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Abstract: Deep learning methods, especially convolutional neural networks (CNNs), have shown
remarkable ability for remote sensing scene classification. However, the traditional training process
of standard CNNs only takes the point-wise penalization of the training samples into consideration,
which usually makes the learned CNNs sub-optimal especially for remote sensing scenes with large
intra-class variance and low inter-class variance. To address this problem, deep metric learning,
which incorporates the metric learning into the deep model, is used to maximize the inter-class
variance and minimize the intra-class variance for better representation. This work introduces
structured metric learning for remote sensing scene representation, a special deep metric learning
which can take full advantage of the training batch. However, the deep metrics only consider
the pairwise correlation between the training samples, and ignores the classwise correlation from
the class view. To take the classwise penalization into consideration, this work defines the center
points of the learned features of each class in the training process to represent the class. Through
increasing the variance between different center points and decreasing the variance between the
learned features from each class and the corresponding center point, the representational ability
can be further improved. Therefore, this work develops a novel center-based structured metric
learning to take advantage of both the deep metrics and the center points. Finally, joint supervision
of the cross-entropy loss and the center-based structured metric learning is developed for the
land-use classification in remote sensing. It can joint learn the center points and the deep metrics
to take advantage of the point-wise, the pairwise, and the classwise correlation. Experiments are
conducted over three real-world remote sensing scene datasets, namely UC Merced Land-Use dataset,
Brazilian Coffee Scene dataset, and Google dataset. The classification performance can achieve
97.30%, 91.24%, and 92.04% with the proposed method over the three datasets which are better than
other state-of-the-art methods under the same experimental setups. The results demonstrate that the
proposed method can improve the representational ability for the remote sensing scenes.

Keywords: Convolutional Neural Network (CNN); center point; diversity; metric learning; remote
sensing scene classification

1. Introduction

Recently, remote sensing images, which usually consist of abundant spatial and structural
patterns [1,2], have been widely used in many computer vision tasks, such as object detection [3,4],
semantic annotation [5,6], land-use/cover classification [7], in many real-world applications, such as
urban planning, crop and forest management, and climate modelling [8]. Among these tasks,
land-use/cover classification in remote sensing is an important one since it characterizes the land
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covers and reflects the human and social activities in a given territory [9]. However, scenes obtained
by remote sensing usually have complex spatial arrangements, e.g., scenes may have different scales
and orientations. This would lead to the so-called “semantic gap”, namely the divergence between the
low-level features and the high-level semantic concepts [10]. Moreover, remote sensing images usually
have high intra-class variance and low inter-class variance, leading to the difficulty in discriminating
these scenes. In particular, some scenes from different classes may be separated only by the density of
objects, such as the sparse residential and the dense residential scene, and different distributions of
simple objects may even lead to different semantic concepts of scene, such as the residential and the
commercial scene.

To overcome these problems, usual methods design hand-crafted features to encode the spectral,
textural, and geometrical properties and extract specific characteristics of the scenes, such as
the corners [11], salient points [12], wavelet-based rotational invariant roughness features [13],
and textures [14]. However, since the remote sensing scenes usually contain complex structures,
these hand-crafted features, such as SIFT [15], LBP [16], invariant feature matching [17], cannot acquire
adaptive features from the scenes and thus these features usually cannot fit for the requirements of
remote sensing scene representation. Therefore, many machine learning-based methods, which attempt
to learn features adaptively, have been developed for remote sensing scenes. Generally, the “shallow”
machine learning methods, which have one or two layers, such as SVM [18], auto-encoder, have been
applied in the literature of remote sensing scenes and achieve better performance than the hand-crafted
feature-based methods. However, both the hand-crafted feature-based methods and the “shallow”
machine learning methods usually capture the low-level features from the scenes and cannot adapt to
the high-level semantic and abstract features which is essential for remote sensing scene representation.

Nowadays, deep learning methods have shown remarkable ability to extract discriminative
features in many computer vision tasks, such as face recognition [19], object detection [20], as well as in
the literature of scene classification [7]. It can further provide efficient representation and recognition
of the scenes. Many deep models, such as deep belief networks (DBNs) [18], convolutional neural
networks (CNNs) [21–23], have been applied in the literature of remote sensing images. Among these
deep models, CNNs have shown impressive performance since it can extract both the local and global
features and better represent the remote sensing scenes. Since remote sensing scenes from different
classes usually present similar characteristics, deep metric learning [24,25], which can maximize the
inter-class variance while minimizing the intra-class variance, is usually incorporated to general
CNNs to further improve the representational ability for the scenes. To make full use of the training
samples in each training batch, a special structured metric learning [26] is introduced for the remote
sensing scenes in this paper. Moreover, the structured metric learning needs no complex sample
mining and recombination in the pre-training process and is easy to implement. However, deep metric
learning only considers the pairwise correlation between different samples, which would limit the
representational ability for remote sensing scenes.

To make use of the correlations between different classes, this work introduces the center point
of each class to represent the class. In [27], the center loss is first proposed for face recognition and
obtain better performance than general CNNs. However, the center loss only considers the intra-class
variance, and could not fit for the complex features in remote sensing scenes. This work develops a
novel center-based structured metric learning (C-SML) for remote sensing scene classification which
takes advantage of both the deep metrics and the center points to make use of both the pairwise
and the classwise information. Moreover, the C-SML adds a diversity-promoting term to repulse
different center points from each other. Through minimizing the distances between the center point
and samples in each class and repulsing different center points from each other, the intra-class variance
and inter-class variance could be further optimized.

