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Abstract: This article presents safe ship control optimization design for navigator advisory system.
Optimal safe ship control is presented as multistage decision-making in a fuzzy environment and as
multistep decision-making in a game environment. The navigator’s subjective and the maneuvering
parameters are taken under consideration in the model process. A computer simulation of fuzzy
neural anticollision (FNAC) and matrix game anticollision (MGAC) algorithms was carried out on
MATLAB software on an example of the real navigational situation of passing three encountered
ships in the Skagerrak Strait, in good and restricted visibility at sea. The developed solution can be
applied in decision-support systems on board a ship.
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1. Introduction

One of the most important transport issues is the safe control of movement, measured by the
probability of collision risk when passing ships on the route, using information from the radar
anticollision system [1,2]. In practice, there are many safe trajectories for the ship, from which an
optimal trajectory can be chosen that ensures minimum collision risk and the smallest path loss
on passing encountered ships [3–5]. The development of modern information technologies creates
appropriate opportunities for the automation of navigation and construction of decision support
systems to safety control the movement of a ship (Figure 1).
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Figure 1. Safe ship-control system: Dj—distance to j-th met ship, Nj—bearing to j-th met ship,
ψ—course of the own ship, V—speed of the own ship, J—number of met ships.

According to Lloyd’s statistics, in about 87% of marine accidents, the cause of ship collisions is the
navigator’s subjectivity in maneuvering decisions, often under conditions of ambiguity and conflict.
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Therefore, among the many possibilities of describing this process, models of fuzzy control and game
control become useful [6–8].

The methods of static and dynamic optimization used so far, evolutionary algorithms or particle
swarm methods, do not include the fuzzy and game properties of the real anticollision problems of the
ship [9,10].

Therefore, the aim of this paper is to determine an optimal and safe ship trajectory using the
theory of fuzzy sets and game theory (Figures 2 and 3).
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The process ends when the ship reaches the back points called the final states 

 (2) 

Figure 2. Fuzzy control system.

Remote Sens. 2018, 10, x FOR PEER REVIEW  2 of 16 

 

According to Lloyd’s statistics, in about 87% of marine accidents, the cause of ship collisions is 

the navigator’s subjectivity in maneuvering decisions, often under conditions of ambiguity and 

conflict. Therefore, among the many possibilities of describing this process, models of fuzzy control 

and game control become useful [6–8]. 

The methods of static and dynamic optimization used so far, evolutionary algorithms or particle 

swarm methods, do not include the fuzzy and game properties of the real anticollision problems of 

the ship [9,10]. 

Therefore, the aim of this paper is to determine an optimal and safe ship trajectory using the 

theory of fuzzy sets and game theory (Figures 2 and 3). 

 

Figure 2. Fuzzy control system. 

 

Figure 3. Game control system. 

2. Kinematic Model of the Ship 

In practice, the kinematics parameters of passing ships at sea in the form of: 

• speed Vj, 

• course ψj, 

• distance of the closest point of approach DCPAj = Djmin, 

• time to the closest point of approach TCPAj = Tjmin. 

These are identified by the automatic radar plotting aids (ARPA) anticollision system (Figure 4). 

The kinematic model of the control can be presented in the form of state equation 

Xk+1 = f (Xk, Uk), k = 1, 2, ..., n (1) 

where: (Xk+1, Xk) is the set of real ship position co-ordinates, and Uk is the control set [11]. 

The process ends when the ship reaches the back points called the final states 

 (2) 

Figure 3. Game control system.

2. Kinematic Model of the Ship

In practice, the kinematics parameters of passing ships at sea in the form of:

• speed Vj,
• course ψj,
• distance of the closest point of approach DCPAj = Dj

min,
• time to the closest point of approach TCPAj = Tj

min.

These are identified by the automatic radar plotting aids (ARPA) anticollision system (Figure 4).Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 16 

 

 

Figure 4. Situation of passing own ship with other ships. 

The set of final states must meet this condition 

 (3) 

where: (ψopt, Vopt) are the optimal own-ship course and speed, (ψS, VS) are set point own-ship course 

and speed, and μR is the membership function of collision risk [12]. 

3. Fuzzy Control Model of the Process 

3.1. Membership Function of Fuzzy Goal 

Different security assessments made by navigators can be described as the membership function 

of the fuzzy goal, allowing a subjective assessment of 

 (4) 

where λd is the navigator’s subjective parameter. 

