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Abstract: Soil moisture observations are expected to play an important role in monitoring global
climate trends. However, measuring soil moisture is challenging because of its high spatial and
temporal variability. Point-scale in-situ measurements are scarce and, excluding model-based
estimates, remote sensing remains the only practical way to observe soil moisture at a global scale.
The ESA-led Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, measures the Earth’s
surface natural emissivity at L-band and provides highly accurate soil moisture information with a
3-day revisiting time. Using the first six full annual cycles of SMOS measurements (June 2010–June
2016), this study investigates the temporal variability of global surface soil moisture. The soil moisture
time series are decomposed into a linear trend, interannual, seasonal, and high-frequency residual
(i.e., subseasonal) components. The relative distribution of soil moisture variance among its temporal
components is first illustrated at selected target sites representative of terrestrial biomes with distinct
vegetation type and seasonality. A comparison with GLDAS-Noah and ERA5 modeled soil moisture at
these sites shows general agreement in terms of temporal phase except in areas with limited temporal
coverage in winter season due to snow. A comparison with ground-based estimates at one of the sites
shows good agreement of both temporal phase and absolute magnitude. A global assessment of the
dominant features and spatial distribution of soil moisture variability is then provided. Results show
that, despite still being a relatively short data set, SMOS data provides coherent and reliable variability
patterns at both seasonal and interannual scales. Subseasonal components are characterized as white
noise. The observed linear trends, based upon one strong El Niño event in 2016, are consistent with
the known El Niño Southern Oscillation (ENSO) teleconnections. This work provides new insight
into recent changes in surface soil moisture and can help further our understanding of the terrestrial
branch of the water cycle and of global patterns of climate anomalies. Also, it is an important
support to multi-decadal soil moisture observational data records, hydrological studies and land data
assimilation projects using remotely sensed observations.

Keywords: SMOS; soil moisture; climatology; trends; signal decomposition

1. Introduction

During the last decade, the interest in low-frequency microwave remote sensing and technological
advances in instrumentation and space technology have resulted in a series of new mission concepts
to measure key components of the water cycle. Soil moisture is one of these key components,
controlling the partition of energy at the surface and the interactions between the land surface
and the atmosphere at varying temporal and spatial scales [1–4]. Theoretical and experimental
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evidence supports the idea that L-band (1 to 2 GHz) microwave radiometry is the optimal technology
for measuring global surface soil moisture (SM) on an operational basis. The emission of thermal
microwave radiation from soils is strongly dependent on soil moisture content. L-band measurements
are insensitive to cloud liquid water and, compared to higher microwave frequencies, they are more
sensitive to deeper soil moisture layers (up to 5 cm) and penetrate through denser layers of vegetation
canopy [5,6]. The latter is especially important for improvements in climate, numerical weather
prediction, water and energy cycle science. As a result, the first two satellite missions specifically
designed to measuring SM have an L-band radiometer on-board: ESA launched the Soil Moisture
and Ocean Salinity (SMOS) mission in November 2009 [7] and NASA launched the Soil Moisture
Active-Passive (SMAP) satellite in early 2015 [8]. SMOS unique payload is an L-band synthetic
aperture radiometer with multi-angular and full-polarimetric capabilities that provides synoptic views
of the Earth’s global SM with a spatial resolution of ∼40 km and a 3-day revisit. SMAP has a real
aperture L-band radiometer and an L-band radar to enhance the spatial resolution of the estimates from
36 km (radiometer only) to 9 km (radar-radiometer). However, operations of active-passive products
ceased abruptly with the failure of the SMAP radar after about ten weeks of operations. Nonetheless,
the radiometer is continuing to make measurements and four annual cycles of measurements are about
to be completed.

Also during the last decade, satellite sensors with long technological heritage operating in
the low-frequency microwave spectrum, that were initially devoted to atmospheric and/or oceanic
sensing, have proved suitable for SM retrieval. As a result, several SM datasets from active and passive
microwave sensors at C-band (6 GHz) and X-band (10 GHz) partially covering nearly the last 4 decades
have been published and shared openly with the international community. Although these sensors are
only sensitive to the top 1 cm of soil and have a larger attenuation in presence of vegetation, they can
complement recent L-band missions and allow for a multi-decadal soil moisture observational data
record. Spaceborne SM data sets from low-frequency microwaves have been widely validated under
different biomes and climate conditions by comparison with ground-based observations (e.g., [9–16]
and outputs of land surface models ([17–20]). Relevant for this work, Polcher et al. [20] showed that
the rainfall driven structures of SM captured by the ORCHIDEE land surface model and SMOS are
compatible, and comprehensive validations of SMOS retrievals have been undertaken showing good
agreement with other sensors and consistent results over all surfaces, from very dry (Arizona, Sahel)
to wet (tropical rain forests) [15].