Considering the merits of the training process with the point-wise, the pairwise, and the classwise
information, this work develops a novel jointly supervised learning of the SoftMax loss and the
proposed C-SML for point-to-point learning of the deep model. The SoftMax loss, which focuses on
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the penalization between the predicted and the true label of each sample, tries to make use of the
point-wise information. The C-SML tries to take advantage of the pairwise information between the
training samples and the classwise information between different classes. The developed joint learning
method takes advantage of all this information and could obtain better classification performance for
remote sensing scenes. To summarize, the contributions of this paper are in three aspects:

• This work introduces the center point of the learned features of each class to represent the class in
the training process of the deep model. By decreasing the variance between the samples of each
class and the corresponding center point and repulsing different center points from each other,
the inter-class variance of the learned features for the scenes would be further increased and the
intra-class variance would be further decreased.

• This work proposes a novel center-based structured metric learning (C-SML) to take advantage of
both the deep metrics and the center points. The deep metrics penalize the pairwise correlation
of the training samples. While the center points are used to penalize the classwise information
between different classes. In addition, with the developed C-SML, the center points can be used
to update the CNN model to obtain discriminative features and the obtained features are used to
update the center points simultaneously.

• Joint supervised learning of the SoftMax loss and the proposed C-SML has been developed for
remote sensing scene classification to take advantage of the point-wise, the pairwise and the
classwise information. With the proposed joint learning method, the CNN model for extracting
features and the center points can be learned simultaneously.

The remainder of this paper is arranged as follows. Section 2 develops the proposed joint
supervised learning of the SoftMax loss and the C-SML method for remote sensing scene classification
and gives the implementation of the proposed method. Experiments are conducted over three
real-world remote sensing scene datasets to validate the effectiveness of the proposed method in
Section 3. Finally, the proposed method is concluded and discussed in Section 4.

2. Proposed Method

Remote sensing scenes usually contain complex spatial arrangements and have large intra-class
variance and low inter-class variance. Generally, deep methods have presented impressive results for
many computer vision tasks. However, for the remote sensing scenes, traditional learning process
with SoftMax loss usually cannot discriminate the scenes with the great similarity. To overcome this
problem, this work develops a supervised joint learning of the SoftMax loss and the center-based
structured metric learning to maximize the inter-class variance and minimize the intra-class variance
within the remote sensing scenes. In the following section, we will first introduce the architectures of
the CNNs, and then the special structured metric learning for remote sensing scenes is introduced,
and then the center-based structured metric learning and the supervised joint learning is proposed,
and finally the implementation of the proposed method for remote sensing scenes is introduced.

For convenience, let {(xi, yi)|i = 1, 2, · · · , N} denote the set of samples of the remote sensing
scenes, where N is the number of training samples, xi represents the scene image and yi ∈ Γ is the label
of xi. Γ = {γ1, γ2, · · · , γcl} is the set of class label and cl is the number of the class labels of the scenes.

2.1. CNNs

Deep models, especially the CNNs, have shown remarkable ability for remote sensing scene
classification since the CNNs can extract both the local and global information and better represent
the objects than other low-level representations from the hand-crafted features or “shallow” machine
learning methods [9,21,23,28,29]. Traditional CNNs are consisted of layers of various types, such as
the convolutional layer, the pooling layer, the normalization layer, the fully connected layer, and the
loss layer.

Generally, the CNNs can be seen as the parallel of layers where the features obtained by the former
layer is performed as the input of the current layer. Figure 1 shows the architecture of the general CNNs
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that is used to obtain the representation of the remote sensing scenes. Let sk−1 denote the features
obtained in the k− 1th layer, then the features sk obtained from the kth layer can be formulated as

sk = f (Wk × sk−1 + bk), (1)

where Wk is the weights of the kth convolutional kernel and bk is the biases of the kth convolutional
layer. f (·) is the non-linear activation function.
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Figure 1. Flowchart of general CNNs with SoftMax loss for remote sensing scene classification.
The SoftMax loss contains the SoftMax layer and the cross-entropy loss.

According to the requirements of different tasks, many CNN models, such as AlexNet [30],
GoogLeNet [31], have been developed. Among these models, the AlexNet has obtained good
performance in various computer vision tasks. It consists of five convolutional layers and two pooling
layers. Each convolutional layer is followed by a ReLU layer as the activation function. Since this work
mainly focuses on the training process of the deep model, this work will choose the AlexNet as the
CNN model to generate feature representations from the remote sensing scenes.

Generally, the training batches which try to train the deep model simultaneously and accurately
estimate the training model are used for the training process. The training batch denotes a batch
of samples that are randomly selected from the whole training samples, which can train the model
simultaneously and the average loss is used as the training loss. Denote B as the training batch
and ϕ(xi) as the feature extracted from xi by the CNN. Given xi ∈ B as the samples in the batch.
Traditionally, the SoftMax loss Ls which combines the SoftMax layer and the cross-entropy loss is used
for the training of the CNNs. As Figure 1 shows, the SoftMax layer is used to transform the obtained
features into the probability over each class. The cross-entropy loss, which is the penalization between
the true and the predicted label, is usually used for the training of the CNNs. It can be formulated as

Ls = −
|B|

∑
i=1

log
eWT

0,yi
xi+b0,yi

∑cl
j=1 eWT

0,jxi+b0,j
, (2)

where W0 = [W0,1, · · · , W0,yi , · · · , W0,cl ] denotes the weights of the SoftMax layer and b0 =

[b0,1, · · · , b0,yi , · · · , b0,cl ] is the bias term. | · | denotes the number of elements in the set.
It can be noted from Equation (2) that the SoftMax loss Ls tries to calculate the penalization

point-to-point without considering the correlation between the training samples. This would limit
the performance of the learned model especially for the remote sensing scenes with large intra-class
variance and low inter-class variance, and the learned models are usually sub-optimal which cannot
be fit for the requirement of the remote sensing scene tasks.

