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Abstract: Limited by the noise, missing data and varying sampling density of the point clouds,
planar primitives are prone to be lost during plane segmentation, leading to topology errors when
reconstructing complex building models. In this paper, a pipeline to recover the broken topology
of planar primitives (TopoLAP) is proposed to reconstruct level of details 3 (LoD3) models. Firstly,
planar primitives are segmented from the incomplete point clouds and feature lines are detected
both from point clouds and images. Secondly, the structural contours of each plane segment are
reconstructed by subset selection from intersections of these feature lines. Subsequently, missing
planes are recovered by plane deduction according to the relationships between linear and planar
primitives. Finally, the manifold and watertight polyhedral building models are reconstructed based
on the optimized PolyFit framework. Experimental results demonstrate that the proposed pipeline
can handle partial incomplete point clouds and reconstruct the LoD3 models of complex buildings
automatically. A comparative analysis indicates that the proposed method performs better to preserve
sharp edges and achieves a higher fitness and correction rate than rooftop-based modeling and the
original PolyFit algorithm.

Keywords: LoD3 building models; ALS data; contour extraction; primitive-based building
reconstruction; topology recovery

1. Introduction

Three-dimensional building models, as the dominant type of man-made object in urban scenes, play
an important role in the foundation of the smart city. Applications including immersive visualization,
city planning, and navigation, etc. [1] impose a high demand to both the topology and texture
information of the building models, the automatic reconstruction of which remains a long-standing
challenge. The technical problems and state-of-the-art solutions have been thoroughly discussed and
depicted in a rich body of literature [2–4].

Since points of the façades suffer from missing data caused by glass materials, occlusion, and
scanning angle limitation, etc., most of the mature solutions resort to LoD2 [5] models which only focus
on the rooftop modeling for the past decades. The ISPRS test project on urban classification and 3D
building reconstruction gives a comprehensive conclusion towards rooftop modeling from point clouds
and/or images [6]. Among the common strategies, the data-driven methods highly depend on the data
quality, while the model-driven methods are confined to certain building types. Modeling without the
façade points not only reduces the level of details but also leaves the generalized boundaries of roofs
inaccurate without the constraint of adjacent façades.
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Proliferation in the fields of laser scanning and imaging sensors enable the point clouds, either
acquired from light detection and ranging (LiDAR) or photogrammetry, to describe large-area 3D
scenes efficiently, providing a good data foundation for building reconstruction with a higher level of
detail. LiDAR point clouds with high density and precision, along with the high-resolution images
taken at the same time can be obtained, cutting-edge researches involve the fusion of point clouds and
image data for extra reliable information [7,8]. The façade point clouds can be utilized to assist the
boundary generation with sharp features preserved and automatic LoD3 modeling is now conceivable.
However, high redundancy, partial missing and poor distribution, especially alongside the boundary
of the buildings in the urban scenes are still common obstacles for modeling complex buildings [9].
Even if the point clouds are dense enough, it is nearly impossible to preserve all the details of small
planes and ignore the noise parts at the same time by plane segmentation only from point clouds
(Figure 1). It is imperative to synthetically utilize the characteristics of the multi-source data and to
take the data deficiency into account during the reconstruction process.
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Figure 1. Examples of complex building structures and incomplete planar primitives. Colors are
randomly set for different planes and the black dots denote unsegmented points. Points of the façade
inside the red oval are missing. (a) Planar segments are lost due to the partial sparsity. (b) Without the
constraint of the façade, the outward boundaries are inaccurate by rooftop modeling.

To address these challenges, special emphasis is placed on the structural contour extraction
and topology recovery in order to deal with the incomplete planar primitives involved in building
reconstruction. The main contributions of this paper consist of:

• Structural contour extraction from point clouds, taking full advantages of the characteristics of
topological and textural information.

• Topology recovery for the incomplete planar primitives based on the relationship between the
linear and planar primitives, which generates a complete set of candidate planes to describe
the building.

• An optimized pipeline to reconstruct polyhedral models efficiently with high fitness to point
clouds and high correctness of planar primitives.