Soil moisture was recognized by the Global Climate Observing System (GCOS) to be an Essential
Climate Variable (ECV) in 2010. This underscores the potential of SM data sets to support the work of
the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental
Panel on Climate Change (IPCC). In this context, the ESA’s soil moisture Climate Change Initiative
(CCI) is one of the first initiatives to merge the different microwave products available into a single soil
moisture climate data record (http://www.esa-soilmoisture-cci.org/). One of the key steps in building
a multi-decadal soil moisture data record is that, since different products display different ranges of
soil moisture values, data have to be harmonized first using a common climatology. In its current
version, the ESA CCI SM product uses the climatology provided by the Global Land Data Assimilation
System (GLDAS-Noah) as a reference to scale the individual products. Despite some limitations,
the ESA CCI SM product is nowadays the most complete and consistent long-term soil moisture data
record available, covering (almost) the 40-year period from 1978 to June 2018 [21]. Recent research has
been focused into incorporating SMOS to the climate data record [22]. However, the impact of using a
model’s climatology in absolute retrievals remains unclear, and the climate community has repeatedly
argued for the need for a satellite-based SM record to serve as a reference for verifying land surface
model performance and trends.

This study presents an SMOS-based L-band climatology that could potentially serve as a reference
for the readily available microwave-based soil moisture data sets (from X-, C- and L-bands) into
a long-term climate data record exclusively based on observational data sets. Ideally, an L-band
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climatology should be built from both SMOS and SMAP data. However, since a combined product is
not yet available, and SMAP only covers a short observation period, this paper is focused on an L-band
climatology solely based on SMOS observations. We show that this observation-driven climatology
provides a close representation of the dominant features of temporal variability in the Earth’s SM for
the period 2010–2016, and allows identifying areas subjected to seasonal, subseasonal and long-term
variability. Previous research showed that, despite being a short data set, SMOS provides coherent
and reliable SM variability patterns at both seasonal and interannual scales [23,24]. In this work, the
Seasonal Trend decomposition using Loess (STL) procedure [25] is implemented and tailored to the
first six annual cycles of SMOS data to decompose the temporal variability of the signal. Our analysis
quantifies how much SM variation is due to long-term influences, how much is due to seasonal cycle
and how much is dominated by subseasonal short-term influences. This knowledge is critical for
understanding how well climate data and land surface models compare with the remotely sensed
variable. It also allows distinguishing between linear trends and interannual variability, which could
be later related to main phenomena of global weather alterations over land (e.g., El Niño Southern
Oscillation (ENSO)).

This paper is organized as follows. The SM dataset and the methodology followed to build
the SM climatology and to provide a global assessment of SM variability are described in Section 2.
Main results are shown in Section 3. The distribution of SM variance among temporal components is
first analyzed at selected target sites representative of terrestrial biomes with distinct vegetation type
and seasonality. The SMOS temporal series at these sites are compared to GLDAS-Noah and ERA5
modeled SM and to ground-based estimates available at one of the sites (REMEDHUS network, in
Spain) to identify consistencies and potential shortcomings of building a climatology with observational
data alone. Subsequently, the main features of SM temporal variability are analyzed at the global scale.
Conclusions and perspectives from this work are given in Section 4.

2. Materials and Methods

2.1. SMOS Soil Moisture

This study uses six years of global SMOS-BEC L3 v.2 daily SM retrievals, starting on 1 June 2010.
This product is provided in the 25 km EASE2 equal-area grid and is obtained from the ESA L2 v.620
data, after discarding SM retrievals being potentially affected by radio frequency interferences (RFI
flag) or with a Data Quality Index (DQX) greater than 0.07 m3·m−3. The DQX is an estimate of the error
in the SM retrieval and the brightness temperature measurement accuracy. Products are provided
separately from ascending and descending orbits. Data as well as further processing details are
available at http://bec.icm.csic.es/. In this work, daily products from both ascending and descending
orbits are combined to maximize coverage (further pre-processing is detailed in Section 2.5).

It is relevant to note the impact that RFI has on L-band satellite measurements. Although L-band
is an internationally protected band for radio astronomy, it was soon clear after the SMOS launch that
anthropogenic RFI exceeded expected levels in many regions worldwide [26]. The situation has now
improved, but the presence of RFI still masks SMOS observations, severely limiting its coverage in
some regions [27]. The impact of RFI is considerably reduced in SMAP, since a number of hardware
and software measures were implemented to detect and where possible mitigate its effects [28]. In this
regard, recent studies combining the brightness temperatures of the two missions are particularly
promising [29].

2.2. Selection of Target Sites

A set of representative target sites were selected to characterize and illustrate the SMOS SM
climatology under contrasting vegetation types and climatic conditions. The analysis of the SMOS
STL decomposition at the target sites allowed us to analyze major features of the STL decomposition
procedure and adapt its parameterization to SMOS measurements. This is described in detail in
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Section 2.6. In addition, the target sites were used as a basis for the inter-comparison of SMOS with
GLDAS-Noah and ERA5 SM time series.

The 11 terrestrial Transcom regions were used as an initial segmentation of global continental
land from where to select representative sites. Transcom regions are based on a 1-degree land cover
map and are delimited by climate zones [30]. The advantage of using this classification is that it
encloses climates with similar vegetation seasonality into a limited number of classes. After careful
analysis of the SMOS SM time series in each region, eight target sites were chosen covering Transcom
regions North America Boreal, North America Temperate, South America Tropical, South America
Temperate, Europe, Northern Africa, Southern Africa, and Australia. No target sites were chosen from
Transcom regions Eurasia Boreal, Eurasia Temperate and Asia Tropical, since availability of SMOS SM
data in these regions is very limited due to combined effects of RFI, the presence of snow and high
topography. A global map showing the selected target sites and the terrestrial Transcom regions is
shown in Figure 1. The specific location of each target site is provided in Table 1. One of the SMOS
and SMAP Core Cal/Val sites (REMEDHUS, site E) was chosen as a target site for further analysis vs
ground-based measurements.