2.2. Structured Metric Learning

To further improve the representational ability of the learned deep model, the deep metric learning
can be incorporated in the learning process to maximize the inter-class variance while minimizing the
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intra-class variance. This would be important especially for the remote sensing scenes since the scenes
usually have similar characteristics between different classes.

To implement the deep metric learning, the key process is to calculate the difference between
different samples. This work chooses the Mahalanobis distance as the metric to measure the distance
between the obtained features from different samples. The distance can be calculated as

D(ϕ(xi), ϕ(xj)) =
√
(ϕ(xi)− ϕ(xj))T M(ϕ(xi)− ϕ(xj)) (3)

where ϕ(xi) represents the extracted feature from xi by the CNN. It should be noted that M is a
symmetric semi-positive matrix and it can be decomposed as M = HT H. Therefore, Equation (3) can
be reformulated as

D(ϕ(xi), ϕ(xj)|H) =
√
(H(ϕ(xi)− ϕ(xj)))T(H(ϕ(xi)− ϕ(xj))) (4)

It can be noted from Equation (4) that H can be looked as a linear mapping on the learned
features. Therefore, it acts like the fully connected layer of the deep model and can be implemented
point-to-point in the training process of CNNs.

To make use of the pairwise correlation without constructing the positive and the negative
pairs in the pre-training process, this work introduces the structured metric learning to maximize the
inter-class variance and minimize the intra-class variance for the remote sensing scene classification [26].
Given xi ∈ B, define Txi as the set of samples z ∈ B with different labels from xi,

Txi = {z ∈ B|yz 6= yxi}. (5)

where yz, yxi represents the label of z and xi, respectively. B is the training batch as former subsection
shows. Then, the penalization from the negative pairs in the training batch (negative pair means pair
of training samples with different class label) can be formulated as

L1 = ∑
xi∈B
{∆1 − min

z∈Txi

D(xi, z|H)}, (6)

where ∆1 is a positive value. In the loss L1, the negative pairs of the sample z, which is the nearest
sample with different class labels from the sample xi in the batch B, and xi are penalized.

Define S as the set of positive pairs of the samples in training batch B (positive pair represents the
pair of training samples with the same class label),

S = {(xi, xj)|xi, xj ∈ B, yxi = yxj}. (7)

The penalization of the positive pairs in the batch B can be formulated as

L2 = ∑
(xi ,xj)∈S

D(xi, xj|H), (8)

Then, the loss for structured metric learning [26] penalizes the negative and positive pairs in each
training batch, and it can be formulated as

Lm = L1 + L2 = ∑
xi∈B
{∆1 − min

z∈Txi

D(xi, z|H)}+ ∑
(xi ,xj)∈S

D(xi, xj|H). (9)

The loss Lm is used to train the CNN and encourage the learned features to be discriminative.
The L1 tries to maximize the difference between the learned features from samples in different classes
and the L2 tries to minimize the difference between the learned features from samples in the same class.
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2.3. Center-Based Structured Metric Learning (C-SML) for Remote Sensing Scene Representation

Even though the structured metric learning optimizes the pairwise correlation between different
training samples, the correlation between different classes has been ignored. To calculate the correlation
between different classes, center points of different classes are introduced to represent each class.
This work further measures the correlation between different classes via these center points.

To further decrease the intra-class variance, just as [27], we try to decrease the distances between
the samples of each class and the corresponding center point. As Figure 2 shows, this just looks like a
circle centered by the center point which tries to push all the samples of the class to the center point.
Denote L3 as the penalization term, and it can be formulated as [27]

L3 =
1
|B| ∑

xi∈B
‖xi − cyi‖

2 (10)

where cyi is the center point of class yi.

High-level features

Discriminative features

Scene samples

Softmax 

classifier

Predicted Labels

Softmax 

classifier

 Jointly Supervised Learning of 

C-SML and Softmax loss

Center point

Learned features 

Feature Learning

 with softmax loss
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Push
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Figure 2. Effects of the learned features with the proposed jointly supervised learning of C-SML and
SoftMax loss for the remote sensing scenes. The model trained with traditional deep learning can
extract high-level and abstract features from the scenes. While through maximizing the inter-class
variance and minimizing the intra-class variance with the structured metrics and the center points,
the learned model can provide more discriminative features from the scenes.

Moreover, all the center points are enforced to repulse from each other to further increase the
inter-class variance. Since samples of each class is centered on the center point, encouraging different
center point to repulse from each other just means the samples from different classes are enforced to be
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away from each other. Denote L4 as the diversity-promoting term which encourages different center
point repulse from each other. Then, the penalization can be formulated as

L4 =
2

cl(cl − 1) ∑
i,j∈Γ
{∆2 − ‖ci − cj‖2}, (11)

where ∆2 is a positive value, Γ represents the set of class labels and cl is the number of the labels.
Then, the penalization for the center points can be calculated as

Lc = L3 + L4 =
1
|B| ∑

xi∈B
‖xi − cyi‖

2 +
2

cl(cl − 1) ∑
i,j∈Γ
{∆2 − ‖ci − cj‖2}, (12)

This work tries to take advantage of the merits of both the structured metric learning and the center
points. Therefore, the proposed center-based structured metric learning (C-SML) can be formulated as

Lz = λLm + αLc (13)

where λ and α are the tradeoff parameters, Lm and Lc calculate the penalization of the pairwise
correlation and the classwise correlation of the training samples, respectively.

The effects of the proposed methods can be seen in Figure 2. From Figure 2, we can find that
since the deep model can extract both the local and the global features from the samples, high-level
features can be obtained from the samples and the performance can be significantly improved when
compared with other “shallow” methods. Moreover, as Figure 2 shows, the proposed method pushes
the samples of each class to the center point of the class and repulses different center point from each
other. In addition, it pulls the samples of each class to each other and repulses different samples from
each other to take advantage of the pairwise correlation. Therefore, the learned features would be
more discriminative, and the classification performance would be further improved.

