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Abstract: Land cover classification of urban areas is critical for understanding the urban environment.
High-resolution remotely sensed imagery provides abundant, detailed spatial information for urban
classification. In the meantime, OpenStreetMap (OSM) data, as typical crowd-sourced geographical
information, have been an emerging data source for obtaining urban information. In this context,
a land cover classification method that fuses high-resolution remotely sensed imagery and OSM data
is proposed. Training samples were generated by integrating the OSM data and multiple information
indexes. OSM data, which contain class attributes and location information of urban objects, served
as the labels of initial training samples. Multiple information indexes that reflect spectral and spatial
characteristics of different classes were utilized to improve the training set. Morphological attribute
profiles were used because the structural and contextual information of images was effective in
distinguishing the classes with similar spectral characteristics. Moreover, a road superimposition
strategy that considers road hierarchy was developed because OSM data provide road information
with high completeness in the urban area. Experiments were conducted on the data captured over
Wuhan city, and three state-of-the-art approaches were adopted for comparison. Results show that the
proposed approach obtains satisfactory results and outperforms the other comparative approaches.

Keywords: high-resolution remotely sensed imagery; OpenStreetMap; classification; sample collection;
spatial information; road hierarchy

1. Introduction

The rapid process of urbanization has dramatically changed the distribution of urban land cover
in recent years. The land cover information of urban areas is important because it helps humans
understand the change trend of their living environment. The urban land cover information can
also help government agencies and other policy makers make decisions on urban planning and
management [1]. However, owing to the high cost and low efficiency, humans are not a satisfactory
resource for collecting land cover information in most cases. Therefore, the geographic information
provided by remote sensing technology or social sensors must be utilized for land cover classification
over urban areas [2].

High-resolution remotely sensed imagery provides detailed spatial and structural information
and thus offers new avenues for precise land cover classification over urban areas [3,4]. However,
high spatial resolution does not indicate high precision for computer interpretation. In the
high-resolution remotely sensed imagery, the urban areas show high intra-class and low inter-class
variability. The increases in intra-class variation and the decreases in inter-class variation reduce the
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separability of classes in the spectral domain, and this condition brings difficulty in distinguishing
different classes with the exclusive use of spectral characteristics of image [5,6]. Hence, considerable
research exploited the spatial information of high-resolution remotely sensed imagery and considered
textural and structural features as important information sources to complement spectral properties
for accurate classification [7–9]. The classification performance relies on the quality and quantity of
training samples [10]. The conventional ways to collect training samples, such as field surveys and
visual inspections, are always time consuming, laborious, costly, and prone to artificial errors [11].
In this context, active learning and semi-supervised learning methods were adopted to reduce the
manual work for sample collection [12]. By selecting the most informative data, active learning
minimizes the amount of samples required to be labeled by experts [13,14]. Semi-supervised learning
uses the information exploited from unlabeled data to improve classification performance [15,16].
In the meantime, the wide acceptance of open source geographical data has increased the attention to
OpenStreetMap (OSM) in urban environment understanding [17]. OSM is a crowd-sourced project
that aims to create a set of map data that is free to use, edit, upload, and download [18]. Volunteers can
delineate an object depending on satellite image basemaps and label the object with some predefined
tags (e.g., name, land cover/land use, and address) or custom tags (e.g., opening time of a hospital
and website of a university). Name and land cover/land use are the most commonly used tags. Thus,
OSM data have a large amount of land cover information for assisting urban land cover mapping [19].
Since 2007, the number of registered users and the track points of OSM have increased considerably.
The OSM data are equal to proprietary data in terms of accuracy and coverage in certain countries and
regions [20].

In recent years, the integration of high-resolution remotely sensed imagery and OSM for land
cover classification has drawn increasing attention. OSM contains geographic data with class attributes
and location information, which benefit the collection and labeling of training samples for remote
sensing classification. In [21], a land use/land cover mapping approach using time-series imagery
and training information extracted from OSM data was introduced. Three relatively noise-tolerant
algorithms—namely naïve Bayes, decision tree (C4.5 algorithm), and random forest (RF)—were used
to reduce the influence of OSM noise on the classification performance. In [22], remote sensing images
and OSM data were combined for land use/land cover classification. The contribution index (CI),
which represents the activeness of user behavior, was utilized to assess the quality of the OSM data.
The OSM data with high CI were selected as training samples preferentially. In [23], a high-resolution
remote sensing image classification method using OSM data was proposed. Morphological erosion,
super-pixel segmentation, and cluster analysis were used to refine training samples derived from the
OSM data. The OSM road data were directly superimposed on the classification map due to the high
accuracy and completeness. For the high-spatial-resolution remotely sensed imagery, large amounts of
structural and detailed information are available. These existing OSM-based classification methods
utilize only the spectral characteristics of image and ignore the spatial information inherited in the
object distribution. The shadow information becomes clear due to the increase in spatial resolution [24].
Given that shadows usually result in a loss of information and distortion of the affected regions,
precise recognition of shadows is important for the analysis of high-spatial-resolution remotely sensed
imagery [25]. However, the shadow information is not involved in the OSM data. Consequently,
the derived training set lacks the shadow samples.

In this study, a spectral-spatial classification framework that fuses high-resolution remotely sensed
imagery and OSM data was developed. We derived training samples from the OSM data because they
contained category and location information. However, OSM data may have contained errors, such as
position errors and attribute errors, due to the unprofessional production process and the absence of
data quality control. The multiple information indexes were introduced to refine the samples derived
from the OSM data for decreasing the aforementioned errors and supplementing class information.
Information indexes could reflect the spectral and spatial characteristics of specific classes. Thus, they
could be used to label samples for these classes. In particular, normalized difference vegetation index
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(NDVI), normalized difference water index (NDWI), morphological building index (MBI), and bare soil
index (BSI) were utilized to purify the samples of corresponding classes extracted from the OSM data,
whereas morphological shadow index (MSI) was adopted to derive shadow samples. Considering
the complex land cover distribution in the urban areas, we used extended morphological attribute
profiles (APs) to model the structural and spatial information of high-resolution images. In addition,
principle component analysis (PCA) was adopted on the original image and the derived APs to
reduce the data redundancy and select informative features. On the basis of the generated training
samples and extracted features, the initial classification result was achieved using RF. Considering
that the OSM road data contained road location and hierarchy information with high completeness,
the OSM road information was designated to be superimposed on the classification map to reduce
the misclassification between roads and other artificial architectures. An approach that generated
road buffer with an adaptive radius in accordance with road hierarchy was developed. Experiments
were conducted on the data covering the area within the third ring road of Wuhan. Comparison
with three state-of-the-art methods illustrated that the proposed framework achieved satisfactory
classification results.