3.2. Membership Function of Fuzzy Constraints 

The membership function of the fuzzy constraints can be defined as 

 (5) 

where λc is the navigator’s subjective parameter. 

3.3. Membership Function of Fuzzy Collision Risk 

Ships that can take part in a collision should be sorted according to the degree of threat by the 

collision-risk rating index. In many works, the ship’s domain is treated as an assessment of collision 

risk [8]. In this article, the collision-risk transfer function was used as collision-risk assessment 

Figure 4. Situation of passing own ship with other ships.



Remote Sens. 2019, 11, 82 3 of 15

The kinematic model of the control can be presented in the form of state equation

Xk+1 = f (Xk, Uk), k = 1, 2, . . . , n (1)

where: (Xk+1, Xk) is the set of real ship position co-ordinates, and Uk is the control set [11].
The process ends when the ship reaches the back points called the final states

W =
{

ap+1, ap+2, an
}

(2)

The set of final states must meet this condition

ψopt = ψS
Vopt = VS

µR ≤ µRsafe

 (3)

where: (ψopt, Vopt) are the optimal own-ship course and speed, (ψS, VS) are set point own-ship course
and speed, and µR is the membership function of collision risk [12].

3. Fuzzy Control Model of the Process

3.1. Membership Function of Fuzzy Goal

Different security assessments made by navigators can be described as the membership function
of the fuzzy goal, allowing a subjective assessment of

µG(k, j) = 1− 1
exp(λd(k, j)DCPA2

j )
(4)

where λd is the navigator’s subjective parameter.

3.2. Membership Function of Fuzzy Constraints

The membership function of the fuzzy constraints can be defined as

µC(k) =
1

exp(λc(k)(V cosψ(k)−V cosψ(k− 1))t2
k)

(5)

where λc is the navigator’s subjective parameter.

3.3. Membership Function of Fuzzy Collision Risk

Ships that can take part in a collision should be sorted according to the degree of threat by the
collision-risk rating index. In many works, the ship’s domain is treated as an assessment of collision
risk [8]. In this article, the collision-risk transfer function was used as collision-risk assessment

µR(k, j) =
1

exp(λrd(k, j)DCPA2
j + λrt(k, j)TCPA2

j )
(6)

where λrd and λrd are the navigator’s subjective parameters.
The fuzzy-set decision is determined as result of an operation of the fuzzy set of a goal and fuzzy

set of constraints
µD(., .) = µC(., .) ∗ µG(., .) (7)
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3.4. Fuzzy Neural Anticollision (FNAC) Algorithm

To present the idea of dynamic programming in this case, we first have to present the task in a
slightly fuller form

µD(u0, ..., uN−1|X0 ) =

max
u0,...,uN−1

[µ0
C(u0) ∧ µ1

G(X1) ∧ µ1
C(u1) ∧ µ2

G(X2) ∧ ...

...∧ µN−1
C (uN−1) ∧ µN

G(f(XN−1, uN−1)]

(8)

After transformation and maximization in relation to controls (u0, u1, . . . , uN−1), we obtain the
following system of recursive equations{

µN−i
G (XN−i) = max

uN−i
[µN−i

C (uN−i) ∧ µN−i+1
G (f(XN−i+1)]

XN−i+1 = f(XN−i, uN−i) i = 0, 1, ..., N
(9)

Referring to Formula (9), going back from stage t = N to t = 0, at each stage there are two
phases: minimization and maximization. Such operations can be implemented using the special neural
network proposed in [13]. The traditional artificial neural network does not perform the minimum
and maximum operations of a finite set. Appropriate neurons were proposed by Rocha, which will be
presented in the next sections [14–18].

3.4.1. Neural Network

The operations presented above require special neurons that can be used in an artificial neural
network. Such neurons were proposed by Rocha [19], neurons of maximum type and minimum type.
We assume that the neuron has n inputs (b1, b2 . . . , bn) and the weighted sum of these n inputs is
defined by the following formula

y =
n

∑
k=1

wkbk (10)

where wk are the synapse weights connecting the input neurons.
The following pattern shows that the resulting obtained value u is encoded as the axonal activation

bp of the postsynaptic neuron.

bp =


1 if u ≥ α2

f(u) if α1 ≤ u ≤ α2

0 otherwise
(11)

We have introduced two axonal thresholds α1, α2, which are defined by polarized neurons, where
f transition function. We can now define the maximum-type neuron and the minimum-type neuron.