2.4. Implementation of the Proposed Method

In this work, we want to train the SoftMax classifier and the CNNs simultaneously and use the
point-wise information of each sample in the training process. Therefore, as Figure 3 shows, this work
jointly learns the SoftMax loss and the center-based structured metric learning for the remote sensing
scenes. The center-based structured metric learning loss tries to learn the parameters in the CNN model
to encourage obtained features to be more discriminative. The SoftMax loss learns the CNN model
with the parameters in the CNN model and the SoftMax layer. The joint loss can be formulated as

L = Ls + Lz = Ls + λLm + αLc, (14)

where Ls calculates the cross-entropy loss which represents the point-wise penalization of each sample,
Lm calculates the penalization of pairwise correlation of training samples and Lc measures the classwise
correlation between different classes via the center points. λ and α denote the positive values which
act as the tradeoff parameters.

Generally, the CNNs supervised by the proposed method are trainable and can be optimized
by the Stochastic Gradient Descent (SGD). Based on the characteristics of back propagation of deep
models [32], the main problem is the partial of the proposed loss L w.r.t training samples xi in training
batch B and the center point ci of each class. The partial of Ls regarding xi can be implemented as
Caffe and the partial of Lm can be calculated as [26].

In addition, the partial of L3 regarding xi can be calculated as

∂L3

∂xi
=

1
|B| (xi − cyi ) (15)
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The partial of L3 regarding ci can be calculated as

∂L3

∂ci
=

2
|B| ∑

xj∈B
I(yj = i)(ci − xj) (16)

where I(·) represents the indicative function.
The partial of L4 regarding ci can be calculated as

∂L4

∂ci
= − 4

cl(cl − 1) ∑
j 6=i

(ci − cj) (17)

Therefore, the loss L w.r.t xi can be formulated as

∂L
∂xi

=
∂Ls

∂xi
+ λ

∂Lm

∂xi
+ α

1
|B| (xi − cyi ) (18)

The loss L w.r.t ci can be formulated as

∂L
∂ci

=
2α

|B| ∑
xj∈B

I(yj = i)(ci − xj)−
4α

cl(cl − 1) ∑
j 6=i

(ci − cj) (19)
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Figure 3. Flowchart of the proposed method for remote sensing scene classification. The jointly
supervised learning takes advantage of both the proposed loss and the cross-entropy loss to improve
the representational ability of the learned model.

The learning details of the proposed joint supervision are summarized in Algorithm 1.
As Algorithm 1, in the training process, the parameters θk of the kth layer in the CNN model, which is
used to extract features from the scenes, are updated with the center points (step 10 in Algorithm 1).
Then, the center points are updated with the learned features from the CNN model (step 11 in
Algorithm 1). Therefore, the center points and the deep metrics make the learned features from the
CNN model be more discriminative, and the learned features from the CNN model encourage the
center point to be close to the center of each class. As Figure 3 shows, the learned parameters of CNN
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model and the SoftMax layer are used to extract features from the scene and then the learned model is
used to predict the class label of the scene.

Algorithm 1 Implementation of the proposed method for remote sensing scene representation

Input: {xi, yi}(i = 1, 2, · · · , N), θk = {Wk, bk} as the parameter of the kth convolutional layer, W as

the parameters and b is the bias term in SoftMax layer, hyperparameter λ, α, learning rate lr, center

points cj(j = 1, 2, · · · , cl).
Output: θk, W, b

1: Initialize θk in kth convolution layer where Wk is initialized from Gaussian distribution with

standard deviation of 0.01 and bk is set to 0.
2: Initialize the center points cj(j = 1, 2, · · · , cl) that each center point is filled with 0.
3: while not converge do

4: t← t + 1.
5: Construct the training batch Bt.
6: Compute the supervised joint loss by Lt = Lt

s + λLt
m + αLt

c.

7: Compute the deviation Lt regarding each xt
i in Bt by

∂Lt

∂xt
i
=

∂Lt
s

∂xt
i
+ λ

∂Lt
s

∂xt
i
+ α(xt

i − ct
yi
).

8: Compute the deviation Lt w.r.t cj by
∂Lt

∂ct
j
=

2α

|Bt| ∑
xt

j∈Bt

I(yj = i)(ct
i − xt

j)−
4α

cl(cl − 1) ∑
j 6=i

(ct
i − ct

j).

9: Update the parameters W by Wt+1 = Wt − lr× ∂Lt

∂Wt = Wt − lr× ∂Lt
s

∂Wt .

10: Update the parameters θk of kth layer by θt+1
k = θt

k − lr× ∂Lt

∂θt
k
= θt

k − lr×
|B|

∑
i=1

∂Lt

∂xt
i
×

∂xt
i

∂θt
k

.

11: Update the center points cj by ct+1
j = ct

j − lr× ∂Lt
c

cj
.

12: end while
13: return θk, W, b

3. Experimental Results

3.1. Experimental Datasets and Experimental Setup

To further validate the effectiveness of the proposed method, we conduct experiments on three
real-world remote sensing image datasets with different properties. One of the datasets, which is called
Brazilian Coffee Scene dataset [28], has multispectral high-resolution scenes. The other two, namely
UC Merced Land-Use dataset [15], and Google dataset [5,33,34], are multi-class land-use datasets that
contain high-resolution scenes in the visible spectrum.

The UC Merced Land-Use Dataset was manually extracted from aerial orthoimagery with a
resolution of one foot per pixel. The dataset has 2100 aerial scene images with 256 × 256 pixels
divided into 21 challenging scene classes (see Figure 4 for details). It contains some highly overlapping
categories, such as the sparse residential and the dense residential, the forest and the mobile home
park, which make it difficult to discriminate different scenes.