The rest of the paper is organized as follows: Section 2 introduces the methodology of the
proposed framework. The datasets and experimental results are provided in Section 3, followed by
a detailed discussion and a comparison with other methods in Section 4. Section 5 elaborates on
the conclusions.

2. Methodology

The land cover information over urban areas was obtained using the proposed framework of
three steps: sample generation, feature extraction, and road superposition. Specifically, the OSM data
without roads were utilized to obtain the initial samples. The samples were successively refined by
multiple information indexes to generate candidate samples. Different classes of training samples
with equal amounts were randomly selected from candidate samples. Then, APs were computed
on the PCA result of the images. The dimensions of AP features were decreased by PCA before
being introduced into an RF classifier. Lastly, the OSM roads were buffered with adaptive radii and
superimposed on the classification map. The pixels overlapped by the buffered roads were relabeled
as the road class. The flowchart of the proposed framework is presented in Figure 1.
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Figure 1. Flowchart of the proposed framework.

2.1. Sample Generation

In this section, a novel sample generation method that integrates OSM data and multiple
information indexes is proposed. The OSM data contained abundant information of ground object
categories, which provided training sample labels for image classification. Notably, some errors existed
due to the user-generated process of OSM. In the meantime, information indexes such as NDVI, NDWI,
and MBI were adopted to extract training samples on the basis of the distinct spectral or structural
characteristics of specific classes. In the proposed method, the samples generated from the OSM data
were refined by the information indexes. In other words, the information indexes were calculated on
pixels or objects of the corresponding class in OSM instead of on the entire image. For example, NDVI
was calculated only in areas labeled as vegetation in OSM. Specifically, NDVI, NDWI, MBI, and BSI
were introduced to purify samples of vegetation, water, buildings, shadows, and soils, respectively.
MSI was used to derive the shadow samples.

2.1.1. Multiple Information Indexes

NDVI [26]: Given that vegetation has high near-infrared reflectance and low red-light reflectance,
NDVI is defined as follows:

NDVI =
(NIR− RED)

(NIR + RED)
, (1)

where NIR and RED denote the digital numbers (DNs) of the near-infrared and red-light bands of
images, respectively.
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NDWI [27]: Water has high-reflectance in green band and low reflectance in near-infrared band.
On the basis of the spectral characteristic, NDWI is computed as:

NDWI =
(GREEN − NIR)
(GREEN + NIR)

, (2)

where GREEN and NIR denote the DNs of the green-light and near-infrared bands of
images, respectively.

MBI [28]: Buildings are brighter than their surrounding shadows. Thus, the basic idea of MBI
is to build the relationship between the spectral-structural characteristics and the morphological
operators. Considering the characteristics of brightness, local contrast, size, and directionality, MBI can
be represented as follows:

MBI =
∑
d,s

DMPW−TH(d, s)

D× S
(3)

DMPW−TH(d, s) = |MPW−TH(d, (s + ∆s))−MPW−TH(d, s)| (4)

MPW−TH(d, s) = b− γre
b (d, s), (5)

where D and S denote the numbers of directionality and scale, respectively, and MPW−TH(d, s) denotes
the morphological profiles (MPs) of white top-hat performed on the original image b with directionality
d and scale s.

MSI [29]: Given that shadows are darker than their surrounding objects, the calculation of MSI can
be extended from MBI by replacing the white top-hat with the black top-hat transformation. MSI can
be formulated as:

MSI =
∑
d,s

DMPB−TH(d, s)

D× S
(6)

DMPB−TH(d, s) = |MPB−TH(d, (s + ∆s))−MPB−TH(d, s)| (7)

MPB−TH(d, s) = ϕre
b (d, s)− b. (8)

BSI: Bare soil can be extracted from HSV color space. HSV color space, as a common color space,
uses hue, saturation, and value to describe an image and can be used to extract soils from remote
sensing image.

2.1.2. Sample Generation Method

The sample generation method includes the following steps:

1. Sample labeling based on OSM data: the category information of OSM data is used to label the
samples in the high-resolution remotely sensed imagery depending on their spatial coordination.

2. Calculation of multiple information indexes: MBI, MSI, NDWI, and BSI are computed to indicate
the area of buildings, shadows, water, and soils, respectively. Moreover, NDVI is utilized to
extract the forest and grass information.

3. Sample collection based on multiple information indexes: for NDVI and NDWI, the Ostu method
is adopted to select the optimal threshold based on the histogram of information indexes of the
OSM-label vegetation and water samples. For MBI, MSI, and BSI, the threshold is selected by
experts. By applying the threshold on the obtained information indexes, we achieve the samples
belonging to the corresponding classes.

4. Training sample generation: the intersection of sample sets provided by OSM data and multiple
information indexes are selected to construct the training sample set. The OSM data do not
contain the shadow information. Thus, only MSI is used to generate the shadow samples.
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5. Training sample refinement: considering that some samples may be labeled as different classes
by dissimilar volunteers, the regions that are assigned to more than one category are removed to
refine the training set.

2.2. Morphological Attribute Profiles

For high-resolution remotely sensed imagery, the intra-class variation of spectral features increases
but the inter-class variation decreases. The classification of high-resolution imagery cannot benefit
considerably from the single use of spectral characteristics. In the meantime, high-resolution
remotely sensed imagery can delineate the spatial features of surface objects clearly. By introducing
spatial features, the accuracy of classification can be largely improved. APs provide a multilevel
spatial characterization of an image by the sequential application of morphological attribute filters.
Morphological attribute filters are powerful tools for modeling different specifications of structural
information [30]. These filters are connected operators, and thus images are processed by only
considering their connected components. In other words, with the operations of morphological
attribute filters, connected components of the processed image will merge, enlarge, shrink, split,
appear, or disappear. A connected component is composed of a group of iso-intensity pixels that are
considered to be connected based on a connectivity rule. Four-connected and eight-connected rules
are two widely used connectivity rules in which a pixel is regarded as connected to its four or eight
neighboring pixels, respectively.