Maximum-Type Neuron

Defined as such whose axonal threshold αt in stage t is described as

α(t) =

{
1 if t = 0
bp(t− 1) otherwise

(12)

However, axionic activation bp is presented as

bp(t) =

{
α(t) if u(t) ≤ α(t)
u(t) otherwise

(13)

where u(t) is the postsynaptic activation at stage t [20].
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Combining the two functions, at the output of the max neuron, we obtain a maximum value of
the inputs if weight wk = 1

bp(t) = max
k=1, 2, ..., t

[wkbk] (14)

Minimum-Type Neuron

Defined as a neuron whose axionic threshold αt at stage t is

α(t) =

{
1 if t = 0
bp(t− 1) otherwise

(15)

However, axionic activation

bp(t) =

{
α(t) if u(t) ≥ α(t)
u(t) otherwise

(16)

The equations show that the output of the min neuron encodes at least the minimum value of the
inputs if weight wk = 1

bp(t) = min
k=1, 2, ..., t

[wkbk] (17)

In this way, defined neurons allow to build the neural network to solve the task of the optimal
safe ship trajectory.

3.4.2. Structure of Neural Networks in Relation to Multistage Control

The neural network proposed in Reference [13] allows solving the task presented above. Its
structure consists of alternating layers of minimum and maximum neurons. Weights values of neuron
entrances are not given by learning in the ordinary sense, but result from the description the task,
i.e., state transitions, fuzzy constraints, and fuzzy goals. Therefore, in order for the structure of the
neural network to properly work, it is necessary to determine the connections between minimum and
maximum neurons on the same layer, the maximum neurons of the preceding layer, and the minimum
neurons on a current layer.

In the following, the neurons are described as

• Mi
k—max neuron at stage k,

• mi
k—min neuron at stage k.

3.4.3. Generating Interconnections between Max and Min Neurons at the Same Layer

The connection of the two types of neurons from the same layer is done using the state-transitions
equations, the connection function is as

W(mi
k, Mj

k) =

{
1 if fN−k(qR(m

i
k), qT(M

j
k)) 6= 0

0 otherwise
(18)

where qR(mi
k) is the number of receptor control, qT(Mi

k) is the number of relay states, fN-k(.,.) is the
state-transition equation. A value of 1 means there is a connection, while 0 means no connection.
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3.4.4. Generating Interconnections between Max Neurons and Min Neurons at the Given Layer

The combination of max neuron Mj
k−1 (layer k − 1) and min neuron mi

k (layer k) is executed by
the number of receptors qR(mi

k) and the number of the relay. It allows to obtain state xN−k using the
state equation, running neuron driver qC(mi

k). That can be presented as the equation

qC(m
i
k) = xN−k = fN−k(qR(m

i
k), qT(M

j
k)) (19)

This driver is designed to send to all max neurons in layer (k− 1) the number of receptors qC(mi
k).

Neurons, which, due to the sent value, are activated, have the same value as receptor qR(Ml
k−1). Just

like in computer networks, between neuron mi
k and Ml

k−1, a connection is established, which can be
defined as

W(Ml
k−1, mj

k) =

{
1 if qR(M

l
k−1) = qT(m

i
k) = qC(m

i
k)

0 otherwise
(20)

The connections presented in this fashion give the possibility to form an algorithm based on an
artificial neural network, which will emulate solving the problem of dynamic programming in fuzzy
environment, that is, the fuzzy neural anticollision (FNAC) algorithm [21].

The structure of the neural network to determine the safe ship trajectory is atypical, the network
consists of six stages, in the first stage there are two layers of neurons, one max neuron and nine min
neurons. The next has 9 max neurons and 32 min neurons. However, in third stage there are 25 max
neurons and 38 min neurons. The penultimate stage has nine max neurons and nine min neurons.
The last has one max neurons. The neurons weight result from the function state transitions and the
membership function of fuzzy constraints and the membership function fuzzy goals.

Output step is to find a series of connections of maximum neurons, whose outputs have the
highest value fuzzy decision µDmax.

The initialization step it is to create a neural network. As in the dynamic programming steps
proceed from the latter to zero (initial).

Thus, the steps of numbering 0 (the last stage with respect to X0) to N (last step k, the first with
respect to X0) initialize the first layer of neurons maximum at stage k = 0, and increase by 1 (k = 1).
From this step on, in each subsequent step we first initialize the layer of minimum neurons and then
the layer of maximum neurons (Figure 5).Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 16 
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Figure 5. Fuzzy neural anticollision (FNAC) algorithm block diagram.