The Brazilian coffee scenes were taken by the SPOT sensor in the green, red, and near-infrared
bands. The dataset contains 2876 scenes with 64× 64 pixels which can be divided into 2 classes, namely
coffee and noncoffee(see Figure 5 for details). The differences in the resolution, and spectral in the
scenes make it more complicated than those in the UC Merced and Google data sets.

The Google Dataset was collected from Google Earth by SIRI-WHU and mainly covers the
urban areas in China. Each scene image has 200× 200 with a 2-m spatial resolution. The dataset
contains 2400 scenes which are divided into 12 classes, including agriculture, commercial, harbor,
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idle land, industrial meadow, overpass, park, pond residential, river, and water (see Figure 6 for
details). Compared with UC Merced, the dataset represents the performance of the method over
dataset with relatively low resolution.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 4. Samples of different classes from UC Merced Land-Use dataset [15]. (a) agricultural;
(b) airplane; (c) baseball diamond; (d) beach; (e) buildings; (f) chaparral; (g) dense residential; (h) forest;
(i) freeway; (j) golf course; (k) harbor; (l) intersection; (m) medium density residential; (n) mobile
home park; (o) overpass; (p) parking lot; (q) river; (r) runway; (s) sparse residential; (t) storage tanks;
(u) tennis court.

(a) coffee (b) noncoffee

Figure 5. Samples of different classes from Brazilian Coffee Scene dataset [28].

In the experiments, all the datasets have been equally divided into five folds where four of the
folds are used for training and the remainder is used for testing. Therefore, all the experimental
results are obtained by the five-fold cross-validation. For UC Merced Land-Use dataset and Google
dataset, 70%, 10%, 20% of labeled samples are used for training, validation, and testing, respectively.
For Brazilian Coffee dataset, 90% of the training samples are used for training and the remainder
for validation.

All the deep models are implemented on Caffe [35] which is a popular deep learning framework.
SoftMax classifier is chosen as the classifier to classify different scenes. In addition, as Section 2.1
introduces, AlexNet is chosen as the deep model to learn the features from the scenes for all the
three datasets. Since the three datasets used in this work have different dimensions, we use the crop
technology and change the parameter in the first convolutional layer for different datasets. For UC
Merced Land-Use dataset, the setup is similar to original AlexNet. For Brazilian Coffee Scene dataset,
the crop size of the scenes is set to 63, and the kernel size and the stride in the first convolutional layer
are set to 9 and 1, separately. While for Google dataset, the crop size of the scenes is set to 173, and the
kernel size and the stride in the first convolutional layer are set to 11 and 3, respectively. Through the
adjustment, the outputs from the first convolutional layer of the three datasets are the same and we
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can use the pre-trained model from ImageNet for transferring learning. Very common machine with a
3.4 GHz Intel (R) Core i7 and a GeForce GT 1080 8 GB GPU is chosen to test the performance of the
proposed method.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Samples of different classes from Google dataset [5,33,34]. (a) agriculture; (b) commercial;
(c) harbor; (d) idle land; (e) industrial; (f) meadow; (g) overpass; (h) park; (i) pond; (j) residential;
(k) river; (l) water.

3.2. Classification Performance with Different λ and α

The proposed joint learning of C-SML and SoftMax loss take advantage of the point-wise, pairwise
and the classwise information to increase the inter-class variance and decrease the intra-class variance,
and thus it can significantly improve the representational ability for the remote sensing scenes.
The classification results of the methods are listed in Table 1. It should be noted that the center-SoftMax
means the joint learning of the center points and the SoftMax loss. The SML-SoftMax means the
joint learning of the structured metric learning and the SoftMax loss. Figure 7 presents examples
of samples which are wrongly classified by other methods but correctly classified by the proposed
method. We can find that even the overlapping samples, such as the medium residential and dense
residential in Figure 7d, and the meadow and the agriculture in Figure 7l can be discriminated by the
proposed method. Therefore, from the table and the figure, it can be noted that the proposed method
can significantly improve the representational ability for the remote sensing scenes.

Table 1. Classification Accuracy (%) (Mean ± SD) obtained by different methods over UC Merced
Land-Use dataset (UCM), Brazilian Coffee Scene dataset (Brazilian), and Google dataset. In the table,
the λ, and α are set to 0, 0 with SoftMax, 0, 0.001 with center-SoftMax, 0.001, 0 with SML-SoftMax,
and 0.001, 0.001 with Proposed Method, respectively. The proposed method with the best results
chooses the λ and α which can get best performance.

Method UCM Brazilian Google

SoftMax 95.80± 0.78 88.78± 0.48 87.68± 1.06
Center-SoftMax 96.54± 0.34 89.98± 0.90 90.56± 1.00
SML-SoftMax 96.74± 0.36 89.60± 0.62 89.12± 1.31

Proposed Method 97.14± 0.34 91.24± 0.99 90.86± 1.13
Proposed Method (best) 97.30± 0.58 91.24± 0.99 92.04± 1.11
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However, it should be noted that the performance of the proposed joint learning method is
affected by the hyperparameter λ and α. The classification results over the three datasets with different
λ and α is shown in Figure 8. In the experiments, the parameter λ is set to 0, 0.0001, 0.001, 0.01 and the
α is set to 0, 0.0001, 0.0005, 0.001, 0.003, respectively. We can find from Figure 8a,b that the proposed
method achieves 97.30± 0.58(%) when λ = 0.01 and α = 0.0001 and 91.24± 0.99(%) when λ = 0.001
and α = 0.001 on UC Merced Land-Use dataset and Brazilian Coffee Scene coffee dataset which ranks
the best, respectively. In addition, from Figure 8c, it can be noted that the proposed method ranks the
best when λ = 0.001 and α = 0.0005 for the Google dataset.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7. Classification errors with other methods but correctly classified by the proposed
method over the three datasets. UC Merced Land-Use dataset: (a) denseresidential classified
as (→) mediumresidential; (b) river → forest; (c) sparseresidential → mediumresidential;
(d) mediumresidential → denseresidential. Brazilian Coffee Scene dataset: (e) noncoffee → coffee;
(f) noncoffee→ coffee; (g) coffee→ noncoffee; (h) coffee→ noncoffee. Google dataset: (i) river→
pond; (j) meadow→ agriculture; (k) pond→ river; (l) meadow→ agriculture. (a–c,e–g,i–k) show
samples which is wrongly classified by CNN with SoftMax, the center-SoftMax, the SML-SoftMax,
respectively. (d,h,l) show samples which is wrongly classified by all the three methods.