Two fundamental morphological attribute filters are attribute thinning and attribute thickening.
The attribute filters process an image in accordance with a criterion that is a logical prediction of a
generic attribute. The criteria implement a comparison between the attribute value calculated on a
connected component and a predefined threshold [31]. Specifically, a criterion R that compares the
attribute A of a connected component C with an area threshold λ can be expressed as:

R = (A(C) ≥ λ). (9)

To derive APs on an image, the criterion is evaluated on all connected components of the image,
which determines whether a connected component will be kept or merged. If the criterion is fulfilled
(the value of the criterion is true), then the connected component will be preserved; otherwise, it will be
combined to one of its adjacent connected components. The combined adjacent connected component
will be the one with the closest lower or higher attribute value depending on whether the filter is
thinning or thickening [32]. That is, if the attribute filter is thinning, then the combined connected
component will be the one with the closest lower value. Otherwise, it will be the connected component
with the closest higher value.

An important property of the criteria is increasingness. Increasing criteria satisfy the following
condition: if the criterion is verified for a connected component, then it will be also verified for all its
supersets [33]. Increasing attributes (e.g., area) and inequation relations (e.g., >) can form increasing
criteria. Furthermore, increasing criteria lead to increasing filters, which transforms the thinning and
thickening filters into opening and closing filters, respectively.

APs are obtained by applying a sequence of attribute thinning and thickening filters on the image.
For a greyscale image, the APs can be defined as:

APs =
{

APs1, APs2, . . . , APsk

}
(10)

APsk =
{

ϕC1(g), ϕC2(g), . . . , ϕCn(g), g, λC1(g), λC2(g), . . . , λCn(g)
}

, (11)

where ϕCk (g) and λCk (g) denote attribute thinning and thickening output of the origin greyscale image
g with the k-th criterion, respectively. Analogous to extended MPs, the extended APs (EAPs) can
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be defined as the APs extracted from the principle components of an image [8]. Thus, EAP can be
formularized as:

EAPs =
{

APs(g1), APs(g2), . . . , APs(gn)
}

, (12)

where gn denotes the n-th band of the image.

2.3. Road Superposition

Roads and buildings usually reflect similar spectral characteristics because of their similar
construction materials. The severe misclassification between roads and buildings is difficult to avoid
regardless of the accuracy of the selected training samples. OSM, which was initially designated to
collect street data by volunteers, has a higher completeness of road data than that of the other classes.
OSM roads have reached a completeness of more than 80% worldwide [34] and a higher value with
navigation companies contributing to OSM in countries such as the US and China. To avoid the severe
misclassification, OSM roads were not selected as training samples. Instead, we superimposed OSM
road data upon the classification map to fully utilize their excellent completeness [35,36].

Road buffer is conducted before superimposition, given that OSM road data are in line format.
In traditional methods, the OSM road buffer is generated with a fixed-length radius [23]. However,
road buffers with a fixed-length radius cannot represent roads of all hierarchies because roads
belonging to different hierarchies have dissimilar widths. To address the issue, an approach that
derives the OSM road buffer with an adaptive radius was developed.

In our method, the widths of the road buffer radius were determined in accordance with its
hierarchy. The spatial resolution of the remote sensing image was also considered. In general,
the radius should satisfy the following conditions:{

R = kd
Wmin ≤ R ≤Wmax

, (13)

where R denotes the radius of road buffer, d denotes the spatial resolution of image, k denotes the
multiple, and Wmin and Wmax are the minimum and maximum road widths recommended by the
related standards, respectively.

According to our knowledge, Technical Standard of Highway Engineering, which is the current
standard associated with roads and traffic in China, recommends the width range of different
hierarchies of roads. Thus, Table 1 shows the estimated radii of road buffer at different hierarchies for
an image with a spatial resolution of 4 m.

Table 1. Determined radii of road buffer with different hierarchies.

Hierarchy Recommended Width Range (m) k Value Radius of Road Buffer (m)

Primary 23~45 6 24
Secondary 4.5~12 3 12

Tertiary 4.5~12 2 8
Others 4.5~12 1 4

3. Experiments

3.1. Study Area and Datasets

Wuhan is one of the largest cities of central China. The study area is located within the third
ring road of Wuhan, which is the urban area of this city. It covers a region of approximately 500 km2,
and occupies parts of seven districts: Jianghan, Jiangan, Qiaokou, Hanyang, Wuchang, Qingshan,
and Hongshan. Figure 2 shows a GaoFen-2 multispectral image acquired on 1 September 2016.
The image contains 5544 × 4720 pixels and has a spatial resolution of 4 m. Four channels, namely blue,
green, red, and near-infrared, are incorporated in the image.
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Figure 2. GaoFen-2 image of the study area.

A dataset of OSM covering the study area, which was downloaded from https://download.
geofabrik.de/asia/china.html, was used. The dataset was composed of eight shapefile layers called
points, places, waterways, railways, roads, natural, land use, and buildings, respectively.

The GaoFen-2 image was preprocessed with a series of steps including radiometric calibration,
atmospheric correction, and georeferencing [37]. The radiometric calibration was conducted on the
GaoFen-2 image to convert DN to top-of-atmosphere (TOA) reflectance with parameters provided
by the China Centre for Resources Satellite Data and Application. Then, the TOA reflectance
was converted to ground surface reflectance by atmospheric correction with the Fast Line-of-sight
Atmospheric Analysis of Spectral Hypertube module of the Environment for Visualizing Images
software. Lastly, the GaoFen-2 image was georeferenced to the OSM data to remove spatial offset by
first-order polynomial transformation of pairwise control points.

3.2. Experimental Setting

Four equal-sized sub regions with a size of 702 × 690 in pixels were selected as test regions.
The sub-images and the corresponding ground truth annotations of the test regions are shown in
Figure 3. Seven typical classes were considered: buildings, water, forests, grasses, roads, soils,
and shadows. Table 2 presents the number of testing samples for each class in the test regions. RF [38]
was employed as a classifier in the experiments.

Table 2. Number of testing samples for each class in the test regions.