The rest of this paper is organized as follows. After a brief survey on related work given in
Section 2, an overview of our approach is expressed in Section 3. Subsequently, detailed algorithms of
the proposed method are explained in Sections 4 and 5. The experiments are carried out and discussed
in Section 6. Finally, the conclusion is given in Section 7 drawn from the experimental results and the
comparative analysis.

2. Related Works

In a common pipeline of primitive-based building reconstruction, planar primitives are segmented
from the point clouds and the contours of each plane are extracted to deduce the adjacent relations.
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Ridges are intersected by the roof planes while the outward borders or boundaries of isolated planes
are determined by contour generalization. The literature review of related research is given, focused
on these key technologies including linear and planar primitive-based building reconstruction and the
topology recovery towards an incomplete dataset.

2.1. Linear Primitive Extraction and Generalization

As linear primitives are salient in man-made objects, several studies extract line features to abstract
the urban scenes. Methods based on images detect segments from images and isolated 3D lines can
be triangulated from the matched 2D segment pairs [10,11]. Other methods resort to point clouds
including the off-the-shelf algorithm RANSAC [12,13] to detect shapes of known parameters. Apart
from the line fitting algorithm, another essential research is to extract the line alignment for 2D or 3D
point cloud. Outstanding research has involved a contrario detection theory [14–16], which can be
further applied to find the boundary of a plane. Hackel et al. combine the classification and contour
extraction to extract topologically meaningful object contours [17].

Another researched topic aims at polygon generalization in order to extract the boundary of
buildings. Some methods detect contours of rooftops from unstructured point clouds [18,19]. Wang et al.
uses structural linear features to regularize the mesh of buildings based on images, which is susceptible
to data deficiency [20]. Either extracting rooftops or footprints from point clouds [21] or detecting
building areas from images based on deep learning [22], the precision of the final model relies on the
polygon generalization. However, the generalization algorithms are vulnerable to the quality of the
point clouds and the topology of rooftops is hard to recover only from the boundaries, which involves
a bunch of manual interference to obtain qualified models.

2.2. Planar Primitive-Based Building Reconstruction

Scholars assume that the buildings are formed by planes and describe the building by a regular
arrangement of planes [23–25]. Considering that the regularization of the planar parameters is directly
dependent on the results of the initial extraction, several methods perform plane segmentation and plane
regularization simultaneously in order to generate more complete planar primitives [26,27]. In [28],
Holzmann et al. selects tetrahedral from 3D Delaunay triangulation and generates plane-constrained
surfaces. Based on the Manhattan-World assumption [29] that most planes of the buildings are
axis-aligned, algorithms refine the planar parameters on hard constraints [30,31] in large-scale indoor
or outdoor scenes.

To recover the topology information of the planar primitives and finally reconstruct the vector
building models, roof topology graph (RTG)-based methods are proposed to reconstruct the LoD2
model [32–34], which ignore the façades. As for the LoD3 building reconstruction, the cutting edge
algorithm PolyFit [35] casts the reconstruction as a binary labeling problem to select optimal candidate
faces from planar primitives. Compared to RTG-based methods, PolyFit is not subject to local topologies.
However, it creates spurious artifacts and fails at missing data [28] since manifold and watertight are
specifically required.

2.3. Topology Repair towards the Incomplete Dataset

When dealing with the building of complex structures, planar primitives are susceptible to be
corrupted by the unscalable segmentation, small walls, and varying accuracy. Research that falls into
this category aims to deal with the incomplete primitives. Zolanvari et al. detects the opening area
after plane segmentation [36]. Towards the RTG, a graph edit dictionary is designed to correct the
graph as a graph-to-graph problem but is limited by the known entries already in the dictionary [37].
More flexible strategies divide the building into several components, each of which is reconstructed by
RTG [38]. However, these methods heavily depend on the point-based segmentation results and only
handle the data of rooftops. The Manhattan-Modeler retrieves the façade using the height map, which
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can only be used to repair vertical walls [39]. Other methods involve ground data aimed at façade
modeling, which introduces extra data cost [40–43].