Figure 1. Geographical position of the eight locations (triangles, letters A to H) selected to illustrate the
main features of SMOS climatology for a variety of vegetation and climatic conditions. Colors represent
the 11 terrestrial Transcom regions [30].

Table 1. Target sites: name and location.

Site Latitude Longitude

A – North America Boreal 60.93◦N 105.68◦W
B – North America Temperate 45.27◦N 101.00◦W
C – South America Tropical 7.54◦S 47.90◦W
D – South America Temperate 8.52◦S 38.52◦W
E – Europe - REMEDHUS 41.3◦N 5.4◦W
F – Northern Africa 10.90◦N 2.60◦E
G – Southern Africa 4.20◦S 36.70◦E
H – Australia 34.56◦S 145.25◦E

To establish the actual spatial representativeness of the target sites, a temporal correlation analysis
was performed at each selected location. Figure 2 shows, for each target site, the correlation map of
its SMOS SM time series with the SMOS SM time series of all the pixels on the globe. It can be seen
that the highest correlation is located in the neighborhoods of the chosen pixel (within the Transcom



Remote Sens. 2019, 11, 95 5 of 21

Region), which indicates the target site is representative of their surrounding area, but, as expected,
not of the whole region.

(a) North America Boreal (b) North America Temperate

(c) Tropical South America (d) Temperate South America

(e) Europe (f) Northern Africa

(g) Southern Africa (h) Australia

Figure 2. Correlation maps showing the representativeness of the SMOS time series for the study
period at the selected target sites. The exact location of each target site (see Table 1) is marked with a
black cross.
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2.3. Modeled Soil Moisture

2.3.1. GLDAS-Noah

Global Land Data Assimilation System (GLDAS) Noah model v.1 top 10 cm soil moisture estimates
were used in this study [31]. GLDAS-Noah land surface state and flux products are provided by the
Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth
Sciences Data and Information Services Center (GES DISC). GLDAS-Noah is available with a 3-h
temporal interval and 0.25◦ spatial resolution, covering dates from 2000 to the present. Data was
extracted for the eight selected target sites (see Figure 1) and the 6-year study period. The original unit
of GLDAS-Noah SM is kg·m−2, which was converted to volumetric SM (m3·m−3) for this study by
considering a top soil layer depth (10 cm) and assuming the density of water in the soil is 1000 kg·m−3.
After averaging for daily values, 1-day time series were used to construct 18-day temporal average
fields every 5 days (the rationale for this filtering is explained in Section 2.5).

2.3.2. ERA5

ERA5 is the most modern reanalysis produced by ECMWF, using a recent version of the ECMWF
Integrated Forecasting System. The data cover the Earth on a 30 km grid and resolve the atmosphere
using 137 levels from the surface up to a height of 80 km. It uses a vast number of observations,
including several reprocessed datasets [32]. Although ERA5 is currently in production, the data for
the period of this study is already available; top 7 cm soil moisture fields have been extracted for the
selected target sites and the 6-year study period. After averaging 00 UTC and 12 UTC to obtain the
daily values, 1-day time series were used to construct 18-day temporal average fields every 5 days.

2.4. Ground-Based Soil Moisture

In-situ soil moisture from REMEDHUS (target site E, see Figure 1, Table 1) was obtained through
the International Soil Moisture Network [33]. The REMEDHUS soil moisture monitoring network
is composed of 23 automated stations deployed within an area of 1300 km2 in a semi-arid sector
of the Duero basin in Spain. Each station is equipped with capacitance probes providing hourly
measurements over the top soil 5 cm with a reported accuracy of 0.003 m3·m−3. This network has been
continuously operating and quality-controlled since 2005 and is therefore ideally suited for validation
of multi-year satellite time series. Further details on the network can be found in [12]. For the period
of study, data from 17 REMEDHUS stations were available. Data from these stations was first daily
averaged and then used to construct 18-day temporal average fields every 5 days (see Section 2.5).

2.5. Temporal Averaging and Filtering of SMOS Data

SMOS L3 daily SM maps need to be pre-processed to ensure smooth spatio-temporal transitions
and representative soil moisture states in the climatology. To this aim, outliers were first detected and
screened out from the 1-day maps. This was done by comparing the SM retrieved at each pixel with
the retrievals embedded within the one-degree box centered at the considered pixel. Any pixel value
failing to pass the Tukey outlier test [34] were removed from the dataset. In the next step, the filtered
1-day SM maps were used to construct 18-day temporal average fields every five days. Although the
daily SMOS SM maps are useful for the monitoring and evaluation of episodic events, we opted for
an average period of 18 days to increase the spatial coverage of the resulting maps, reduce random
retrieval errors and filter out high-frequency modes that can be considered as noise when calculating
climatological averages. The temporal window of 18-day is the closest to SMOS repeat cycle and the
one generally chosen to avoid orbital artifacts (e.g., [35]).