Region Buildings Water Forests Grasses Roads Soils Shadows

I 62,431 43,563 28,855 41,776 27,328 8215 14,600
II 43,985 31,830 16,323 27,035 35,476 5236 36,822
III 15,819 161,084 17,279 42,759 22,689 13,722 9074
IV 30,234 59,725 17,446 48,984 21,741 2859 30,966

All 152,469 296,202 79,903 160,554 107,234 30,032 91,462

https://download.geofabrik.de/asia/china.html
https://download.geofabrik.de/asia/china.html
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The minimal size, maximal size, and interval of the structure element used for generating MBI
and MSI were set as 24, 48, and 4 pixels, respectively. The number of training samples of each class
was 300 pixels. As for APs, the area was chosen as the attribute and the corresponding thresholds were
selected as 25, 100, 400, and 1600 pixels. The number of trees for constructing the RF classifier was 400.
The overall accuracy (OA), Kappa coefficient, and F1-score [39] for each class were used to evaluate
the classification performance.
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Figure 3. Images (left) and ground truth annotations (right) of the four test regions (yellow = buildings,
blue = water, dark green = forests, light green = grasses, pink = roads, orange = soils, and black =
shadows).

3.3. Experiment Results

The classification maps and accuracies of the four test regions are shown in Figure 4 and Table 3,
respectively. From Figure 4, it can be clearly observed that the proposed method gave satisfactory
classification results. The objects in the classified image were close to the real ground features in terms
of size and shape. In particular, the well-shaped water, forests, roads, and shadows showed explicit
boundary and were separate from their surrounding objects.

Table 3. Classification accuracies of the proposed method in the four test regions in terms of overall
accuracy (OA), Kappa coefficient, and F1-score for each class.

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows

I 88.5% 0.8601 90.5% 97.8% 80.0% 81.9% 96.6% 81.9% 78.7%
II 88.6% 0.8637 82.2% 95.6% 82.8% 92.1% 96.8% 73.2% 83.6%
III 91.8% 0.8727 75.1% 98.6% 78.7% 89.4% 90.7% 76.8% 70.0%
IV 87.7% 0.8488 81.3% 95.7% 75.7% 89.4% 85.7% 79.2% 86.5%
All 89.4% 0.8685 84.7% 97.6% 79.2% 87.9% 93.2% 77.9% 82.1%

As shown in Table 3, the proposed framework achieved a classification accuracy of 89.4%. Water
received fairly optimal accuracies among all classes, and the accuracies of water in the four test regions
were 97.8%, 95.6%, 98.6%, and 95.7%, respectively. Moreover, roads were also well identified with
an accuracy of 93.2%, which indicated that the OSM data had excellent completeness in the Wuhan
urban area. By employing the road superimposition strategy, the structure and continuity of the roads
were preserved. Buildings obtained quite a high accuracy of 84.7% due to the noninterference of
road classification. Although forests and grasses showed similar spectral and spatial characteristics,
they were correctly recognized with accuracies of 79.2% and 87.9%, respectively. For shadow and soils,
the classification accuracies were also acceptable and reached 82.1% and 77.9%, respectively.
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Figure 4. Classification maps of the four test regions provided by the proposed method (yellow =
buildings, blue = water, dark green = forests, light green = grasses, pink = roads, orange = soils, and
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4. Discussion

4.1. Method of Sample Generation

The class distribution of samples in feature space was derived to analyze the effectiveness of the
proposed sample generation method. A comparison between the class distribution of the original OSM
samples and that of the samples generated by the proposed method is presented in Figure 5, where the
horizontal and vertical axes denote the first two principle components obtained by PCA, respectively.

As shown in Figure 5, the original OSM samples were dispersive. By contrast, the derived samples
were aggregated in the feature space. The distribution of the original OSM samples indicated that
several classes were confused with one another seriously, especially for the samples of buildings and
soils. Some OSM samples were far from the center of the corresponding class in the feature space,
such as water. The derived samples had more explicit boundaries with better separability among
different classes than the original OSM samples. A few building samples were mixed with soil samples
due to the similar spectral characteristics between the two classes. Nevertheless, the general quality of
the derived samples was considerably improved.
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4.2. Utilization of Spatial Features

A comparative experiment that classified the imagery utilizing only the spectral features was
conducted to verify the effect of the spatial features on the classification performance. The experiment
was performed under the same conditions as the proposed framework except the utilization of spatial
features. The classification maps and accuracies of the experiment are presented in Figure 6 and
Table 4, respectively.

Table 4. The accuracies of the spectral-based classification approach in the four test regions in terms of
overall accuracy, Kappa coefficient, and F1-score for each class.

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows

I 86.1% 0.8289 91.2% 91.4% 79.4% 82.9% 96.7% 61.4% 59.1%
II 79.4% 0.7523 77.9% 78.2% 81.4% 87.5% 97.1% 42.7% 61.1%
III 89.1% 0.8296 74.7% 96.6% 73.4% 87.8% 95.9% 69.7% 39.7%
IV 77.0% 0.7166 72.8% 88.1% 61.8% 76.7% 90.1% 56.7% 61.5%
All 83.4% 0.7938 82.2% 91.9% 73.9% 83.4% 95.3% 61.4% 58.2%

Comparison of the results presented in Figures 3 and 6 indicated that most pixels were correctly
classified. However, in regions II and IV, many small shadow objects were misclassified as water due to
their similar spectral characteristics. Spatial features provided additional characteristics that enhanced
the separability between different classes. As a result, the misidentification between shadows and
water decreased considerably after the spatial features were integrated.

Table 4 shows that the OA of spectral-based classification was 83.4%, which was worse than
the accuracy of 89.4% given by the spectral-spatial classification. The utilization of spatial features
largely benefited the recognition of shadows and soils. Compared with the results of the spectral-based
method, the accuracy increase of shadows and soils provided by the proposed method were 23.9% and
16.5%, respectively. The classification accuracies of water, forests, and grasses also improved by 2–6%.
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4.3. Strategy of Road Superimposition

A comparative experiment that extracted training samples from the OSM road data instead of
directly overlaying it on the classification map was carried out to demonstrate the effectiveness of the
road superimposition strategy. The classification maps and accuracies are presented in Figure 7 and
Table 5, respectively.

Table 5. Classification accuracies of the approach that used roads as training samples in the four test
regions in terms of overall accuracy, Kappa coefficient, and F1-score for each class.

