D)
data acquisition approaches, including 3D laser scanning, multi-view stereo (MVS) reconstruction,
and 3D digitizing, were evaluated for maize plant phenotyping in multi growth stages. Phenotyping
traits accuracy, post-processing difficulty, device cost, data acquisition efficiency, and automation
were considered during the evaluation process. 3D scanning provided satisfactory point clouds for
medium and high maize plants with acceptable efficiency, while the results were not satisfactory
for small maize plants. The equipment used in 3D scanning is expensive, but is highly automatic.
MVS reconstruction provided satisfactory point clouds for small and medium plants, and point
deviations were observed in upper parts of higher plants. MVS data acquisition, using low-cost
cameras, exhibited the highest efficiency among the three evaluated approaches. The one-by-one
pipeline data acquisition pattern allows the use of MVS high-throughput in further phenotyping
platforms. Undoubtedly, enhancement of point cloud processing technologies is required to improve
the extracted phenotyping traits accuracy for both 3D scanning and MVS reconstruction. Finally,
3D digitizing was time-consuming and labor intensive. However, it does not depend on any
post-processing algorithms to extract phenotyping parameters and reliable phenotyping traits could
be derived. The promising accuracy of 3D digitizing is a better verification choice for other 3D
phenotyping approaches. Our study provides clear reference about phenotyping data acquisition of
maize plants, especially for the affordable and portable field phenotyping platforms to be developed.

Keywords: maize plant; phenotyping; three-dimensional digitizing; multi-view stereo; three-dimensional
scanning; point cloud

1. Introduction

Plant genotyping and phenotyping technologies are significantly important for acceleration of
breeding programs to feed several billion people all around the world [1]. However, compared to
rapid development of genotyping technologies, the inability to efficiently and accurately achieve
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complex phenotypic traits has become a bottleneck that limits genetic gain in breeding programs [2,3].
Substantial changes and improvements in phenotyping technologies for crops are required for a
long term [1,4]. Morphology of plants is one of the most important types of phenotyping traits.
The morphological traits provide a feasible way to assess plant growth, physiology, stress, yield,
and every development in the plant [5]. These traits are also fundamental to improve plant
characterization, selection, and discrimination [6]. Therefore, development of highly accurate and
efficient morphological data acquisition and processing approaches is of great significance for plant
phenotyping and further plant breeding [7].

Phenotyping traits related to plant morphology could be classified into three categories from large
to small scales: (1) plot and canopy scale in field, (2) individual plant and organ scale indoor, and (3)
micro-scale in laboratories. For the largest scale, unmanned aerial vehicle (UAV) [8] and vehicle based
phenotyping platforms [9] were commonly used in field to acquire the phenotyping traits in plot and
canopy scales [10]. Parameters derived by these platforms, such as plant height, leaf area index (LAI),
canopy cover, and above-ground biomass [11], were satisfactory to show the morphological differences
of canopies caused by cultivar or treatment strategies. Owing to the occlusion of adjacent plants,
most field phenotyping platforms were not capable of deriving finer phenotyping traits of individual
plants [12]. Since last few years, there are big (and very expensive) field devices that could acquire
the same (or almost the same) traits accuracies on single plant level as the indoor ones [13]; however,
they are unaffordable for most researchers in application. For the smallest scale, the internal structure
of plant organs was captured using Micro- computed tomography (CT) and similar high resolution
imaging devices [14,15]. However, this depends on expensive equipment and it is not feasible for
high-throughput plant phenotyping.