As shown in detail by Robock et al. [36], there are two distinct scales that determine the variations
of SM in time and space. The small scale, referred to as hydrological or land surface related scale, is on
the order of days and tens of meters. Soil moisture can vary on this scale due to variations of soil
properties, vegetation, and topography or drainage patterns. This small-scale variability is intertwined
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with a much larger scale on the order of weeks-to-months and tens-to-hundreds of kilometers that
is mainly due to atmospheric forcing. Microwave satellite measurements integrate over relative
large-scale areas on the order of ∼25 km with a typical revisit of 3-days. At these spatio-temporal
scales, the short-term (up to 3 days) and small-scale (tens of meters) land surface component of
soil moisture variability appears as random (white) noise in comparison with the long-term (about
1–4 months) and large-scale (about 400–800 km) signal related to atmospheric forcing.

Examples of the time series of the original 1-day SM, together with the 18-day average, are shown
in Figure 3 for the 8 target sites, which cover a variety of vegetation seasonality and climatic conditions
(Figure 1, Table 1). Dots represent the daily values and the solid line corresponds to the 18-day average
every five days. It can be seen that the variability of the daily signal is captured in the filtered time
series, where the six SM annual cycles can be clearly identified. Difference in magnitude and extent of
rainy seasons among years are more clearly distinguished in the filtered series (e.g., sites E and H).
Also, notice the opposite timing of wet and dry seasons in Northern and Southern Africa (sites F and G),
which reflect the displacement of the Inter-Tropical Convergence Zone (ITZC). Site D exhibits limited
temporal variability in both the original and the filtered series.

Figure 3. Time series of the 1-day SMOS-based soil moisture retrievals (dots) and overlapped the
18-day average every five days (solid line) at the target locations.

Notice that not all the 25-km pixels in this 18-day averaged SM fields are continuously observed.
SMOS’s wide swath (1000 km) and polar orbit allow for a 3-day global revisit period. However, there is
an important amount of missing data due to the presence of radio frequency interferences masking
L-band measurements, particularly in South-East Asia [27]. In addition, no retrievals are attempted in
areas of high topography (e.g., Himalaya) and in soils covered by snow. The latter strongly reduces the



Remote Sens. 2019, 11, 95 8 of 21

data availability in high latitudes and especially during the fall and winter seasons. The global map of
Figure 4 shows the SMOS temporal coverage for the study period, with 1 representing a 100% coverage
of the filtered and temporally-averaged SMOS signal. In this study, only the pixels with a minimum of
80% temporal coverage were used in order to ensure representativeness and robustness of the signal
decomposition and of the results presented. As we will show later in the study, this threshold does not
exclude areas with limited data in winter due to snow. The impact of these “intermittent” data gaps in
the STL decomposition is discussed in Sections 3 and 4.

Figure 4. Global map of SMOS temporal coverage during the study period.

2.6. Signal Decomposition

The STL geostatistical procedure is used in this work to decompose the SMOS signal into its
temporal components and build an observation-based SM climatology. The STL technique was
originally introduced by Cleveland et al. [25], and adapted by Humphrey et al. [37] to evaluate
the seasonal cycle of unevenly spaced time series using locally weighted regression, or Loess.
This technique has already been used in several research studies to extract the seasonal and
interannual components of GRACE time series [37–39]. In this work, the STL procedure has been
used to decompose the filtered and temporally-averaged SMOS SM signal (SMtot) as the sum of a
seasonal component (SMseas), a low-frequency component (SMlong−term) and remaining high-frequency
residuals (SMres):

SMtot = SMlong−term + SMseas + SMres (1)

The low-frequency component SMlong−term contains only periodicities larger than a season and is
further decomposed into linear trends (SMtrend) and the anomalies with respect to this linear trend or
interannual variability (SMinterannual). The high-frequency residual is expected to be both a real signal
representing subseasonal variability and noise present in SMOS data. For a detailed description of the
method, refer to [25,37]. In short, STL is a double recursive approach: an inner iteration cycle is used
to recover the seasonal cycle from the low-frequency component using Loess; the outer iteration cycle
is used to recalculate the Loess weights and to separate the signal between low- and high-frequency
components again using Loess. At the end of the process, the low-frequency signal remaining after
removal of the seasonal cycle is decomposed as a trend and an interannual signal. The residual
component is equal to the resulting high-frequency component.
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The application of the STL algorithm requires the specification of six smoothing filter parameters
that need to be optimized to minimize spectral leakage between high- and low-frequency components
and control the possible influence of outliers in the time series. These are: (1) the length of the seasonal
cycle; (2) the degree of the weighted polynomial regression; (3) the number of cycles of the inner
loop (used to estimate the trend, the seasonal and the interannual components); (4) the number of
cycles of the outer loop (used to estimate the residual signal, i.e., the subseasonal component); (5) the
maximum time lag for the seasonal component, and (6) the maximum time lag for the long-term
component. Here, the seasonal cycle is taken as exactly 365 days, a multiple of the 5-day map interval
(which was constructed disregarding the occurrence of the leap day, 29 February 2012). Following
Humphrey et al. [37], the number of inner and outer loops is set to 2 and 3, respectively, a quadratic
fit is used for the seasonal cycle and a linear fit for the long-term components. The optimal values
for the maximum time lag of the seasonal and long-term components have been selected after a
comprehensive analysis carried out at the 8 target sites that is reported hereafter. The role of the
maximum time lag for the seasonal component λper is illustrated in Figure 5 for site A. It is shown that
the smoothness of the seasonal cycle increases with the value of the maximum seasonal time-lag period.
Although large values are recommended when using noisy data, they may hide key details of the
seasonal cycle. A maximum seasonal time lag of 90 days fails to reconstruct the double-maximum SM
in June and September. Instead, it results in an erroneous maximum during July. On the other hand,
too short maximum seasonal time lags tend to over fit the noisy data. A similar effect was observed
for sites C, E and G, whereas there was not a strong impact in B, D and F (not shown). These results
indicate that a maximum seasonal time lag of 45 days is a reasonable compromise for SMOS SM data
and it is the value used for the rest of this study.