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows

I 80.1% 0.7598 63.0% 95.7% 72.9% 94.9% 79.9% 55.6% 91.9%
II 75.0% 0.7003 42.3% 95.6% 77.6% 98.6% 76.3% 39.0% 81.5%
III 88.0% 0.8118 30.0% 97.6% 78.2% 98.2% 69.6% 50.8% 91.8%
IV 84.0% 0.8033 47.1% 91.5% 87.1% 92.0% 83.6% 58.0% 93.8%
All 81.8% 0.7688 45.6% 95.1% 79.0% 96.0% 77.4% 50.9% 89.8%

As shown in Figure 7, a mass of buildings and soils were misclassified as roads. Some pixels
of water, forests, and grasses were confused with roads. This phenomenon can be attributed to the
similar spectral characteristics among buildings, soils, and roads.



Remote Sens. 2019, 11, 88 14 of 21

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 

 

(c) Region III  (d) Region IV 

Figure 6. Classification maps of the four test regions provided by the spectral-based approach 
(yellow = buildings, blue = water, dark green = forests, light green = grasses, pink = roads, orange = 
soils, and black = shadows). 

Table 4. The accuracies of the spectral-based classification approach in the four test regions in terms 
of overall accuracy, Kappa coefficient, and F1-score for each class. 

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows 
I 86.1% 0.8289 91.2% 91.4% 79.4% 82.9% 96.7% 61.4% 59.1% 
II 79.4% 0.7523 77.9% 78.2% 81.4% 87.5% 97.1% 42.7% 61.1% 
III 89.1% 0.8296 74.7% 96.6% 73.4% 87.8% 95.9% 69.7% 39.7% 
IV 77.0% 0.7166 72.8% 88.1% 61.8% 76.7% 90.1% 56.7% 61.5% 
All 83.4% 0.7938 82.2% 91.9% 73.9% 83.4% 95.3% 61.4% 58.2% 

Comparison of the results presented in Figures 3 and 6 indicated that most pixels were 
correctly classified. However, in regions II and IV, many small shadow objects were misclassified as 
water due to their similar spectral characteristics. Spatial features provided additional 
characteristics that enhanced the separability between different classes. As a result, the 
misidentification between shadows and water decreased considerably after the spatial features 
were integrated. 

Table 4 shows that the OA of spectral-based classification was 83.4%, which was worse than 
the accuracy of 89.4% given by the spectral-spatial classification. The utilization of spatial features 
largely benefited the recognition of shadows and soils. Compared with the results of the 
spectral-based method, the accuracy increase of shadows and soils provided by the proposed 
method were 23.9% and 16.5%, respectively. The classification accuracies of water, forests, and 
grasses also improved by 2–6%. 

4.3. Strategy of Road Superimposition 

A comparative experiment that extracted training samples from the OSM road data instead of 
directly overlaying it on the classification map was carried out to demonstrate the effectiveness of 
the road superimposition strategy. The classification maps and accuracies are presented in Figure 7 
and Table 5, respectively. 

  
(a) Region I (b) Region II Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 21 

 

  
(c) Region III (d) Region IV 

Figure 7. Classification maps of the four test regions provided by the approach that used roads as 
training samples (yellow = buildings, blue = water, dark green = forests, light green = grasses, pink = 
roads, orange = soils, and black = shadows). 

Table 5. Classification accuracies of the approach that used roads as training samples in the four test 
regions in terms of overall accuracy, Kappa coefficient, and F1-score for each class. 

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows 
I 80.1% 0.7598 63.0% 95.7% 72.9% 94.9% 79.9% 55.6% 91.9% 
II 75.0% 0.7003 42.3% 95.6% 77.6% 98.6% 76.3% 39.0% 81.5% 
III 88.0% 0.8118 30.0% 97.6% 78.2% 98.2% 69.6% 50.8% 91.8% 
IV 84.0% 0.8033 47.1% 91.5% 87.1% 92.0% 83.6% 58.0% 93.8% 
All 81.8% 0.7688 45.6% 95.1% 79.0% 96.0% 77.4% 50.9% 89.8% 

As shown in Figure 7, a mass of buildings and soils were misclassified as roads. Some pixels of 
water, forests, and grasses were confused with roads. This phenomenon can be attributed to the 
similar spectral characteristics among buildings, soils, and roads. 

Comparisons between Tables 3 and 5 indicated that the method which utilized the road 
superimposition strategy provided better classification performance and increased the OA by 7.6%. 
Specifically, the classification accuracy of buildings increased by 39.1%, and the accuracy of roads 
increased from 77.4% to 93.2%. The road superimposition strategy considerably reduced the severe 
misclassification between roads and other artificial architectures. Notably, the success of the OSM 
road superimposition strategy was attributed to the high completeness of the OSM roads. For the 
other classes of information in OSM, the superimposition strategy was unsuitable due to low 
completeness. 

4.4. The Object-Based Strategy 

The pixel-based approach and the object-based approach were widely accepted strategies for 
high-spatial-resolution image classification. An experiment of object-based image analysis (OBIA) 
was conducted for comparison. In the object-based cases, multi-resolution segmentation algorithm 
was used to divide the image into regions. Pixels within each region were spatially adjacent and 
similar in feature domains. Thus, the feature of the representative sample was regarded as the mean 
feature value of the pixels within each region, and the corresponding label was determined by the 
dominant class. The classification maps and accuracies using OBIA are presented in Figure 8 and 
Table 6, respectively, for comparison. 

Figure 7. Classification maps of the four test regions provided by the approach that used roads as
training samples (yellow = buildings, blue = water, dark green = forests, light green = grasses, pink =
roads, orange = soils, and black = shadows).

Comparisons between Tables 3 and 5 indicated that the method which utilized the road
superimposition strategy provided better classification performance and increased the OA by 7.6%.
Specifically, the classification accuracy of buildings increased by 39.1%, and the accuracy of roads
increased from 77.4% to 93.2%. The road superimposition strategy considerably reduced the severe
misclassification between roads and other artificial architectures. Notably, the success of the OSM road
superimposition strategy was attributed to the high completeness of the OSM roads. For the other
classes of information in OSM, the superimposition strategy was unsuitable due to low completeness.