Maize (Zea mays) is one of the most widely grown crops worldwide. It has been predicted that
more than half of the increased food demand for cereal plants comes from maize [16]. Substantial
changes in phenotyping technologies for breeding and crop improvement are thus required [17].
Delicate phenotyping traits of individual plant and organs benefit to genome wide association analysis
(GWAS) and crop breeding [16,18]; therefore, many researchers developed high-throughput and
efficient phenotyping platforms and methods to acquire maize plant traits [19]. Pot-grown plants on
conveyor transport [20], robot-assisted imaging pipeline [21,22], and turntable combined with light
detection and imaging (LiDAR) measuring [23] platforms were developed to acquire high-throughput
plant phenotyping. Morphological parameters derived through two-dimensional (2D) images taken at
appropriate angles were satisfactory for many demands [21]. However, the 1D parameterization was
not always properly achieved. That led to extra calibration of e.g., leaf azimuthal angle, leaf length,
and leaf area. 3D reconstruction of plants is an alternative way to solve this problem [24]. Commonly
adopted 3D reconstruction approaches include 2D LiDAR synthesis [23], time-of-flight camera
reconstruction [25-27], multi view stereo (MVS) reconstruction [28,29], 3D digitizing [30,31], and 3D
laser scanning [32,33]. These approaches showed different performance toward various growth stages
of maize plants in accuracy, efficiency, and throughput. Therefore, it has become quite confusing
for the new researchers and developers to make a good choice for their phenotyping application of
maize plants.

In this study, the performance of three representative morphological data acquisition approaches
was comprehensively evaluated in 3D phenotyping of different growth stages of maize plants,
including 3D laser scanning, MVS reconstruction, and 3D digitizing. The efficiency, accuracy,
automation, and costs were systematically evaluated. The comparison aims to provide reasonable
reference for sensor selection in phenotyping platforms for field maize plants.
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2. Materials and Methods

2.1. Overall Process Flow

Three 3D data acquisition approaches and manual measurement were used to obtain the
phenotypic traits of maize plants. The overall workflow is described in Figure 1. It involves ten steps:
(1) measurement of the leaf inclination and azimuth angle of target plants; (2) obtaining the 3D scanning
point clouds of plants; (3) capturing of MVS images of individual plants; (4) acquiring 3D digitizing
data of plants in phytomer scale; (5) manual measurement of leaf length, leaf width, sheath length, and
internode length of the plants; (6) registration and segmentation of 3D point clouds of each plant from
3D scanning; (7) reconstruction of 3D point clouds of maize plant from MVS images; (8) evaluation
of the accuracy of 3D point clouds between 3D scanning and MVS; (9) extraction of phenotypic
parameters of maize plant structure from 3D point clouds and 3D digitizing; and (10) evaluation of the
accuracy of phenotypic parameters from 3D point clouds, 3D digitizing and manual measurement.
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Figure 1. Workflow of data acquisition, processing, and evaluation of phenotypic parameters of
maize plants.
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2.2. Plant Material and Sampling

The field experiment was conducted from June to July in 2018 at the experimental field in Beijing
Academy of Agriculture and Forestry Sciences (39°56'N, 116°16’E). Three maize hybrids labeled
AiDan268 (AD268), JingKe968 (JK968), and ZhengDan958 (ZD958) were planted in nine plots with
three replicates for each, respectively. The planting density of these nine plots was 6 plants/m?, where
the row spacing was 60 cm. Each plot consisted of 15 lines, and the plot size was 90 m? (10 m x 9 m).
Leaf ages were marked on the 5th and 10th leaves using red spray paint. The soil was tilled to a
depth of 15 cm before sowing, and the soil texture was loamy sand with a field capacity of 32% in the
plow layer. Other chemical properties of the plow layer are as follows: 27.2 g kg~ ! organic matter,
1.34 g kg~ ! total N, 37.6 mg kg ! available phosphorus, 91 mg kg~! ammonium acetate extractable
potassium, and the pH of the soil was 7.6.

At the growth stage V5 (20th day after sowing), V15 (50th day after sowing), and R1 (80th day
after sowing) [34], one maize plant in each plot was selected (nine plants of each growth stage in
total, containing three hybrids and three plants for each hybrid). Table 1 summarizes an intuitive
description of selected plants, including the averaged leaf number and plant height in three growth
stages. Specifically, AD268 plants in R1 stage were much smaller than the other two hybrid plants.
To identify the azimuth direction in field, the selected plants were marked towards north at the base of
the stems. Then the plants were excavated into pots with underground parts, containing a soil and
roots cylinder of 30 cm diameter and a depth of 25 cm. To assure the morphological stablility for a
short time, the sampled plants were watered immediately.