When we fixed the hyperparameter λ, the results in Figure 8 would show the effects of the
classwise correlation between different classes on the classification performance for remote sensing
scenes. From the trend of performance with different hyperparameter, we can find that the classification
performance over the three datasets increases with the increase of the hyperparameter α. In particular,
the classification performance is significantly improved when compared with that when α = 0.
This means the classwise correlation from the center points has positive effects in the performance of
remote sensing scene representation. However, we should also note that when α is extensively large,
the performance decreases. In particular, when the value of α is larger than 0.003, the learned model
would not converge. That is because that when α is too large, the learning process pays too much
attention on the learning of center points while ignores the optimization of the model. In addition,
it should be noted that when λ = 0, the classification results show the performance of joint learning
of center points and the SoftMax loss. For UC Merced Land-Use dataset, the performance ranks
the best (96.80± 0.41(%)) when α = 0.0005. The classification results can rank 89.98± 0.90(%) and
90.56± 1.00(%) when α = 0.001 over the Brazilian Coffee Scene dataset and the Google dataset.

When we fixed the hyperparameter α, the results in Figure 8 show the effects of the pairwise
correlation between different samples on the classification performance for remote sensing scenes.
Inspect the classification accuracy in Figure 8 and it can obtain the following conclusions.



Remote Sens. 2019, 11, 76 13 of 21

0 1 E - 4 5 E - 4 1 E - 3 0 . 0 0 3
9 5 . 5

9 5 . 9

9 6 . 3

9 6 . 6

9 7 . 0

9 7 . 3
Cla

ssi
fica

tio
nA

ccu
rac

y(%
)

T r a d e o f f P a r a m e t e r  α

 λ = 0
 λ = 0 . 0 0 0 1
 λ = 0 . 0 0 1
 λ = 0 . 0 1

(a)

0 1 E - 4 5 E - 4 1 E - 3 0 . 0 0 3
8 8 . 5

8 9 . 0

8 9 . 5

9 0 . 0

9 0 . 5

9 1 . 0

9 1 . 5

Cla
ssi

fica
tio

nA
ccu

rac
y(%

)

T r a d e o f f P a r a m e t e r  α

 λ = 0
 λ = 0 . 0 0 0 1
 λ = 0 . 0 0 1
 λ = 0 . 0 1

(b)

0 1 E - 4 5 E - 4 1 E - 3 0 . 0 0 3
8 7

8 8

8 9

9 0

9 1

9 2

Cla
ssi

fica
tio

nA
ccu

rac
y(%

)

T r a d e o f f P a r a m e t e r  α

 λ = 0
 λ = 0 . 0 0 0 1
 λ = 0 . 0 0 1
 λ = 0 . 0 1

(c)

Figure 8. Classification performance of the proposed jointly supervised learning method with different
tradeoff parameter λ and α over different datasets. (a) UC Merced Land-Use dataset; (b) Brazilian
Coffee Scene dataset; (c) Google dataset.

1. The joint learning of pairwise correlation and the point-wise information shows positive effects
on the representational ability of the learned model for remote sensing scenes. It can be noted
that in Figure 8a,b the lines of classification accuracies when λ = 0.0001, 0.001, 0.01 is above the
line when λ = 0. Moreover, in Figure 8c, the classification performance is better with pairwise
correlation except when α = 0.003. The use of pairwise correlation for the training process
increases the inter-class variance and decreases the intra-class variance of the remote sensing
scenes and thus encourages the learned model to better represent the scenes.

2. The larger of the hyperparameter value λ is, the higher the classification accuracy is. Larger λ

value means the more pairwise correlation is used in the training process. This would avoid
some bad local optimum in the training process and thus increase the representational ability of
the learned model.

It is worthwhile to note that in the experiments, we choose five-fold cross-validation to obtain the
results. The classification performance over different folds has great changes. For example, over Google
dataset, the average accuracies over center-SoftMax and proposed method are 90.56%± 1.00% and
92.04%± 1.11%, respectively. The classification accuracies over the five folds by the center-SoftMax are
89.4%, 90.3%, 91.5%, 91.7%, 89.9% while the accuracies by the proposed method can be 90.7%, 92.9%,
93.1%, 92.5%, 91%, respectively. We can find that the proposed method obtains a better performance
over all the five folds.

In conclusion, both the λ and α have significant effects on the classification performance of
remote sensing scenes. It is important to choose a proper one in the experiments. In real-world
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application, cross-validation could be used to choose a proper value for the hyperparameter with
different computer vision tasks.