4.4. The Object-Based Strategy

The pixel-based approach and the object-based approach were widely accepted strategies for
high-spatial-resolution image classification. An experiment of object-based image analysis (OBIA)
was conducted for comparison. In the object-based cases, multi-resolution segmentation algorithm
was used to divide the image into regions. Pixels within each region were spatially adjacent and
similar in feature domains. Thus, the feature of the representative sample was regarded as the mean
feature value of the pixels within each region, and the corresponding label was determined by the
dominant class. The classification maps and accuracies using OBIA are presented in Figure 8 and
Table 6, respectively, for comparison.
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salt and pepper noises in the classification results. As shown in Table 6, the OA of the four test 
regions was 89.3%—close to the accuracy of 89.4% obtained by the pixel-based method. The 
accuracies of buildings, water, forests, grasses, and roads were nearly equal to the accuracies using 
pixel-based method. From these results, we can conclude that the proposed framework is 
appropriate for pixel- and object-based classification. The accuracies of the two cases can be close to 
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4.5. Sensitivity Analysis of Sample Numbers 

Figure 8. Classification maps of the four test regions provided by the object-based approach (yellow =
buildings, blue = water, dark green = forests, light green = grasses, pink = roads, orange = soils, and
black = shadows).

Table 6. Classification accuracies of the object-based approach in the four test regions in terms of
overall accuracy, Kappa coefficient, and F1-score for each class.

Region OA Kappa Buildings Water Forests Grasses Roads Soils Shadows

I 87.8% 0.8518 87.9% 97.7% 84.4% 84.2% 91.5% 70.0% 82.5%
II 87.1% 0.8456 80.9% 95.5% 78.6% 90.4% 97.1% 65.6% 81.9%
III 94.1% 0.9072 75.4% 99.1% 84.9% 92.6% 95.9% 76.7% 81.5%
IV 86.5% 0.8353 81.1% 94.6% 72.4% 85.7% 91.6% 63.1% 86.6%
All 89.3% 0.8674 83.2% 97.6% 80.1% 88.0% 94.3% 71.3% 83.6%

Comparisons between Figures 4 and 8 showed that the classification maps became cleaner with
fewer noises than before. The object-based method was advantageous because it reduced the salt
and pepper noises in the classification results. As shown in Table 6, the OA of the four test regions
was 89.3%—close to the accuracy of 89.4% obtained by the pixel-based method. The accuracies of
buildings, water, forests, grasses, and roads were nearly equal to the accuracies using pixel-based
method. From these results, we can conclude that the proposed framework is appropriate for pixel-
and object-based classification. The accuracies of the two cases can be close to each other, whereas the
classification maps derived by OBIA may show more homogeneity locally.
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4.5. Sensitivity Analysis of Sample Numbers

In this experiment, classifications with different numbers of training samples per class were
conducted using pixel- and object-based methods, respectively. The OA obtained with different
amounts of training samples is presented in Figure 9. Notably, the accuracies did not fluctuate
considerably with a range from 85% to 90%. The accuracy reached a peak when the number of training
samples was 300. Moreover, the accuracy of the OBIA method declined more heavily than that of the
pixel-based method when the number of samples was more than 300. The accuracy remained stable
between 85% and 90%. Therefore, the proposed framework is inconsiderably sensitive to the number
of samples.
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Figure 9. Accuracies with different numbers of training samples.

4.6. Comparison with the State-of-the-Art Methods

Three state-of-the-art methods that use OSM data for remote sensing image classification were
considered for comparison. The first method (CI method) introduced CI to assess the importance
of the OSM data, and selected samples from OSM data with high CI [22]. The second method (SR
method) refined the training samples derived from the OSM data using a set of techniques and
superimposed the OSM road data on the classification map [23]. The third method (AS method)
extracted automatic samples on the basis of multiple information indexes for remote sensing image
classification [40]. The classification maps and confusion matrixes of these methods and the proposed
method are presented in Figure 10 and Table 7, respectively.

Figure 10 shows that the proposed method exhibited promising performance. Specifically,
although the training samples were selected from the datasets with high values of CI for the CI
method, the image was still misclassified seriously. The classification maps of the SR method indicated
evident confusion between buildings and soils and between forests and grasses. Furthermore, shadows
were all recognized as water due to the lack of shadow samples. The classification maps of the AS
method showed that most pixels were correctly classified, especially for the pixels of shadows, water,
and vegetation. However, numerous pixels were misclassified as roads. In addition, grasses and
forests could not be separated because they were integrally represented by the vegetation index.

By comparing the confusion matrixes of the four aforementioned methods, the following
conclusions were obtained:

The quality of training samples is crucial for the performance of classification. In our experiments,
the methods using refined samples (SR, AS, and the proposed method) achieved an OA of at least
64.9%, whereas the method using raw OSM data as samples (CI method) achieved an OA of only
48.6%.
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Superimposing the OSM road data on the classification map is better than using them as training
samples. The number of road pixels in the four test regions was 107234.The methods using road
superposition (RS and the proposed method) recognized at least 102,165 pixels of roads, whereas the
methods using road samples (CI and AS) recognized at most 65,183 pixels of roads.

Shadow samples are important for high-resolution remote sensing image classification. In our
case, shadows covered 5–10% of the area in the test regions. The CI and SR methods discarded
these shadows, whereas the AS method and the proposed method took shadows into consideration.
The experimental results illustrate that the latter methods achieved higher OA than the former ones.
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Table 7. Confusion matrixes of (a) CI, (b) SR, (c) AS, and (d) the proposed method.

(a) OA = 48.6%, Kappa = 0.3777

Buildings Water Forests Grasses Roads Soils Shadows

Buildings 104,013 83,255 835 752 41,645 6291 43,964
Water 1344 132,673 13,568 26,152 980 1262 3964

Forests 3804 6111 37,881 3861 5832 102 7290
Grasses 2789 181 10,173 107,793 6772 467 153
Roads 29,704 73,646 17,041 18,276 43,981 1362 35,320
Soils 10,287 77 344 3529 10,792 20,427 410

Shadows 0 0 0 0 0 0 0
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Table 7. Cont.