Table 1. Morphological description of three hybrids maize plants at three growth stages.

Hybrids and Growth Stages AD268 JK968 ZD958
V5 V15 R1 V5 V15 R1 V5 V15 R1
Averaged total leaf number 7 20 22 7 18 20 7 20 22

Averaged plant height (cm) 40 180 200 43 228 315 45 246 288

2.3. Data Acquisition and Processing

The pots loaded with plants were transported into indoor labs (the roof was higher than all the
selected plants) to prevent subtle air flow, which would affect the morphological stability of plant
leaves. The sequence of data acquisition of target plants was strictly in accordance with that mentioned
in Section 2.1. The leaf angle measurement, 3D scanning, and MVS imaging acquisition occupy the
highest priority to prevent water loss, which may lead to the change in morphological characteristics of
plants, especially for V5 stage plants. Detailed description of 3D scanning, MVS imaging, 3D digitizing,
and manual measurement processes was introduced as discussed in the following sections.

2.3.1. Three-Dimensional Scanning

Terrestrial laser scanning (TLS) offers a potential solution for rapid and accurate solution for the
plant’s 3D structure [35]. Herein, FARO Focus3D 5120 (FARO, Lake Mary, Florida, USA) 3D scanner
was used to obtain the point clouds. This scanner is featured as portable, scanning rapidly with high
resolution. To improve the scanning efficiency, nine plants (arranged in three rows and three plants in
each row) at V5 stage, whereas six plants (arranged in two rows and three plants in each row) at V15
and R1 stages, were measured together as a group. 0-90° scan view oriented to the target plants and
four stations around the plants were set up for a group of plants. Five calibration balls were arranged
at different heights for later point cloud registration, connecting the four scan stations together as an
integral group. It took about 30 min to scan a group. Thus the average time spent on an individual
plant was 3.3 min for V5 stage, and 5 min for V15 and R1 stages, respectively. The supporting software
of the scanner SCENE 6.2 (FARO, Lake Mary, Florida, USA) was used to register the point clouds of a
group. Point clouds procedures, including denoising, resampling, mesh reconstruction, hole filling
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and phenotypic parameter extraction were processed by using Geomagic Studio 2013 (3D system,
Morrisville, NC, USA) and CloudCompare (2.10.beta, http://www.cloudcompare.org/). The extracted
phenotypic parameters include leaf length, leaf width, leaf area, leaf inclination angle, leaf azimuth
angle, leaf curvature, plant volume, and plant height. ‘Point list picking’ tool in CloudCompare was
used to pick vein curve points and width points manually for each leaf. Then the parameters were
calculated by using the coordinates of picking points and algorithms in our previously developed
software MaizeTypeAns (NERCITA, Beijing, China) [30].