3. Overview

The input data of our method include point clouds and the corresponding multi-view images.
Point clouds can be obtained by multi-view stereo (MVS) or laser scanning (registration of LiDAR and
optic images is required). Ground filtering and building segmentation are conducted as preprocessing.
Assuming that the point cloud P of a single building and image sequence I with ground sample
distance GsdI are given, the average spacing of P is calculated as AvP based on 9 nearest neighbor
points. Planar primitives are firstly segmented from point clouds based on RANSAC [13] with a
distance threshold εd. We assume that plane primitives {Ωi ∈ Ω} are detected from P, each equipped
with a set of points PΩi and Distance({p|p ∈ PΩi }, Ωi) < εd, which constraints the thickness of the plane.

The proposed pipeline consists of two main parts: structural contour extraction and topology
recovery by plane deduction. To recover the missing planes which break the topology for building
reconstruction, the accurate and structural linear features are needed for implication. Common contour
extraction methods enclose the planar points and generate complete profiles, taking the cost of the
low geometric precision and missing topology information. Thus, the structural contour extraction
procedure is addressed and conducted before the plane deduction. The whole pipeline of our method
is as follows and displayed in Figure 2.
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Figure 2. The pipeline of the LoD3 building reconstruction from point clouds.

(1) Structural contour extraction. We extract the contours of each planar primitive segmented
from the original point clouds. Due to varying noise, missing data and low density, especially in the
façades, it is difficult to snap accurate sharp outlines using common boundary generalization methods
towards rooftop or footprint. With the auxiliary of topology information of adjacent planes and image
data, we extract intersection lines and image lines, as well as boundary lines from point clouds, and
then generate candidates by intersection. Contours are selected from the candidates which enclose the
planar primitive. Structural linear features are preserved while scattered parts are ignored to provide
reliable hints for plane detection.

(2) Topology recovery by plane detection. Based on the extracted structural contours and feature
lines, the hypothesis of missing planes is generated by a plane detection strategy and then evaluated
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based on the topological relationships between the lines and the existing planar primitives. The
structural contours are extracted for the newly validated line groups subsequently. Then, an iteration
procedure is conducted to excavate all the possible planar hypothesis and linear primitives to retrieve
a complete set of planar primitives. Finally, planar primitives are assembled to generate over-complete
face candidates for binary labeling-based building reconstruction framework. Invalid candidates are
eliminated according to the minimum 2D distance to the corresponding original plane before the
energy function solution.

4. Structural Planar Contour Extraction

Given the initial plane primitives {Ωi ∈ Ω}, the concave hull of each plane is calculated by alpha
shape with the alpha value εα. If more than one component generated, split the plane until each plane
contains only one connected component enclosed by εα concave hull.

4.1. Linear Feature Detection

Three types of linear features are extracted from point clouds or images. Each type can be a
complete or partial description of the outline respectively while each has its own advantageous and
disadvantageous characteristics (Figure 3).
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Figure 3. Visualization of the characteristics of three different feature lines and the optimized
structural contours extracted from these feature lines. (a) Image lines: high geometric precision,
non-topological, incomplete. (b) Intersection lines: topological support, incomplete, low correction
rate. (c) Boundary lines: complete, poor topological support, low geometric precision. (d) Structural
contours: optimized results.

(1) Image lines. 2D line segments extracted from each image are matched between overlapped
images and then triangulated to reconstruct 3D lines. We use the strategy proposed and implemented
by Hofer et al. [10], which can abstract the scene but with some errors and interruption. Although
topologically poor and incomplete, image lines are of high texture sharpness and high geometric
precision, which implies that the lines align to the sharp edges in images and can be a crucial
compensation if the point cloud is severely impaired.

(2) Intersection lines. Each plane primitives are intersected with all other planes to obtain the
intersection lines. Notably, the intersection is valid only if it is overlapped by the convex hull of two
intersected planes. Threshold εints is used to constrain the maximum distance from the convex hull
segments to the intersection line. Further, the end point of the intersection segment is determined by
the interception of the projection of the convex hull. Intersection lines serve as the most robust topology
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hint for adjacent relations of planes. However, intersection lines are incomplete if some of the walls are
missing and abundant erroneous relations may occur due to the non-adaptive snapping tolerance [44].