Figure 5. Analysis of the extracted soil moisture seasonal component at location A. Two seasonal
components are shown depending on the value of the maximum seasonal time lag λper. Black and gray
lines corresponds the values of 45 days and 90 days, respectively.

The role of the maximum time lag for the long-term or low-frequency component is to separate
the seasonal anomalies between a low-frequency (that will be further decomposed as a trend and an
interannual component) and a residual high-frequency component. Figure 6 shows the spectra of the
interannual and subseasonal SM components for a long-term maximum time lag of 0.20 × 365 (top)
and of 0.10 × 365 (bottom). It is observed that the larger lag leads to a subseasonal component having
maximums for cycles beyond 90 days, whereas the shorter lag leads to a subseasonal variability
closer to white noise. Here, the lag of 0.10 × 365 has been selected since it allows a more appropriate
decomposition of long-term variability and residual components (which integrates both subseasonal
variability and instrumental noise). Results shown in Figure 6 are for site A, results obtained for the
other sites are consistent (not shown).
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Figure 6. Spectra (m3· m−3)2·cpd−1 (cpd = cycles per day) versus frequency (cycles per day) for
soil moisture interannual (black line) and residual (blue line) temporal components at location A.
The seasonal maximum time-lag parameter is 45 days. Top and bottom plots are obtained using a
long-term maximum time lag equal to 0.20 × 365 and 0.10 × 365 days, respectively. The time lag of
0.10 × 365 is selected to ensure the residual component contains only subseasonal variability and
instrumental noise i.e., it has no maximums for cycles beyond 90 days.

2.7. Analyses at Target Sites

The STL procedure was applied to the SMOS time series at the target sites. The obtained
distribution of SMOS SM variance among its temporal components was analyzed in detail.
Subsequently, SMOS, GLDAS-Noah and ERA5 SM time series at these locations were inter-compared
to identify consistencies and potential shortcomings of building a climatology with satellite data alone.
A comparison of the three data sets to ground-based SM was performed for one of the target sites
(REMEDHUS, in Europe). Statistical scores of the comparisons are provided.

2.8. Analyses at the Global Scale

Global maps of the long-term average and standard deviation of SM were computed on a
pixel basis over the filtered and temporally-averaged SMOS signal. The STL decomposition was
subsequently applied globally to each individual pixel with a temporal coverage greater than 80%
for the study period (see Figure 4). The relative magnitude of the extracted long-term, seasonal and
residual components with respect to the total variance was computed to assess the dominant modes of
temporal variability in global SM during the study period. The magnitude of the linear trends within
the long-term component were also evaluated per pixel at the global scale.

3. Results

3.1. Soil Moisture Temporal Decomposition at Target Sites

Figure 7 illustrates the STL decomposition of the SMOS signal into the different subcomponents
at the 8 target regions. In general, the temporal series show an almost negligible linear trend,
with Australia (H) and South America Temperate (D) presenting a slight trend towards drier conditions
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and North America Temperate (B) and Southern Africa (G) revealing a slight trend towards wetter
conditions. This will be examined in detail later in this section. A clear seasonal signal is extracted for
most of the sites, except for South America Temperate (D), which exhibits limited temporal variability
in the original series (see also Figure 3). The residual component shows a temporal behaviour similar
to that of white noise in all the sites. It is especially high in Australia (H) and, to a lesser extent,
in Southern Africa (G). The analysis for Europe (E) reflects a regular seasonal cycle, with exceptionally
dry conditions in winter of years 2011–2012 and 2014–2015, and exceptionally wet conditions during
short periods of spring 2012, winter 2013–2014 and end of 2015, as suggested by the analysis of the
interannual component. The dry anomaly in winter 2011–2012 has also been reported in previous
studies devoted to detection of agricultural drought [40,41]. The interannual component presents
also prominent fluctuations in North America Temperate (B), Southern Africa (G) and Australia (H).
In particular, the dry anomaly observed in North America Temperate (B) in 2012 reflects the strong
summer drought suffered in the contiguous US due to unusual high temperatures in spring and
summer 2012 combined with record low rainfall [42]. The analysis of North America Boreal (A)
exemplifies the non-negligible impact of temporal gaps in the decomposition procedure. The wet
peak measured by SMOS in October 2010 and followed by a short no-data is assigned mainly to the
subseasonal component. The same applies to the wet peak measured in October 2013, which is not
affected by the absence of data. In contrast, there is a no-data corresponding to the winter months
of the six annual cycles that are assigned to the interannual component. This reveals a limitation
of the method to correctly differentiate short-term from long-term variability in the extremes of
temporal gaps. This same effect was observed in initial tests conducted at target sites within Eurasia
Boreal, Eurasia Temperate and Asia Tropical (see Figure 1), which were discarded from the analysis.
Although we imposed an 80% minimum temporal coverage, the impact of no data in the time series
needs to be taken with some caution when interpreting overall results.