2.3.2. Multi-View Stereo Image Acquisition

Recent advances in MVS technology can lead to the reconstruction of 3D plant structure using
image sequences from multi-view angles [28]. We acquired the MVS image sequences of each selected
plant. Multi-view images were captured by evenly moving one or two Canon 700D DSLR cameras
with Canon EF-5 24 mm f/2.8 lens (Canon, Tokyo, Japan). Based on the plant size mentioned in Table 1,
maize plants were photographed as a single layer at V5 stage and as a double layer at V15 stage.
At R1 stage, AD268 could be photographed as double layer (this hybrid was much shorter than the
other two hybrids, see Table 1), while JK968 and ZD958 were too high to be photographed as double
layer. Therefore, individual plants of these two hybrids were divided into two parts following which
lower part was photographed as double layer. The upper part was photographed as another extra
single layer. Two markers were bound on the common sections of the to be truncated plants as the
registration substance of later combination of the two parts. The maize plants were truncated because
of the room height (310 cm) and the limitation of camera view (must be 30—40 cm higher than plant
height). If the room is high enough, there is no need to truncate the plants. However, the extra layer
must be considered due to the limitation of camera view. The cameras were held up at higher positions
using a support, and a wireless shutter was used to control the image acquisition. The optimal distance
between the camera and the plant was around 50 cm, and the camera was positioned at 80 cm height
as well as 45° look-down towards the plant at V5 stage. At V15 and R1 stages, the distance between the
camera and the plant was around 150 cm, and the cameras were positioned at 130 cm and 260 cm height
of the two corresponding layers as well as 45° looking-down towards the target area of the plant. Each
group of images consisted of 3040 images for V5 stage, 60-80 images for V15 stage, and 90-120 images
for R1 stage. The averaged time spent on acquiring the images of an individual plant was 1.5 min for
V5 stage, 2 min for V15 stage, and 4 min for R1 stage (the time spent on AD268 of R1 stage was 2 min).
3D point clouds reconstruction was performed by using PhotoScan software (Agisoft, St. Petersburg,
Leningrad, Russia 2018), which is a commercial software that performs 3D reconstruction of objects
based on MVS technology (Figure 2). The efficiency of PhotoScan was seriously affected by the number
of images and quality setting in ‘Bulid Dense Cloud’. Moreover, the accuracy was affected by quality
setting in “‘Aligning Photos’. To balance efficiency and accuracy, the software setting was ‘High” in
‘Aligning Photos’, ‘Medium’ in ‘Bulid Dense Cloud’; and default in others. The reconstructed 3D point
clouds were processed in the way similar to that of 3D scanning. Segmented point clouds of JK968 and
ZD958 in R1 stage were registered using ‘Manual Registration” in Geomagic Studio 2013 (3D system,
Morrisville, NC, USA). The parameters extraction of point clouds was performed in a way similar to
that in 3D Scanning.
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Figure 2. Diagram of MVS reconstruction using PhotoScan.

2.3.3. Three-Dimensional Digitizing

3D digitizer, an electromagnetic device that could measure the location and orientation of target
objects, is a popular approach to characterize the feature points in 3D space, and especially fits for
branch structured plants [31,36]. In this study, Fastrak 3D digitizer (Polhemus, Colchester, VT, USA)
combined with Tx4 emitter was used to obtain the 3D featured points of the selected plants. Each 3D
coordinate of the featured point was acquired by a free-moving pen operated manually. 3D digitizing
principle was formulated for the basic phytomer unit, as shown in Figure 3. A phytomer is composed
of a node, an internode, a sheath, and a blade. The 3D digitizing of a phytomer started from the
node, i.e., the growth point of the sheath. The first point was the bottom of the sheath. Further, three
points were recorded clockwise around the sheath at the quarter position points, and the fifth point
overlapped with the first point. The following sixth and seventh points were recorded at middle
and top of the sheath, respectively. Then the blade vein was digitalized with appropriate distance,
generally about 5 cm step length. The step length was appropriately reduced at bending positions to
promise the curving shape of the vein described accurately. Finally, three points were recorded along
the widest section of leaf perpendicular to the vein direction. The phytomer acquisition procedure
of the individual plant was conducted from lower to upper leaves, and lower sheath and blade of
a phytomer were peeled off to release the sheath and blade of the next phytomer. Tassel and ears
were also digitized as independent organs parallel to the phytomers. It took about 5, 15, and 20 min
of an individual plant at V5, V15, and R1 stages, respectively. The emitter and plant should remain
relatively static during the data acquisition process. Metal objects were forbidden to appear around
the emitter because metal would affect the magnetic field of the digitizer. 3D digitizing visualization,
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processing, and phenotyping traits estimation were conducted by using our previously developed
software MaizeTypeAns [30] for maize plants. Figure 3 shows the 3D digitizing visualization result of
maize plants in three growth stages.

L
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Figure 3. 3D digitizing principle of a phytomer and three 3D digitizing visualization result of maize

3

2

plants at three growth stages.