(b) OA = 64.9%, Kappa = 0.5676

Buildings Water Forests Grasses Roads Soils Shadows

Buildings 47,938 2 12 18 698 16 125
Water 40,633 282,585 459 373 90 1390 41,649

Forests 5339 12,389 74,863 88,751 90 142 46,785
Grasses 254 34 1175 58,018 5 284 3
Roads 454 940 2057 783 106,163 806 1553
Soils 57,469 77 1276 12,445 3058 27,335 997

Shadows 0 0 0 0 0 0 0

(c) OA = 71.2%, Kappa = 0.6423

Buildings Water Forests Grasses Roads Soils Shadows

Buildings 85,833 25 105 476 20,438 4798 1085
Water 798 268,397 151 5 367 0 5594

Forests 0 0 0 0 0 0 0
Grasses 4280 1138 73,119 149,966 14,024 1607 1409
Roads 54,773 4480 1221 2640 65,183 9094 10,936
Soils 3138 8 34 288 4361 13,877 55

Shadows 3439 22,020 5239 7123 5910 630 72,328

(d) OA = 89.4%, Kappa = 0.8685

Buildings Water Forests Grasses Roads Soils Shadows

Buildings 120,240 789 538 856 4073 2646 2516
Water 1182 285,605 643 30 353 18 2014

Forests 2433 1708 67,072 17,153 381 5 832
Grasses 6310 217 9047 141,286 1357 1999 799
Roads 573 949 52 720 102,165 834 1600
Soils 2736 7 11 210 1629 22,274 310

Shadows 18,782 6451 289 243 231 2230 83,333

4.7. Discussion on the OSM Data Quality

The OSM data have gained increasing attention in land cover/land use mapping. Different
strategies have been developed in accordance with the accuracy and completeness of OSM data.
In regions where volunteers are active, e.g., some European countries, the quality of OSM data is
as high as the proprietary data. Land cover/land use maps can be directly extracted and generated
from OSM data [19,36,41]. However, for most places in the world, OSM data do not have a high
accuracy or completeness. In this context, OSM data are incorporated with remote sensing image for
land cover/land use mapping. Training samples can be extracted from OSM data for remote sensing
image classification [21–23]. The inaccurate labels contributed by unprofessional volunteers hinder the
image classification. Thus, it is important to collect reliable and representative samples from OSM data.
Moreover, the OSM road network can be adopted to segment the study area for parcel-based land use
mapping [42,43]. The performance of this strategy relies on the completeness of the OSM road data.
Although OSM data quality is unsatisfactory in certain regions, it is promising that OSM information
becomes more accurate and complete with increasing volunteers contributing their knowledge.

5. Conclusions

In this study, high-resolution remotely sensed imagery and OSM data were fused to obtain the
land cover classification map over urban areas. The class attributes from the OSM data and multiple
information indexes from imagery were integrated to extract training samples. APs were computed to
model the spatial features of imagery and PCA was performed to reduce the information redundancy.
On the basis of the generated training samples and extracted features, an initial classification map was
obtained. An OSM road buffer with an adaptive radius was derived in consideration of road hierarchy.
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After superimposing the road buffer on the classification map and relabeling the overlapped pixels as
the road category, the final classification result was obtained.

A high-resolution multispectral image acquired by GaoFen-2 satellite and the OSM data covering
Wuhan City, China was used to test the effectiveness of the proposed framework. The experimental
results illustrated that the proposed framework produced a satisfactory classification result with
high accuracy. Firstly, the samples derived by the proposed method were more reliable than the
raw OSM samples, given that they showed better discriminations than the original OSM data in
feature space. Secondly, the integration of APs improved the classification accuracy compared with
the classification approach that only utilized spectral features. Thirdly, the strategy of the OSM
road superimposition effectively reduced the misclassification among buildings, soils, and roads.
The proposed framework was compared with three state-of-the-art methods. Experimental results
demonstrated that the proposed framework outperformed the other methods in terms of classification
accuracy and visual interpretation.

In the future, we plan to conduct multi-temporal analysis on urban areas using multi-sensor
images and OSM data [44,45]. Considerable attention will also be paid to the fusion of open social and
remote sensing data for the analysis of economic and social issues in urban areas.

Author Contributions: Conceptualization, N.L. and T.W.; methodology, Q.L.; software, H.H.; validation, T.W., and
H.H.; formal analysis, T.W.; investigation, T.W. and Q.L.; resources, N.L.; data curation, H.H.; writing—original
draft preparation, H.H.; writing—review and editing, T.W. and Q.L.; visualization, H.H.; supervision, N.L. and
Q.L.; project administration, N.L.; funding acquisition, N.L.

Funding: This research was funded the National Key Research and Development Program of China grant
number 2018YFC0809100.

Acknowledgments: We thank the anonymous reviewers for their insights and constructive comments, which
helped to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in china.
Land Use Policy 2015, 45, 1–7. [CrossRef]

2. Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with gis and remote
sensing techniques in daqahlia governorate egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [CrossRef]

3. Chen, J.; Du, P.; Wu, C.; Xia, J.; Chanussot, J. Mapping urban land cover of a large area using multiple sensors
multiple features. Remote Sens. 2018, 10, 872. [CrossRef]

4. Yu, W.; Zhou, W. The spatiotemporal pattern of urban expansion in china: A comparison study of three
urban megaregions. Remote Sens. 2018, 9, 45. [CrossRef]

5. Huang, X.; Lu, Q.; Zhang, L. A multi-index learning approach for classification of high-resolution remotely
sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 90, 36–48. [CrossRef]

6. Geiß, C.; Klotz, M.; Schmitt, A.; Taubenböck, H. Object-based morphological profiles for classification of
remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5952–5963. [CrossRef]

7. Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A review of remote sensing image classification techniques: The role
of spatio-contextual information. Eur. J. Remote Sen. 2014, 47, 389–411. [CrossRef]

8. Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral–spatial classification techniques based
on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [CrossRef]

9. Yang, W.; Yin, X.; Xia, G.S. Learning high-level features for satellite image classification with limited labeled
samples. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4472–4482. [CrossRef]

10. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Marais Sicre, C.; Dedieu, G. Effect of training class label
noise on classification performances for land cover mapping with satellite image time series. Remote Sens.
2017, 9, 173. [CrossRef]