3.2. Comparison of SMOS, GLDAS-Noah, ERA5 and In-Situ at Target Sites

Time series of SMOS-based SM together with top 10 cm soil moisture GLDAS-Noah and top 7 cm
soil moisture analysis from ERA5 are shown in Figure 8. It can be observed that in regions C to H,
SMOS, GLDAS and ERA5 soil moisture time series are comparable in terms of temporal phase (Pearson
correlation of 0.7–0.9). In regions A and B, however, the SMOS observations are uncorrelated with the
uppermost soil moisture modeled estimates. This is mostly due to the presence of snow, which masks
satellite measurements and can also affect the uncertainty of model predictions. Further research is
needed in these areas of mutual disagreement to identify potential deficiencies in the satellite and/or
in the model estimates. Similar results were reported by a previous study comparing SMOS with
MERRA reanalysis [43]. Note that the correlation metric benefits from the seasonal cycle, which for the
period of this study is included. Correlation of time series at daily time scales lead to similar results
(not shown).

There are notable differences in the absolute values of satellite and modeled data (e.g.,
sites E and H), which remarks the need to use bias correction procedures when assimilating soil
moisture satellite observations in land surface simulations [44]. The assimilation of satellite data
in land surface models has proven to be a powerful technique to leverage from the two sources
of information. A recent study has shown that assimilating SMOS SM data into the Noah Land
Information System after bias correction significantly increased the anomaly correlation of modeled
top soil moisture estimates with station measurements [45]. Also, Pinnington et al. [46] showed that
assimilation of (bias-corrected) satellite rainfall and SM data had the greatest impact on model estimates
during the seasonal wetting-up and drying-down of the soil, respectively. While L-band satellites
have been designed for measuring soil moisture, land surface models have been designed for a much
wider purpose, including ecological, hydrological or climate applications. Modeled soil moisture
is generally highly sensitive to the meteorological forcing data used and the land surface model
encoded physics [47,48]. This makes comparison of absolute values of observed and modeled SM
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very challenging, and therefore studies generally focus on the comparison of SM temporal anomalies
(e.g., [19,20]), or even in the comparison of observed and modeled brightness temperatures directly
(e.g., [49]). The differences found between modeled and observed SM and also among different models
support the idea proposed here of leveraging from the natural soil moisture variability captured by
satellite observations as a reference for harmonizing SM climate data records so that they become
model-independent.

Figure 7. STL decomposition of the time series at the eight target locations (from Figure 1 and Table 1).
The smoothed SMOS signal (in black) is decomposed in its seasonal cycle (in blue), linear trend (dashed
green line), interannual variability (green), and residual component (red).

Ground-based soil moisture data from REMEDHUS (average of 17 in-situ stations) are also
included in Europe time series (Figure 8E). It can be seen that both satellite and models generally
capture the temporal dynamics measured by the in-situ sensors. A statistical analysis has been
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undertaken following the recommended performance metrics in [50]. Results are shown in Table 2.
The temporal correlation (R) and the unbiased Root-Mean-Squared difference (ubRMSD) between
the in-situ, remotely sensed and modeled SM are satisfactory (R > 0.85, ubRMSD < 0.003). As in the
previous analyses, it should be noted that the R metric benefits from the seasonal cycle, which for the
period of this study is included. In terms of accuracy, SMOS shows a low dry bias of 0.02 while the two
models present a large wet bias of about 0.11 m3·m−3. As expected, the models capture reasonably
well the temporal dynamics but not the absolute magnitude [47]. The statistical scores when calculated
at daily time scales lead to similar results (not shown).

Figure 8. Time series of SMOS (in black), top 10 cm GLDAS-Noah (in green) and top 7 cm ERA5
(in blue) soil moisture at the eight target locations (from Figure 1 and Table 1). Target location E also
includes time series of collocated ground-based soil moisture (dashed line in magenta, average of
17 REMEDHUS in-situ stations).

Table 2. Statistical scores from comparison to in-situ at REMEDHUS (time series on Figure 8E): bias,
unbiased Root-Mean-Squared difference (ubRMSD) and Pearson correlation (R).

Bias (m3·m−3)(m3·m−3)(m3·m−3) ubRMSD (m3·m−3)(m3·m−3)(m3·m−3) R

SMOS −0.022 0.003 0.88
GLDAS-Noah 0.110 0.002 0.85
ERA5 0.116 0.003 0.91
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3.3. Temporal Mean and Variance of SMOS Soil Moisture Retrievals at the Global Scale

The temporal average global map of SMOS SM surface volumetric soil water content for the study
period (pixel average of SMtot in Equation (1)) is shown in Figure 9. The average conditions observed
during the study period exhibit a mode of 0.1 m3·m−3 (inset figure). It shows the expected spatial
patterns of SM, from the dry arid regions to the wet forested areas. Note that the average conditions
shown in areas with limited availability of data may not be representative (e.g., northern latitudes and
tropical Africa, see coverage map on Figure 4).