(3) Boundary lines. A point is marked as a boundary point if the maximal angle between the
point and two neighboring points within the 16 nearest neighbors is larger than a certain angle (π2
by default) (Figure 4). Then, boundary lines are detected from boundary points based on RANSAC.
To ensure the boundary lines sketch the plane completely, the consecutive strings of outline segments
from the concave hull are used to link the interrupted boundary line. Refer to Algorithm 1 for the
pseudo-code of the procedure. However, the connected boundary lines enclose the plane points, but
the geometric precision is low and structural information is weak due to the scattered character of the
boundary points.
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detected. (c) The original 77,835 points (green) with 1448 boundary points (red) detected.

Algorithm 1. Boundary line contouring

Input: Concave hull point string SC;
Boundary lines Sline and the endpoints Send
Output: Looped boundary line strings Lbdry;
1 for each pt ∈ SC do
2 if pt < Sline then
3 Status(pt) = UNUSED
4 end
5 end
6 for each pt1 ∈ Send do
7
8
9

pt2 ∈ Send closest to pt1
pts ∈ SC, pte ∈ SC closest to pt1, pt2

for each pts < pt < pte, Status(pt) = UNUSED, pt ∈ SC do
10 add pt to the final endpoint set Sadd
11
12

end
for each pti ∈ Sadd do

13
14

lnew =
{
pti, pti+1

}
add lnew to Lbdry

15 end
16 end

4.2. Contour Optimization

The topology completeness may be preserved taking the cost of geometry precision or vice versa
in common boundary normalization strategies. To find a solution with a good trade-off between
quality and compactness, we resort to integer linear programming [45] to select the optimal edges out
of the over-complete set of the outline candidates composed of a loop string of boundary lines Lbdry,
image lines Limage and intersection lines Lints extracted previously.
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4.2.1. Hypothesis Generation

The feature lines are intersected with each other to get the basic hypothesis. Each hypothesis is a
sub-segment of the original feature line, which forms the candidate segments. For each plane, edges of
the outline are selected from NL candidate segments, denoted as:

L =
{
LB, LT, LI

∣∣∣LB ⊂ Lbdry, LT ⊂ Lints, LI ⊂ Limage
}

(1)

where LB = {lb}
NB
b=1, LT = {lt}

NT
t=1, and LI = {li}

NI
i=1 represents the boundary lines, intersection lines and

image lines respectively.
We require the candidate segments to fit the edge with a balance of boundary point coverage in

point clouds and the sharpness in images, and to “smoothly” form the outline, namely with constrained
model complexity. The energy function is formed by a data term and a smooth term:

E(L) = Edata(L,B,I) + λsEsmooth(L,V) (2)

where B, I, andV represents the boundary points in the plane, the images to which the plane can be
projected, and the end points of the candidate edges, respectively. λs is a scalar parameter to balance
between data fitting and model complexity. Then the edge selection conundrum is cast as a binary
linear problem of minimization of the weighted energy terms with certain constraints. E∗ = min

χ
E(L)

is solved based on graph cuts [46].

4.2.2. Energy Formulation

The fitting quality of the candidate can be evaluated from the aspect of point clouds (object-term)
and the aspect of images (image-term). The data term is formulated as:

Edata = −
∑
l∈L

xl ·
(

f (l) + λpig(l)
)

(3)

where xl indicates whether line l is selected, i.e., 1 for selected and 0 for abandoned. f (l) and g(l) is
the function of fitting quality of point distribution and texture sharpness, respectively. The scalar
weighting factor λpi balanced between two sub-terms is determined according to the ratio of AvP and
GsdI.