The connection step, as the name suggests, is to combine the maximum and minimum neurons of
the same stage k (Phase 1), the maximum neurons at stage k − 1, and the minimum neurons at stage k
(Phase 2). The output step is to find a series of connections of maximum neurons whose outputs have
the highest value, µDmax.
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Of course, this is also true for control, which made it possible to obtain a value µD(u0*, . . . .,
uN−1*|X0) so there is also a connection with the minimum neurons. This time, these values are being
sought in an order according to the initial state, that is x0 to xN (final state).

The initial state and the final state are single (this is related to the maneuvers of the ship). In some
structures of the neural network, this may occur more than once, in the initial and final states, and, in
this case, the connection may vary depending on the selection state at the initial stage.

Using the fuzzy toolbox and neural toolbox contained in the MATLAB_R2016a software, the
fuzzy neural anti-collision (FNAC) computer program was designed for the determination of the safe
own-ship trajectory in a collision situation [11].

4. Game Control Model of the Process

4.1. Base-Differential Game Model

The most general description of the own ship passing j other encountered ships is the model of a
differential game of moving control objects (Figure 6).
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The properties of the process are described by the state equation

.
xi = fi[(x0,β0 , x1,β1 , ..., xj,βj , ..., xJ,βJ),

(u0,δ0 , u1,δ1 , ..., uj,δj , ..., uJ,δJ), t]
j = 1, 2, ..., J

(21)

where
→
x 0,β0

(t) is the β0 dimensional vector of the process state of the own-ship determined in a time

span t ∈ [t0, tk];
→
x j,βj

(t) is the βj dimensional vector of the process state for the j-th met ship;
→
u0,δ0

(t)

is the δ0 dimensional control vector of the own-ship;
→
u j,δj

(t) is the δj dimensional control vector of j-th
met ship [22].

Control constraints and the state of the process are connected with the basic condition for the
safe passing of the ships at a safe distance Ds in compliance with the International Regulations for
Preventing Collisions at Sea (COLREGs Rules)

gj(xj,βj
, uj,δj) ≤ 0 (22)

Goal function has the form of the payments, the integral payment and the final one

I0,j =

tk∫
t0

[x0,β0(t)]
2dt + rj (tk) + d(tk) → min (23)
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The integral payment represents the additional distance traveled by the own-ship while passing
the encountered ships and the final payment determines the final collision-risk rj(tk) relative to the j
ship and the final deflection of the own-ship d(tk) from the reference trajectory [23].

Two types of control goals were taken into consideration, programmed control u0(t) and positional
control u0[x0(t),t]. The basis for the decision-making control are the decision-making patterns
of the positional control processes, the patterns with the feedback arrangement representing the
differential games.

While formulating the model of the control process, it is essential to take into consideration both
the kinematics and the dynamics of the own-ship movement, the disturbances, the strategy of the
encountered ships, and the assumed formula as the goal of the own-ship handling.

The diversity of selection of the possible models directly affects the synthesis of the own-ship
control algorithms, which are afterwards affected by the ship-handling device, directly linked to the
ARPA system and, consequently, determine the effects of safe and optimal control.

The application of reductions in the description of own-ship dynamics and the dynamics of the
j-th encountered ship, and their movement kinematics, leads to the approximated model-positional
and matrix.

4.2. Approximate Matrix Game Model

When leaving aside the own-ship dynamics equations, the general model of a differential game
for the process of preventing collisions is reduced to the matrix game of J participants non-co-operating
or co-operating among them. The state and control variables are represented by the values

xj1 = Dj; xj2 = Nj; u01 = ψ ; u02 = V; uj1 = ψj; uj2 = Vj

j = 1, 2, ..., J
(24)

4.3. Matrix Game Anticollision (MGAC) Algorithm

Collision matrix risk R includes the values previously determined on the basis of data taken from
anticollision system ARPA; the value of collision-risk rj with regard to the determined strategies of the
own-ship and those of j-th encountered ships (Figure 7).
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containing the same number of columns as the number of participant O (own-ship) strategies. It has;
e.g., a constant course and speed, course alteration 20◦ to starboard, 20◦ to port, etc., and contains a
number of lines that correspond to a joint number of participants J (j-th encountered ships) strategies