2.3.4. Manual Measurement

The leaf angle, leaf azimuth, and plant height were measured manually at the first step before 3D
laser scanning; while the leaf length, leaf width of each phytomer were measured manually at the last
step after 3D digitizing.

3. Results

3.1. Evaluation of Data Acquisition and Processing Efficiency

A comprehensive comparison of 3D scanning, MVS reconstruction, 3D digitizing, and manual
measurement is summarized in Table 2, including the costs of related instruments, data acquisition
efficiency, data analysis difficulty, phenotyping traits accuracy, automation degree, etc.

3D scanning is an automatic and non-destructive approach to acquire the 3D point clouds of
maize plants. The device is very portable to take along and needs little preparation. Supporting
software for data acquisition and processing are easy to operate. There is little stochastic error affected
by human operation. Point cloud registration has to be conducted after the scanning to obtain complete
point clouds of plants. The time spent on data acquisition and processing was acceptable. It took an
average of 5 min to acquire the point cloud of a maize plant. However, the depending device and
software were relatively expensive compared to that in other approaches. The phenotyping parameter
extraction procedure is not highly automatic and takes longer time. 3D scanning is a better choice for
affiliations with adequate budgets. Further point cloud processing and phenotyping traits extraction
software needs to be developed for high throughput phenotyping applications.

MVS reconstruction provides an independent way to acquire the 3D point clouds of individual
maize plants. Only low-cost cameras are necessary in the data acquisition procedure. There is little
stochastic error affected by human operation. The time spent on data acquisition and processing
was also acceptable. It took almost 4 min to acquire the image sequences of a maize plant. MVS
reconstruction was performed to obtain the point cloud after the image acquisition. Open source
alternatives are available to reconstruct the 3D point cloud using the acquired images instead of the
commercial software, such as VisualSFM [37]. Therefore, MVS reconstruction is a good choice to
develop affordable phenotyping platforms [38]. However, there is a risk that incorrect operation,
such as insufficient overlap or deficient images, may lead to the failure of reconstruction. Positions for
acquiring photographs (at different heights and azimuth) and camera settings have to be specified;
therefore, the preparation time of MVS image acquisition is relatively long.
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Table 2. Comparative analysis of different phenotyping approaches for maize plant.

Index 3D Scanning MVS 3D Digitizing Manual
Preparation time Short Long Moderate Short
Preparation Moderate (V5, V15)
difficulty Easy Hard (R1) Moderate Easy
A Canon camera
Data acq}nsltlon FARQ Focus3D Camera support Fastrak, Laptop Ruler, goniometer
device 5120 .
Wireless shutter
Cost of device $70,000 $1000 $15,000 $10
Raw data format Point clouds Image sequences 3D coordlr}ates of Numbers
key points
Data acquisition Short (V5),
time Moderate (V15, R1) Short Moderate Long
- Easy (V5),
Datg;ﬁ%ﬁi?tlon Easy moderate (V15), Moderate Hard
y hard (R1)
Data processing SCENE, PhotoScan
software Geomagic Studio Standard Edition Fastrak Excel
SCENE: attached to
Data processing FARO’ . $179 Attached to device $70
software costs Geomagic Studio:
$13,000
. 30 min/plant (V5)
Data }:irrcl:l(;essmg 10 min/plant 40 min/plant - -
(V15,R1)
Data processing Moderate (V5, V15)
difficulty Moderate Hard (R1) Easy Easy
Parameters CloudCompeare, CloudCompare, MaizeTvoeAna .
extraction software MaizeTypeAna MaizeTypeAna yp
CloudCompare: CloudCompare:
Parameters open source, open source, MaizeTypeAna:
extraction MaizeTypeAna: MaizeTypeAna: Customized -
software costs Customized Customized development
development development
Parameters 10 min / plant (V5) 10 min / plant (V5)
extraction time 15 min/plant 15 min/plant 10 s/plant -
(V15,R1) (V15, R1)
Parameters
extraction difficulty Moderate Moderate Easy )
Extracted . >5 >5 17 10
parameter quantity
Destructiveness No No Yes Yes
. Low (V5), .