(1) Point distribution. The first part of the data term manifests the candidate’s fitting quality to
the boundary points. For each candidate segment, a buffer zone with a radius γv is given as displayed
in Figure 5a. Then, the point distribution can be calculated based on the boundary points inside the
buffer zone from the measurement of mean distance and point coverage.

f (l) = (1−
1
γv
·

∑
p∈Zl

Dist(p, l)

N{p|p∈Zl}
) ·Cov(l) (4)

{
p
∣∣∣p ∈ Zl

}
=

{
p ∈ B

∣∣∣D⊥(p, l) < γv
}

(5)

Dist(p, l) = min
{
D⊥(p, l), D(p, le)

}
(6)

where Zl represents the buffer zone of l and Dist(p, l) measures the point-to-segment distance. N{p|p∈Zl}

counts the number of boundary points in Zl.

Cov(l) =
1
|l|
·

∑
D(pi,p j)<εsp

D
(
pi, p j

)
(7)

where pi and p j are the adjacent points projected on l. |l|measures the length of l. Both the distance
aspect and the coverage aspect are valued between 0 and 1. The object-term decreases when boundary
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points fall in the buffer zone with a smaller distance to the line and better coverage rate. Figure 5c,d
give an example for a good distribution and a relatively worse one respectively.
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(2) Texture sharpness. To make sure the outline is fit to the actual boundary as captured in
the image, the sharpness of each candidate line in related images is involved in this image-term.
As mentioned in LSD [47], the line segments are validated by the number of level-line aligned pixels
in a line-support region. A binary descriptor, derived from the concept of Line Descriptor with
Gradually Changing Bands (LDGCB) [48,49], is introduced to evaluate the gradient distribution in
the line-support region, which is a rectangle composed of several bands extending on either side of
the segment.

For each segment projected in the image, sharpness is calculated and expressed by a band gradient
matrix (BGM) in the line-support region as illustrated in Figure 6. Assuming the line passes through N
pixels, the BGM at ith pixel is formulated as:

BGMi =
M∑

j=1

ω j·
∇i j ·

→
n⊥

→
n⊥

2 ·
→
n⊥ (8)

ω j =


0.7 j ⊂ B3

0.2 j ⊂ B2
⋃

B4

0.1 j ⊂ B1
⋃

B5

(9)

where ∇i j calculates the gradient at pixel (i, j).
→
n⊥ is the normal vector of line l. The number of bands

is set to 5 in this study, with the widths of 3, 2, 1, 2, 3 respectively and M = 11 accordingly. ω j is the
weighting coefficient for each band and is set to 0.7, 0.2, and 0.1 from close to far, quantized from the
Gaussian function provided by LDGCB. Then the image-term can be formulated as the mean sharpness
in projected images:

Sharp(l) =
1
t

∑
Im∈I

t
l

1
N

N∑
i=1

‖ BGMi(Γm(l)) ‖2 (10)

g(l) = max(1,
1
εg

Sharp(l)) (11)
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where Γm projects a candidate line to the image Im. Considering the camera’s geometric distortion, the
view angle to each line is calculated according to the camera’s altitude. Among images onto which l
is projected, only t images It

l with biggest view-angle are taken into consideration to make sure the
candidate line, if selected, takes the eligible image view as during the texture mapping. t is set to 5 if
available. εg is empirically set to 30 as the maximal magnitude of the gradient component relative to
the image quality, and the sharp is truncated by 1 to make the image-item value between 0 and 1.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 22 
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(3) Model complexity. The end point is connected to four candidate edges if it is the intersection
point of two feature lines, otherwise, it connects to only one candidate edge. The end point is marked
as selected if and only if two of the connected lines are selected (2-link). Then the model complexity is
validated based on whether the connected lines come from the same original feature line. To avoid
over-fitting, the smooth term is designed as:

Esmooth =
1

NV

∑
v∈V

[=
(
lvi
)
, =(lvj )] (12)

where NV is the number of endpoints;V, lv represents the line connected to vertex v, and =(l) maps
candidate l to its original feature line, and [·] is the Iverson bracket, which equals to 0 if the two
connected edges share the same feature line or 1 otherwise.