R = [rj(δ0, δj)] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r11 r12 . . . . r1,ν0−1 r1ν0

r21 r22 . . . . r2,δ0−1 r2δ0

. . . . . . . . . . . . . . . . . . . .
rδ11 rδ12 . . . . rδ1,δ0−1 rδ1δ0

. . . . . . . . . . . . . . . . . . . .
rδj1 rδj2 . . . . rδj,δ0−1 rδjδ0

. . . . . . . . . . . . . . . . . . . .
rδJ1 rδJ2 . . . . rδJ,δ0−1 rδJδ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(26)

The value of the collision-risk rj is defined as the reference of the current situation of the approach
described by parameters Dj

min and Tj
min to the assumed assessment of the situation defined as safe

and determined by the safe distance of approach Ds and the safe time Ts—which are necessary to
execute a maneuver avoiding a collision with consideration of actual distance Dj between the own-ship
and the encountered j-th ship (Figure 8)

rj =

ε1

(
Dj

min
Ds

)2

+ ε2

(
Tj

min
Ts

)2

+ ε3

(
Dj

Ds

)2
− 1

2

(27)
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approaching ships.

Weight coefficients ε1, ε2, ε3 are dependent on the state of visibility at sea (good or restricted), the
kind of water region (open or restricted), speed V of the ship, static L, and dynamic Ld length of ship,
and static B and dynamic Bd beam of ship [10]

0.1 ≤ ε1 ≤ 10
0.1 ≤ ε2 ≤ 10
0.1 ≤ ε3 ≤ 10

 (28)

Ld = 1.1 (1 + 0.345 V1.6) (29)

Bd = 1.1 (B + 0.767 LV0.4) (30)



Remote Sens. 2019, 11, 82 10 of 15

Assuming higher values of particular weight coefficients ε1, ε2 and ε3; the share of the risk of
collision rj depending on the distance of ships Dj and Dj

min or the time of excessive approach of ships
Tj

min increases.
The constraints affecting the choice of strategies are a result of the recommendations of the way of

priority at sea. Player O (own-ship) may use δ0 of various pure strategies in a matrix game and player
J (encountered ships) has δj of various pure strategies.

As the game, most frequently does not have a saddle point, the state of balance is not guaranteed,
and there is a lack of pure strategies for both players in the game. In order to solve this problem, dual
linear programming may be used.

In a dual problem, player O, having δ0 various strategies to be chosen, tries to minimize the risk
of collision

I0 = min
δ0

rj (31)

while player J, having δj strategies to be chosen, tries to maximize the collision-risk

Ij = max
δj

rj (32)

For a non-co-operative matrix game, the problem of determining an optimal strategy may be
reduced to the task of solving a dual linear programming problem [24](

Ij
0

)∗
= min

δ0
max
δj

rj (33)

For a co-operative matrix game, the problem of determining an optimal strategy may be reduced
to the task of solving a dual linear programming problem(

Ij
0

)∗
= min

δ0
min
δj

rj (34)

Mixed strategy components express probability distribution P = [pj(δ0,δj)] of players using
pure strategies

P = [pj(δ0, δj)] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p11 p12 . . . . p1,δ0−1 p1δ0

p21 p22 . . . . p2,δ0−1 p2δ0

. . . . . . . . . . . . . . . . . . . .
pδ11 pδ12 . . . . pδ1,δ0−1 pδ1δ0

. . . . . . . . . . . . . . . . . . . .
pδj1

pδj2
. . . . pδj,δ0−1 pδjδ0

. . . . . . . . . . . . . . . . . . . .
pδJ1

pδJ2
. . . . pδJ,δ0−1 pδJδ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(35)

The solution for the steering goal is the strategy of the highest probability and will also be the
optimal value approximated to the pure strategy(

uδ0
0

)•
= uδ0

0

{[
pj
(
δ0, δj

)]
max

}
(36)

The safe trajectory of the own-ship was treated here as a sequence of changes to the course and
speed. The established values are as follows: safe passing distances among the ships under given
visibility conditions at sea Ds, time delay of manoeuvring and the duration of one stage of the trajectory
as one calculation step. At each step, the most dangerous ship is determined with regard to the value
of collision risk rj.

Consequently, on the basis of the semantic interpretation of the COLREGs, the direction of a turn
of the own-ship is selected to the most dangerous encountered ship [25–27].
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Collision matrix risk R is determined for the admissible strategies of the own-ship δ0 and those δj

for j-th ships encountered. By applying dual linear programming in order to solve the matrix game,
we obtain the optimal values of the own-ship course and those of the j-th ship at the smallest deviation
from their initial values.