Precision High (V15, R1) High Moderate Moderate
Personal error Low Low Moderate High
Expansibility No Yes Yes No
Automation 80% 60% 20% 0%

Labor cost Low Moderate High High
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Though the 3D digitizing data acquisition of maize plants was quite labor intensive and
time-consuming, plant skeleton with explicit semantics was obtained directly for phenotyping analysis.
The cost of equipment used was acceptable and data acquisition process was very simple to operate.
Comparing with the 3D scanning and MVS reconstruction which generate point cloud as the raw data,
post-processing such as point cloud resampling and skeleton extraction could be skipped. However,
the obtained data were significantly affected by human operation and the device was strictly restricted
by the metal-like surroundings. 3D digitizing is quite suitable for field plant phenotyping.

3.2. Evaluation of Three-Dimensional Point Cloud Accuracy of Maize Plants

Point clouds were obtained in both 3D scanning and MVS reconstruction. Thus the accuracy of
these two approaches was evaluated by comparing the acquired point clouds of the three hybrids
plants in three growth stages. Figures 4-6 illustrate the visualization of the point clouds derived
by 3D scanning and MVS reconstruction. Clearly, MVS reconstruction shows better result than 3D
scanning of small plants (V5 stage), as the thinner leaves are rather unstable and may wave during
the entire data acquisition process (nine plants were scanned together for totally about 30 min in 3D
scanning process while only one plant took 1.5 min in MVS image acquisition). In contrast, significant
differences between the two approaches were not observed for medium and higher plants (V15 and
R1 stages). Point cloud distances were estimated by “cloud—cloud dist” tool in CloudCompare
(2.10.beta, http:/ /www.cloudcompare.org/), which is an open source project of 3D point cloud and
mesh processing. More deviations were observed in upper parts of JK968 and ZD958 at V15 and R1
stages. This is attributed to the fact that the plants of these two hybrids in the later growth stages were
too tall and the image acquisition for MVS reconstruction was performed twice, including three layers.
Therefore, when accuracy is the major indicator to be considered, it is advised that MVS reconstruction
is more suitable for early growth stage maize plants and 3D scanning obtains better results for later
growth stage maize plants.

AD268

JK968

4.00 cm

2.00 cm

ZD958

0.00 cm

3D scanning MVS Point cloud distance

Figure 4. Maize plants point clouds comparison derived using 3D scanning and MVS reconstruction at
V5 stage (20th day after sowing).
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Figure 5. Maize plants point clouds comparison derived using 3D scanning and MVS reconstruction at
V15 stage (50th day after sowing).
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AD268

JK968

8.00 cm

4.00 cm

ZD958
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3D scanning MVS Point cloud distance

Figure 6. Maize plants point clouds comparison derived using 3D scanning and MVS reconstruction at
R1 stage (80th day after sowing).

3.3. Evaluation of Three-Dimensional Phenotypic Parameter

Furthermore, the commonly used phenotyping parameters, including leaf length, leaf width, leaf
inclination angle, leaf azimuth, leaf area, plant height, normalized volume, and leaf curvature were
also evaluated. These parameters were estimated according to procedures mentioned in literature
reports [17,30]. The first six parameters (Figure 7), containing the four data acquisition forms, including
3D scanning, MVS reconstruction, 3D digitizing, and manual measurement, where the manual measured
parameters were considered as the ground truth, were compared. Corresponding correlation coefficient
(R?) and root mean square error (RMSE) are listed in Table 3. 3D digitizing was more accurate compared
to 3D scanning and MVS reconstruction when calculating leaf length. The main reason for the difference
was the points missing of blade tip during point cloud reconstruction and post-processing. 3D digitizing
was also more accurate in calculating leaf width when leaf width was less than 10 cm. The difference
below 10 cm was caused by points missing at blade edges. However, leaf widths obtained by the three
methods appeared shorter than the actual measured value, when leaf width was greater than 10 cm.
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The result was attributed to the leaf rolling at edge, and the 3D measurement methods could not capture
these small deformations. For leaf inclination angle and azimuth, no significant differences were found
among the three approaches. The main reason was that point clouds loss did not affect angle extraction,
and the high RMSE of leaf angle derived by the three approaches was caused by stochastic measurement
errors. For leaf areas, the deviations were accumulated by both leaf length and leaf width. For plant height,
3D digitizing performed more positively than 3D scanning and MVS, in particular, at R1 stage. This is
attributed to the fact that point cloud loss of tassels in 3D scanning and MVS reconstruction led to shorter
plant height estimation. In summary, averaged R? of the six concerned traits is in the following order:
3D digitizing (0.941) > MVS reconstruction (0.912) > 3D scanning (0.906). This indicates that parameters
extracted by 3D digitizing were more accurate than point clouds derived from 3D scanning and MVS
reconstruction. There were no significant differences between MVS reconstruction and 3D scanning.
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Figure 7. Phenotyping parameter evaluation derived by 3D scanning, MVS reconstruction,