Figure 9. Global distribution of time-average soil moisture based on six years of SMOS observations,
starting in 1 June 2010. The inset figure is an estimate of its marginal probability density.

The global map of SMOS SM standard deviation for the study period (standard deviation of SMtot

in Equation (1)) is shown in Figure 10. As expected, areas with higher variability are concentrated in the
tropics, where there is a strong seasonality dominated by the position of the ITCZ [51]. Other areas with
strong variability include India and South-East Asia, strongly affected by Monsoon rainfall, and some
regions in the Southern Hemisphere like eastern Australia and South America that could be related to
ENSO. In particular, the high SM variability observed in the so-called Southeastern South America
(SESA) region can be explained by the intense summer precipitation over this region [52]. This pattern
has also been observed with satellite SM products derived from higher microwave frequencies and
climate models [53], and responds to strong land-atmosphere interactions in the region. The variability
observed in northern latitudes is probably due to imperfect detection of ice/snow and poor temporal
coverage (see Figure 4).

3.4. Analysis of the Dominant Features of Global Soil Moisture Variability

In this study we decomposed the total variance of the soil moisture signal (Figure 10) by breaking
it down into: (1) a seasonal component, (2) a long-term component, and (3) a high-frequency residual or
subseasonal component. The relative magnitude of each of these three components is shown as an RGB
triplet in Figure 11. It reveals the seasonal cycle is dominant in many tropical regions such as Brazil,
Central Africa, India and Northern Australia. Wet tropical forests such as the Amazon and Congo
exhibit high spatial heterogeneity in its dominant components, probably due to the combined effects of
human activities and climate variability. In contrast, the soil moisture variability in dry tropical forests,
including the savannahs south of Central Africa and several regions in Southwestern Brazil, is clearly
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dominated by seasons. Though dry tropical forests may receive several hundred centimeters of rain
per year, they have long dry seasons which last several months and vary with geographic location.
Forests in dry tropics show great diversity of phenological patterns and large interannual variation,
with predominance of deciduous tree species [54]. Our analysis indicates that L-band is capturing
the emissivity from the soil and the seasonal drought through the forested canopy. Two regimes can
be identified in Europe: whereas western countries are governed by seasonal variability, long-term
variability predominates in the eastern countries. In Australia, seasonality dominates the north and the
south-east, the eastern region is dominated by long-term variability and the western by subseasonal.
The Indo-Australian archipelago is also dominated by long-term variability. It is interesting to note
that subseasonal variability is predominant in regions where the SMOS signal has already a relatively
low variance (Figure 10) and is most likely influenced by noise such as the Sahara desert, the Arabian
Peninsula and Western Australia, i.e., where the noise is at least of the same magnitude that the annual
variance. Indeed, despite having carefully filtered the data, some of the SMOS retrievals in Asia and
Europe may still be affected by undetected RFI contamination [27]. Also, results may be affected by
the intrinsic uncertainty of microwave satellite SM retrievals, which is higher in presence of dense
vegetation canopies, heterogeneous landscapes, and high topography [6,11,55].

Figure 10. Global map of SMOS soil moisture standard deviation for the six-year period of this study.
The inset figure is an estimate of its marginal probability density.

The linear trends within the long-term variability component are further examined in Figure 12.
The linear trends observed in the SMOS signal illustrate the ENSO conditions during the six-year study
period. During the first five annual cycles -from 2010 to 2015- the equatorial Pacific Ocean was mostly
in a cold phase (La Niña); however, a warm event (El Niño) occurred during the last cycle (i.e., in 2016).
This explains why SMOS-derived linear trends reproduce known ENSO teleconnection spatial patterns.
During El Niño, limitations in terrestrial moisture supply result in vegetation water stress and reduced
evaporation in eastern and central Australia, southern Africa and Eastern South America (areas in
red). The contrary situation is experienced in Argentina, Tanzania and southeastern US (areas in blue),
where there is a regime of above-average rainfall. This result is in line with a previous study that
showed that multi-decadal (1980–2011) variability in SM and terrestrial evaporation was dominated by
ENSO dynamics [56]. The linear trends in Figure 12 also provide evidence of strong dry/wet patterns
in regions which have not been previously related to ENSO precipitation patterns (e.g., western Europe,
Northern Africa, California). Still, results should be taken with caution, and further analysis of the
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long-term variability is needed to identify new climate patterns at short and median temporal scales.
Investigating the relation of ENSO to global soil moisture variability and the existence of potential
new teleconnection patterns is recommended for future research.

Figure 11. Distribution of the total SMOS variance among the long-term (green), seasonal (blue) and
subseasonal (red) components, expressed in per cent of the total variance, indicating the dominant
models of temporal variability in soil moisture for different regions. Each vertex in the triangle
corresponds to 100%. Empty areas correspond to locations with less than 80% SMOS temporal coverage
that have been masked out.