If, at a given step, no solution can be found at the speed of the own-ship V, the calculations are
repeated at reduced speed by 25% until the game is solved.

The calculations are repeated step by step until the moment when all elements of matrix R become
equal to zero, and the own-ship, after having passed the encountered ships, returns to its initial course
and speed.

Using the linprog function, that is, linear programming from the optimtool optimization toolbox
contained in the MATLAB_R2017a software, the matrix game anti-collision (MGAC) computer program
was designed for the determination of the safe own-ship trajectory in a collision situation [10].

5. Research Results

The aim of the computer simulation research of the FNAC and MGAC algorithms to determine
the optimal safe-ship trajectory in collision situations was to evaluate methods to solve the problem
formulated in this work by using fuzzy-set theory as a multistage and matrix game theory as a
multistep decision-making process.

The computer simulation of the FNAC and MGAC algorithms was carried out in MATLAB
software on an example of the real navigational situation of passing J = 3 encountered ships in the
Skagerrak Strait in good visibility Ds = 0.2 nm and the restricted visibility Ds = 2.0 nm (nautical miles)
(Table 1).

Table 1. Data of own-ship and met ships: 1, 2 and 3.

Bearing Nj (◦) Distance Dj (nm) Speed Vj (kn) Course ψj (◦)

Own-ship - - 20 0
Ship 1 326 8.8 13.5 90
Ship 2 6 14.3 16.2 180
Ship 3 11 7.5 16.0 200

The situation was registered on board r/v HORYZONT II, a research and training vessel of
the Gdynia Maritime University, on the radar screen of the ARPA anticollision system Raytheon.
The sample results of the performed computer simulations for the navigational situation when the
own-ship passed three met ships in a good and restricted visibility at sea are presented in Figures 9
and 10, respectively.

The trajectories of the own-ship, shown in Figures 9 and 10, are optimal, but in different ways.
The FNAC trajectory ensures minimum risk of collision of own-ship, taking into account the

uncertainty of the control process, described by the fuzzy set membership functions of state and control
constraints, and collision risk, not including maneuvers of encountered ships.

On the other hand, the trajectory of MGAC ensures a minimum collision-risk of the own-ship
taking into account the maneuvering of encountered ships in a co-operative or non-co-operative way.

Designated safe trajectories FNAC and MGAC of the own-ship are the reference trajectories for
automatic ship’s control systems using the autopilot and main engine.
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6. Conclusions

This work showed that the proposed concept of applying the fuzzy neural anticollision and matrix
game anticollision algorithms is a promising way to solve the considered problem and design a novel
anticollision system, allowing to increase the safety of maritime transport.

The FNAC algorithm achieves a short computation time of about one second, while the MGAC
algorithm scope of the calculation time is from about two to five seconds.

The obtained solutions obtained using both algorithms meet the requirements of the COLREGs.
The MGAC computer program, designed in MATLAB software, takes into consideration the

following: degree of co-operation with the own-ship and encountered ships, COLREGs Rules, advance
time for a maneuver calculated with regard to the own-ship dynamic features, and the assessment of
the final deviation between the real and reference trajectories.

In summary of these results, the created algorithms can be used as a tool to assist navigator
in making maneuver decision, in complex collision situations, when passing through more ships,
especially in restricted visibility at sea.

In future works, the sensitivity analysis of safe ship control should be performed to change the
parameters of the process model and the inaccuracy of information from the ARPA radar system;
moreover, the design of the ARPA system may be considered, extended with the function of a
computer-aided maneuvering navigator decision, using the FNAC and MGAC algorithms.
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Nomenclature

Ap axonic activation
C fuzzy-set goal
D fuzzy-set decision
Ds safe distance of approach
Dj distance between own-ship and the j-th met ship
DCPA distance to closest point of approach
G fuzzy-set contraints
P probability distribution
R collision-risk matrix
rj value of the collision-risk
ut controls
TCPA time to closest point of approach
Ts safe time of approach
U control-set
uk(t) postsynaptic activation at stage t
V ship speed
Vopt optimal ship speed
W set of final states
Xt+1, Xt ship position co-ordinates



Remote Sens. 2019, 11, 82 14 of 15

X set of real ship position co-ordinates
αt axonic threshold at stage t
µR membership function of fuzzy-set collision-risk
µRsafe value of µR at which the process is assumed safe
λc, λd, λrd, λrt navigator’s subjective parameters
ψ ship course
ψopt optimal ship course
∧ minimum operator
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