3.3. Comparisons of Different Methods

To comprehensively evaluate the proposed method, three classes of baselines have been chosen
for the comparisons over the three datasets. First, the joint learning method of the center points and
the SoftMax loss is compared with the traditional deep models learned with SoftMax loss to show the
performance of the using of classwise correlation for the remote sensing scenes. Second, we compare
the results of the joint learning method of the structured metrics and the SoftMax loss with those of the
traditional deep models learned with SoftMax loss to show the effects of pairwise correlation between
the training samples in the performance of remote sensing scene classification. Then, the results of
the joint learning of the proposed C-SML and the SoftMax loss is compared with those obtained
with pairwise and point-wise correlation. Finally, we compare the results of the proposed joint
learning method with those obtained with classwise and point-wise correlation. To further compare
the classification performance, we list the confusion matrix of different methods in Figures 9–11.

First, the results from the joint learning of the center points and the SoftMax loss are compared
with that obtained from the learning with SoftMax loss. As introduction shows, Since the remote
sensing scenes usually have complex arrangements and limited training samples, the learned model
usually tends to be local optimal which limits the representational ability for the scenes [9,36]. Through
incorporating the classwise into the training process, the learned model could better represent the
scenes. Compare the a and b in Figures 9–11, and we can find that the structured metric learning can
make the model converge to the global optimum or a better local optimum, which could improve the
representational ability for remote sensing scenes. For example, Over UC Merced Land-Use dataset,
the classification errors of forest/mobilehomepark, and parkinglot/golfcourse decrease by 50% and
the classification errors of forest/overpass, chaparral/tenniscourt, mobilehomepark/storagetanks,
forest/mediumresidential, and mobilehomepark/chaparral decrease by 100%. For Brazilian Coffee
Scene dataset, the classification error of coffee/noncoffee decreases by 42.9%. For Google dataset,
the classification errors of some classes with low inter-class variance, such as idle land/agriculture,
commercial/park, harbor/park, overpass/park, industrial/overpass, river/pond, harbor/pond,
idle land/meadow, decrease by 100%. These improvements make the significant improvement of the
whole classification performance. From Table 1, we can find that the average accuracy of the joint
learning method ranks 96.80%, 89.98% and 90.56% which are higher than 95.80%, 88.78% and 87.68%
over UC Merced Land-Use, Brazilian Coffee Scene dataset, and Google dataset, respectively.
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Figure 9. Confusion matrix by different methods over the UC Merced Land-Use dataset. (a) SoftMax;
(b) center-SoftMax; (c) SML-SoftMax; (d) Proposed Method.
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Figure 10. Confusion matrix by different methods over the Brazilian Coffee Scene dataset. (a) SoftMax;
(b) center-SoftMax; (c) SML-SoftMax; (d) Proposed Method.

Then, Table 1 also demonstrates that the joint learning of the structured metric learning and the
SoftMax loss obtains better results than the traditional CaffeNet trained with SoftMax loss. From Table 1,
we can find that the average accuracy of the joint learning method ranks 96.74%, 89.60% and 90.36%
which are higher than 95.80%, 88.78% and 87.68% over UC Merced Land-Use, Brazilian Coffee Scene
dataset, and Google dataset, respectively. Different from the center points, the structured metrics
encourage the learned model to a better one through increasing the pairwise distances from different
classes and minimizing the pairwise distances within each class. Compare a and c in Figures 9 and 10,
we can also find the joint learning method provides better representation for the remote sensing scenes.
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Figure 11. Confusion matrix by different methods over the Google dataset. (a) SoftMax; (b) center-SoftMax;
(c) SML-SoftMax; (d) Proposed Method.
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Finally, compare the joint learning of SML-SoftMax with the proposed method, we can find
that the proposed method obtains significant improvement on both the datasets. Moreover, compare
the joint learning of center-SoftMax with the proposed method, we can also find that the proposed
method obtains significant improvement on both the datasets. From Figures 9–11b–d, we can find that
the proposed method, which makes use of the classwise, pairwise and the point-wise correlation of
the training samples in the training process, can improve the representational ability of the learned
model with the SML-SoftMax and the center-SoftMax. For UC Merced Land-Use dataset, we can
find the classification errors of some overlapping classes, such as storagetanks/mobilehomepark,
mobilehomepark/forest, decrease by 100% with the proposed method when compared with other
two. In addition, the classification error of tenniscourt/storagetanks decreases by 50% and 66.7%
when compared with the Center-SoftMax and the SML-SoftMax, respectively. For Brazilian Coffee
Scene dataset, the classification error of coffee/noncoffee decreases by 25% and 45.5% with the
Center-SoftMax and the SML-SoftMax separately. In addition, for Google dataset, the classification
errors of some similar classes, such as the river/harbor, overpass/commercial, harbor/overpass,
pond/park, residential/overpass, decrease by 100%. The classification errors of meadow/agriculture,
water/harbor, and commercial/residential decrease by 70%, 40%, 40%, respectively. Some other
classification errors, such as the overpass/idle and, harbor/river, pond/river, have also significantly
decreased by the proposed method. Overall, the proposed method which take advantage of the
classwise, pairwise, and the point-wise correlation, can significantly improve the classification
performance for remote sensing scenes.

To be concluded, by introducing a center point in the metric learning, the inter-class variance is
increased, and the intra-class variance is decreased. The features obtained from the proposed method
can be more discriminative and easily separated.

3.4. Comparisons with the Most Recent Methods

To further validate the effectiveness of the proposed method, the performance of the proposed
method is compared with the performance of the state-of-the-art methods. The comparisons of the UC
Merced Land-Use dataset, the Brazilian Coffee Scene dataset, and the Google dataset can be seen in
Tables 2–4, respectively. In these tables, we use the experimental results of other recent methods from
the paper with the same experimental setups directly.

Table 2. Classification Accuracy (Mean ± SD) and cost time with the Most Recent Methods over the
UC Merced Land-Use Dataset. The cost time by other methods came from the literature where the
method was proposed.