Figure 12. Magnitude of linear trends in the SMOS signal (expressed in m3·m−3·year−1). The trends
reflect that during the SMOS period (2010–2016) the equatorial Pacific Ocean was mostly in a cold
phase (La Niña) with a transition to a warm phase (El Niño) in 2015–2016.
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4. Discussion and Final Remarks

The two first space missions dedicated to measuring the Earth’s surface soil moisture have
been launched in the last decade: SMOS in 2009 and SMAP in 2015. They are providing
L-band measurements that, combined with C- and X-band measurements available since the 1980s,
allow generating, for the first time, observational soil moisture climate data records combining the three
microwave frequency bands. However, the synergies of microwave measurements across different
frequencies and the potential of the L-band data record to serve as a common reference to harmonize
the long-term data record have not yet been fully exploited. This study presents first evidence that the
relatively short data record of available SMOS L-band observations allows characterizing the main
modes and spatial distribution of the Earth’s surface soil moisture variability. This information could
serve as a reference to harmonize and construct a model-independent SM climate data record. In its
current version, the ESA CCI soil moisture product uses a climatology obtained from GLDAS-Noah to
harmonize the individual products for the 40-year period of record. However, given the differences
found between modeled and observed SM, and among SM from different models, there is a clear need
for a SM climate data record based solely on observational data sets. Such a record will be instrumental
to verify land surface model performance and trends.

This study is a first attempt to derive a global L-band climatology from observational data alone.
The STL geostatistical procedure was implemented and tailored to the first six annual cycles of SMOS
data to decompose the temporal variability of the signal. For the period of study (2010–2016) this
analysis allowed identifying regions where soil moisture variability was dominated by seasonal cycles,
regions that did not exhibit a clear seasonal pattern and with likely subseasonal variability, and regions
where the long-term variability dominated. Results show that the seasonal cycle was dominant in the
tropics (Brazil, Central Africa, India and Northern Australia), and in dry tropical forests, including
the savannahs south of Central Africa and several regions in Southwestern Brazil. Wet tropical
forests, in turn, exhibited high spatial heterogeneity in its dominant components, probably due to
the combined effects of human activities and climate variability. In Europe, western countries were
governed by seasonal variability whereas the long-term variability predominated in the eastern
countries. In Australia, seasonality dominated the north and the south-east and the eastern region was
dominated by long-term variability. Interestingly, in regions where SMOS has very limited variance
(e.g., Sahara desert, Arabian Peninsula, Western Australia), the subseasonal or residual component
was dominant. This is probably due to the fact that the noise of the observations is at least of the same
magnitude that the annual variance and the dominant variability is identified as noise. During the
study period (2010–2016), the equatorial Pacific Ocean was mostly in a cold phase until 2015–2016
when there was a transition to a warm phase. The observed global linear trends, based upon the
strong El Niño event in 2016, are shown to be consistent with the ENSO teleconnections calculated
over multiple events.

This study has demonstrated that L-band observations provide a reliable source of data to monitor
the distribution of shallow water content in continental surfaces from space platforms. However,
this study cannot conclude on the presence of a clear climate trend in the water content of the soil
and results should be taken with caution, since they are limited by the length of the L-band data
record available (∼8 years vs. the 30 years which are generally considered for climate studies). Still,
our results are consistent with a previous study that showed that multi-decadal (1980–2011) variability
in SM and terrestrial evaporation was dominated by ENSO dynamics [56]. Also, there are relevant
studies considering the trends of SM and terrestrial evapotranspiration at scales smaller than 30 years
(e.g., 10 years in [57]).

Our results showed that the STL procedure, after adequate parameterization, was a solid means
to build a soil moisture climatology based solely on the temporal dynamics of the data. Yet, it would
be recommendable to assess in future research the additional benefits of using techniques exploiting
the temporal and spatial components of the data (e.g., [24,58,59]). The global STL parameterization
was thoughtfully chosen after an analysis at 8 selected sites with distinct vegetation seasonality and
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climatic conditions. However, they do not likely cover each climate on the Earth continents and may
not be optimal under specific conditions (e.g., areas where small SMOS variance is dominated by
noise). A comparison with modeled GLDAS-Noah and ERA5 soil moisture reanalysis in the selected
sites, and with in-situ data at the REMEDHUS site (Europe), provides confidence in the obtained
results. The exception is in areas where the presence of satellite data gaps -although limited to 20%
of the study period- leads to mutual disagreement of model and satellite estimates. It should be
noted that the presence of observational data gaps in the satellite time series can potentially bias
the obtained climatology and severely limit the applicability of the method to Northern latitudes,
where seasonal snow masks soil emissivity and soil moisture retrievals cannot be performed. In this
regard, recent studies on the use of Gaussian process regression techniques to mitigate the effect of
missing information in Earth observation data are very promising (e.g., [60]).

This work has shown that the relatively short SMOS data record allows providing insight into the
dominant modes of temporal variability in the Earth’s surface soil moisture. Also, although previous
studies have shown some weaknesses of SMOS retrievals (e.g., [11,27,55]), the good correlation
obtained with ERA5 modern reanalysis and GLDAS-Noah indicates that an L-band climatology, such as
the one proposed in this study, is a reasonable reference to be used for a climate data record exclusively
based on remote sensing data. The presented SMOS-based climatology offers a unique view of recent
processes governing freshwater fluxes in the water cycle, and allows observing specific phenomena,
as the different variability regimes present within the Amazon and Congo basins and the dominance
of the interannual variability in wide regions within Europe, United States, Eastern Australia and
South America. It also opens the path to forthcoming studies focused on the analysis of the interannual
variability and the impact of ENSO in areas that have not been documented so far.
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