11. Wang, Z.; Du, B.; Zhang, L.; Zhang, L.; Jia, X. A novel semisupervised active-learning algorithm for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3071–3083. [CrossRef]

http://dx.doi.org/10.1016/j.landusepol.2015.01.007
http://dx.doi.org/10.1016/j.ijsbe.2015.02.005
http://dx.doi.org/10.3390/rs10060872
http://dx.doi.org/10.3390/rs9010045
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.008
http://dx.doi.org/10.1109/TGRS.2016.2576978
http://dx.doi.org/10.5721/EuJRS20144723
http://dx.doi.org/10.1109/TGRS.2014.2358934
http://dx.doi.org/10.1109/TGRS.2015.2400449
http://dx.doi.org/10.3390/rs9020173
http://dx.doi.org/10.1109/TGRS.2017.2650938


Remote Sens. 2019, 11, 88 20 of 21

12. Persello, C.; Bruzzone, L. Active and semisupervised learning for the classification of remote sensing images.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 6937–6956. [CrossRef]

13. Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Muñoz-Marí, J. A survey of active learning algorithms for
supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [CrossRef]

14. Lu, Q.; Ma, Y.; Xia, G.-S. Active learning for training sample selection in remote sensing image classification
using spatial information. Remote Sens. Lett. 2017, 8, 1211–1220. [CrossRef]

15. Maulik, U.; Chakraborty, D. Learning with transductive svm for semisupervised pixel classification of remote
sensing imagery. ISPRS J. Photogramm. Remote Sens. 2013, 77, 66–78. [CrossRef]

16. Tan, K.; Zhu, J.; Du, Q.; Wu, L.; Du, P. A novel tri-training technique for semi-supervised classification of
hyperspectral images based on diversity measurement. Remote Sens. 2016, 8, 749. [CrossRef]

17. Jokar Arsanjani, J.; Helbich, M.; Bakillah, M. Exploiting volunteered geographic information to ease land use
mapping of an urban landscape. In International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Proceedings of the 29th Urban Data Management Symposium, London, UK, 29–31 May 2013;
University College London: London, UK, 2013; pp. 51–55.

18. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

19. Estima, J.; Painho, M. Investigating the potential of OpenStreetMap for land use/land cover production:
A case study for continental Portugal. In OpenStreetMap in GIScience; Jokar Arsanjani, J., Zipf, A., Mooney, P.,
Helbich, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 273–293.

20. Haklay, M. How good is volunteered geographical information? A comparative study of openstreetmap and
ordnance survey datasets. Environ. Plann. B Plann. Des. 2010, 37, 682–703. [CrossRef]

21. Johnson, B.A.; Iizuka, K. Integrating openstreetmap crowdsourced data and landsat time-series imagery
for rapid land use/land cover (lulc) mapping: Case study of the laguna de bay area of the philippines.
Appl. Geogr. 2016, 67, 140–149. [CrossRef]

22. Geiß, C.; Schauß, A.; Riedlinger, T.; Dech, S.; Zelaya, C.; Guzmán, N.; Hube, M.A.; Arsanjani, J.J.;
Taubenböck, H. Joint use of remote sensing data and volunteered geographic information for exposure
estimation: Evidence from valparaíso, chile. Nat. Hazards 2016, 86, 81–105. [CrossRef]

23. Wan, T.; Lu, H.; Lu, Q.; Luo, N. Classification of high-resolution remote-sensing image using openstreetmap
information. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2305–2309. [CrossRef]

24. Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sens.
2005, 71, 169–177. [CrossRef]

25. Huang, W.; Bu, M. Detecting shadows in high-resolution remote-sensing images of urban areas using spectral
and spatial features. Int. J. Remote Sens. 2015, 36, 6224–6244. [CrossRef]

26. Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index
measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277.
[CrossRef]

27. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water
features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]

28. Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building
extraction from multispectral geoeye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [CrossRef]

29. Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution
imagery over urban areas. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 161–172. [CrossRef]

30. Bhardwaj, K.; Patra, S. An unsupervised technique for optimal feature selection in attribute profiles for
spectral-spatial classification of hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2018, 138, 139–150.
[CrossRef]

31. Salembier Clairon, P.J.; Wilkinson, M. Connected operators: A review of region-based morphological image
processing techniques. IEEE Signal Process. Mag. 2009, 26, 136–157. [CrossRef]

32. Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis
of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [CrossRef]

33. Ghamisi, P.; Benediktsson, J.A.; Sveinsson, J.R. Automatic spectral–spatial classification framework based on
attribute profiles and supervised feature extraction. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5771–5782.
[CrossRef]

http://dx.doi.org/10.1109/TGRS.2014.2305805
http://dx.doi.org/10.1109/JSTSP.2011.2139193
http://dx.doi.org/10.1080/2150704X.2017.1375610
http://dx.doi.org/10.1016/j.isprsjprs.2012.12.003
http://dx.doi.org/10.3390/rs8090749
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1068/b35097
http://dx.doi.org/10.1016/j.apgeog.2015.12.006
http://dx.doi.org/10.1007/s11069-016-2663-8
http://dx.doi.org/10.1109/LGRS.2017.2762466
http://dx.doi.org/10.14358/PERS.71.2.169
http://dx.doi.org/10.1080/01431161.2015.1113329
http://dx.doi.org/10.1016/0034-4257(91)90017-Z
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.14358/PERS.77.7.721
http://dx.doi.org/10.1109/JSTARS.2011.2168195
http://dx.doi.org/10.1016/j.isprsjprs.2018.02.005
http://dx.doi.org/10.1109/MSP.2009.934154
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1109/TGRS.2013.2292544


Remote Sens. 2019, 11, 88 21 of 21

34. Barrington-Leigh, C.; Millard-Ball, A. The world’s user-generated road map is more than 80% complete.
PLoS ONE 2017, 12, e0180698. [CrossRef] [PubMed]

35. Neis, P.; Zipf, A. Analyzing the contributor activity of a volunteered geographic information project—The
case of openstreetmap. ISPRS Int. J. Geoinf. 2012, 1, 146–165. [CrossRef]

36. Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.; Hagenauer, J.; Zipf, A. Toward mapping land-use patterns
from volunteered geographic information. Int. J. Geogr. Inf. Sci. 2013, 27, 2264–2278. [CrossRef]

37. Wang, H.; Wang, C.; Wu, H. Using GF-2 imagery and the conditional random field model for urban forest
cover mapping. Remote Sens. Lett 2016, 7, 378–387. [CrossRef]
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