Methods Cost Time (s) Accuracy (%)

SIFT [9] 930 78.81
DMTM [5] - 92.92± 1.23

SPP-net+MKL [29] - 96.38
VGG-VD16-1st-FC+Aug [23] - 96.88± 0.72

BOVW [34] 11,544 72.05± 1.41
FK-O [34] 8840 91.38± 1.54
FK-S [34] 9247 91.63± 1.49

D-DSML-CaffeNet [9] - 96.76± 0.36
MCNN [21] - 96.66± 0.90
CaffeNet [7] 1686 95.48

Proposed Method 2220 97.30± 0.58
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Table 3. Classification Accuracy (Mean ± SD) and cost time with the Most Recent Methods over the
Brazilian Coffee Scene Dataset.

Methods Cost Time (s) Accuracy (%)

SIFT [9] 167 82.83
LQPCANet [37] - 88.46

VGG16 [22] - 85.36± 2.08
D-DSML-CaffeNet [9] - 91.13± 0.54

ConvNet [38] 233 89.79± 1.73
CaffeNet [7] 1658 90.94

Proposed Method 2878 91.24± 0.99

The table lists the SIFT [9] and DMTM [5] as the baseline of the “shallow” methods. From the
comparisons, we can find that when compared with the “shallow” methods, the proposed method
outperforms these methods on both the datasets. Over UC Merced Land-Use dataset, the proposed
method obtains 97.30% which is higher than 78.81%, 72.05%, 91.38%, 91.63% and 92.92% which are
obtained by SIFT [9], BOVW [34], FK-O [34], FK-S [34] and DMTM [5], respectively. Over Brazilian
Coffee Scene dataset, the proposed method obtains 91.24% which is better than that obtained by
SIFT [9] (82.83%). For Google dataset, the proposed method can obtain 92.04% which outperforms the
SIFT [5], DMTM [5], BOVW [34], FK-O [34], FK-S [34], respectively. Since the SIFT, DMTM, BOVW,
FK-O and FK-S are typical “shallow” methods, the comparisons demonstrate that the proposed method
which is the deep representation is better than these “shallow” methods.

Table 4. Classification Accuracy (Mean ± SD) and cost time with the Most Recent Methods over the
Google Dataset.

Methods Cost Time (s) Accuracy (%)

SIFT [5] 641 69.17
DMTM [5] - 91.52± 0.64
BOVW [34] 6528 81.10± 1.37
FK-O [34] 2942 90.16± 0.82
FK-S [34] 5510 90.40± 0.84

TF-CNN [39] - 82.81
RDSG-CNN [39] - 89.88

Fine-tuned CaffeNet 1667 87.68± 1.06
Proposed Method 1969 92.04± 1.11

From Tables 2–4, we can also find that when compared with other deep methods, the proposed
method can also obtain comparable or even better performance. For UC Merced Land-Use dataset,
the proposed method can obtain 97.30% which is better than that obtained by CaffeNet (95.48%) [7]
and D-DSML-CaffeNet (96.76%) [9] which is based on CaffeNet. It can be also noted that the
proposed method outperforms other deep models, such as GoogLeNet [7] which obtains 97.10%,
VGG-VD16-1st-FC+Aug [23] which obtains 96.88%, SPP-net+MKL [29] which obtains 96.38%,
and MCNN [21] which obtains 96.66%. For Brazilian Coffee Scene dataset, the proposed method also
obtains 91.24% outperforms 88.46% which is obtained by LQPCANet [37], 85.36% by VGG16 [22],
89.79% by ConvNet [38], 90.94% by CaffeNet [7] and 91.13% by D-DSML-CaffeNet [9]. For Google
dataset, the proposed method obtains 92.04% which is better than 82.81% by TF-CNN [39], 89.88% by
RDSG-CNN [39], 87.68% by Fine-tuned CaffeNet. Therefore, when compared with other deep methods,
the proposed method shows better performance.

The experimental results over three real-world remote sensing scene datasets demonstrate that the
proposed method which considers the merits of the point-wise, pairwise and the classwise information,
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can improve the representational ability for the remote sensing scenes and obtain better classification
performance when compared with the most recent methods.

4. Conclusions and Discussions

In this paper, a novel jointly supervised learning of the C-SML and the SoftMax loss is developed
for remote sensing scene classification to learn the CNN model and the classifier simultaneously. First,
the center points, which are used to represent the center of the learned features, have been introduced
to the training process deep model for remote sensing scene representation. Experimental results have
shown that the center points can improve the representational ability of the model and the learned
features can be more discriminative. Then, this work develops the center-based structured metric
learning which take both the pairwise and the classwise of the training samples into consideration.
Through decreasing the intra-class variance and maximizing the inter-class variance with the proposed
C-SML, the representational ability of the model for remote sensing scenes can be further improved.
Experimental results have shown that the deep model learned with the C-SML can better fit for the
remote sensing scenes. In particular, some scenes with great similarity can be discriminated. Finally,
the joint learning of the C-SML and the SoftMax loss is developed to train the model point-to-point.
The developed joint learning method is easy to implement. Moreover, the joint learning can take
advantage of the point-wise information from the SoftMax loss, and the pairwise and classwise
information from the C-SML, which can further improve classification performance for remote sensing
scenes. The experimental results have shown that the proposed method can obtain comparable or
even better results than other state-of-the-art methods over the three datasets.

This work only demonstrates the powerful ability of the joint learning of the center points and
deep metrics over the UC Merced Land-Use, Brazilian Coffee Scene and Google dataset. In future
work, we intend to apply the proposed method in other types of images such as hyperspectral
image. Since remote sensing scenes usually cannot provided enough training samples, the use of
the center points to formulate pseudo classes for unsupervised deep learning for remote sensing
scene representation is another interesting future work. In addition, we would like to evaluate the
performance of the proposed method on other CNN models, such as GoogLeNet and ResNet.
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