3D digitizing, and manual measurement. The samples used contain all three hybrid plants in three
growth stages. Evaluated parameters include (A) leaf length, (B) leaf width, (C) leaf inclination angle,
(D) leaf azimuth, (E) leaf area, and (F) plant height.
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Table 3. Correlation coefficient (R?) and root mean square error (RMSE) of phenotyping parameters
derived by 3D scanning, MVS reconstruction, and 3D digitizing as presented in Figure 7.

Phenotyping 3D Digitizing 3D Scanning MVS
Parameters R? RMSE N R? RMSE N R? RMSE N
Leaf length 0.996 1.76 cm 300 0.914 12.58 cm 122 0.910 11.52 cm 122
Leaf width 0.902 1.06 cm 300 0.843 1.71 cm 122 0.852 1.77 cm 122
Leaf angle 0.852 4.89° 300 0.866 4.97° 122 0.870 4.93° 122

Leaf azimuth  0.966 20.70° 300 0.948 25.37° 122 0.954 23.92° 122

Plant height 0.999 241 cm 27 0.998 499 cm 27 0.998 5.69 cm 27

Leaf area 0933  69.4 cm? 300 0.869  131.40 cm? 122 0.887  140.88cm? 122

Moreover, the normalized volume of the plants and leaf curvature directly estimated by the 3D
scanning and MVS reconstructed point clouds were compared to evaluate the phenotypic differences
caused by the two approaches (Figure 8). The normalized volume was estimated as follows:

Vi = (Vz - Vmin)/(vmax - Vmin) (1)

where Vinax and Vi, are the maximum and minimum volumes of all the sampled plants in the
same growth stage, respectively, and V; is the ith sampled plant volume. A significant reduction was
observed in 3D scanning normalized volume at V5 stage compared to MVS reconstruction. It was
mainly caused by the poor quality of the point cloud obtained by 3D scanning at V5 stage for which
plants were small. No significant differences were acquired for leaf curvature derived from 3D scanning
and MVS reconstruction.
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Figure 8. Normalized volume and leaf curvature comparison derived by 3D scanning and MVS
reconstruction point clouds.

4. Discussion

4.1. Evaluation of Efficiency and Accuracy

In this study, three representative morphological data acquisition approaches were selected to
evaluate their performance in maize plant phenotyping. 3D scanning, as an automatic approach
with high accuracy, performs well for later growth stage plants, i.e., higher plants. However, it does
not perform well for early growth stage plants, i.e., shorter plants. Though several plants could be
scanned together to improve the average efficiency of individual plants, 3D scanning still requires
relatively long time for data acquisition. Nonetheless, the results only reflected the equipment used
for the research, and using higher class laser scanner could probably provide better results. MVS
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reconstruction exhibited the highest data acquisition efficiency and performed well for small plants.
However, significant deviations were observed in upper parts of higher plants. This issue can be
resolved by designing robotic arms [22], which carries the camera to higher position and provides a
more stable support. For field crops and dense vegetation structure, illumination problem was also
very important for MVS reconstruction. Low contrast and dim light images may lead to point cloud
missing or reconstruction failure. It can be improved by partly using image enhancement techniques.
Point clouds were obtained by 3D scanning or MVS reconstruction. Some of the morphological details
of the acquired point clouds were not so satisfactory for phenotyping applications, such as key point
loss at the end of the leaves and blur points at leaf edges and tassel ends. Thus post-processing
approaches, such as point cloud resampling [39], skeleton extraction [40], and mesh reconstruction [41],
have to be applied and improved to extract the phenotyping traits of maize plants. Compared to
3D scanning and MVS reconstruction, 3D digitizing sacrificed data acquisition efficiency for simple
post-processing, and obtained reliable results for phenotyping (Figure 7 and Table 3). Thus the
efficiency of 3D digitizing was quite low and morphological data with clear semantics of plants
could be obtained. However, 3D digitizing could be used as verification for other 3D phenotyping
approaches due to its promising accuracy. Moreover, there is efficiency improvement potential for
point cloud analysis by developing suitable software, such as automatic point cloud skeleton extraction
and automatic parameter extraction. Comparing with other 3D data acquisition approaches, such
as 2D LiDAR synthesis [23] and TOF sensors [25], the three approaches examined in this study are
capable of acquiring 3D morphological data of maize plants with a wide range of heights, though they
perform in a diverse manner for small and upper parts of the plants.

4.2. Potential Application in Phenotyping Platforms

At present, the indoor phenotyping platforms [17,19,42] of individual maize plants are relatively
mature. Ideal environment could be promised in these platforms, such as appropriate lights for
imaging, stable air flow, and reliable conveyors. However, indoor plants show diverse morphology
as in field, and cannot present the environmental adaptability of specified genes [43,44]. Thus field
plant phenotyping [45] is more significant for genetic breeders. Although canopy and plot scale
platforms have been developed to derive canopy scale morphological traits, field phenotyping
platforms for individual plants still need to be improved urgently, in particular, for high-throughput
and more detailed traits in plant and organ scale [12]. Comparative analysis of the accuracy,
efficiency, automation, and cost of the three approaches evaluated in this study, it indicates that
MVS reconstruction has a great potential in field phenotyping platforms for individual plants.
“One by one” plant data acquisition pattern and efficiency of MVS coincides with the high-throughput
phenotyping requirement. The cost of MVS is highly suitable for affordable and portable platforms [38].
Post-processing software and robust algorithms should be developed for the reconstructed point clouds
of MVS to improve the accuracy of phenotyping parameter extraction in the platforms. A reasonable
question for such platform is the choice between rotating the plant or rotating the camera. In our
experiment, rotating the plant might shake the leaves and cause more noise in the reconstructed point
clouds. Thus, rotating the camera and keeping the plant still is a better choice for the platforms to
be developed.

5. Conclusions

This study evaluated three representative 3D phenotyping approaches of maize plants, including
3D laser scanning, MVS reconstruction, and 3D digitizing. 3D laser scanning depends on expensive
devices to automatically acquire 3D point clouds with acceptable efficiency. This technique showed
good performance for higher plants and unsatisfactory point clouds for smaller plants. MVS
reconstruction exhibited the highest efficiency among the three investigated approaches. Compared to
3D scanning, it acquired better point clouds for smaller plants, while it obtained significant deviation in
upper parts of higher plants. The low cost and one by one plant pipeline data acquisition pattern allows
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the MVS reconstruction to be a better choice for affordable and portable field phenotyping platforms.
Advanced point cloud processing technologies are definitely needed to improve the accuracy of
phenotyping traits extraction for both 3D scanning and MVS reconstruction. 3D digitizing is the most
time-consuming and labor intensive among the three approaches. However, it does not depend on any
post-processing algorithms to extract phenotyping traits and reliable phenotyping results could be
obtained. The promising accuracy of 3D digitizing provides a reasonable way of verification for other
3D phenotyping approaches.
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