The effect of the candidates rendered by data-term and the optimization solution is illustrated in
Figure 7. After solving the energy minimization function formulated in Equation (2), the generalized
contour of the plane is extracted composed of a set of piecewise line segments. The contours extracted in
this section abandoned tiny detailed boundary segments in order to preserve the structural line features
as much as possible, which provides crucial implication for the plane deduction in the next step.

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 22 

 

 

Figure 6. Banded line-support region for line 𝑙. 𝐵𝐺𝑀௜ indicates the weighted mean vector of ∇ୄ, the 
gradient projected on the direction of the normal vector. 

(3) Model complexity. The end point is connected to four candidate edges if it is the intersection 
point of two feature lines, otherwise, it connects to only one candidate edge. The end point is marked 
as selected if and only if two of the connected lines are selected (2-link). Then the model complexity 
is validated based on whether the connected lines come from the same original feature line. To avoid 
over-fitting, the smooth term is designed as: 

𝐸௦௠௢௢௧௛ =
1

𝑁𝒱

෍[ℑ(𝑙௜
௩) ≠ ℑ(𝑙௝

௩)]

௩∈𝒱

 (12)

where 𝑁𝒱  is the number of endpoints; 𝒱, 𝑙௩  represents the line connected to vertex 𝑣, and ℑ(𝑙) 
maps candidate 𝑙 to its original feature line, and [⋅] is the Iverson bracket, which equals to 0 if the 
two connected edges share the same feature line or 1 otherwise. 

The effect of the candidates rendered by data-term and the optimization solution is illustrated 
in Figure 7. After solving the energy minimization function formulated in Equation 2, the generalized 
contour of the plane is extracted composed of a set of piecewise line segments. The contours extracted 
in this section abandoned tiny detailed boundary segments in order to preserve the structural line 
features as much as possible, which provides crucial implication for the plane deduction in the next 
step. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 7. An illustration of the data term and the selection strategy. (a) Candidates rendered by the 
value of the distribution. (b) Candidates rendered by the value of sharpness. (c) Candidates rendered 
by the value of the data term. Candidates whose endpoint is 1-link or too close to other candidates 
are excluded from data term calculation. (d) Optimization result. 

5. Plane Deduction based on the Relationships between Linear and Planar Primitives  

Plane segmentation and contour extraction in the last section only preserve plane segments with 
good distribution and ignore small faces in case of error-disturbance, which ensures the survived 
planes are stable and robust enough for topology reasoning. In this section, we discuss the 
characteristics of geometry primitives and elucidate the plane deduction strategies, retrieving a 
complete set of plane segments for polyhedral model reconstruction. 

Figure 7. An illustration of the data term and the selection strategy. (a) Candidates rendered by the
value of the distribution. (b) Candidates rendered by the value of sharpness. (c) Candidates rendered
by the value of the data term. Candidates whose endpoint is 1-link or too close to other candidates are
excluded from data term calculation. (d) Optimization result.
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5. Plane Deduction Based on the Relationships between Linear and Planar Primitives

Plane segmentation and contour extraction in the last section only preserve plane segments with
good distribution and ignore small faces in case of error-disturbance, which ensures the survived planes
are stable and robust enough for topology reasoning. In this section, we discuss the characteristics of
geometry primitives and elucidate the plane deduction strategies, retrieving a complete set of plane
segments for polyhedral model reconstruction.

5.1. Geometry Primitive Candidates

Each plane primitive is equipped with the original segmented points and the optimized contour
lines. In addition, intersection lines and image lines which are discarded by the contour optimization but
lie inside the contour are kept and assigned to each plane, while the rest primitives remain unassigned,
including scattered points and part of image lines. Then the geometry primitive candidates, i.e., planes
candidate CΩ, lines candidate CL, and points candidate CP, are formed and expressed as follows:

CΩ = {Ω1, Ω2, . . . , Ωn}

CL =
{
LΩ1 ,LΩ2 , . . . ,LΩn ,LUA

}
CP =

{
PΩ1 ,PΩ2 , . . . ,PΩn ,PUA

} (13)

where n represents the number of planes currently. The subscript index of L and P represents the
plane that the primitive belongs to, and UA for unassigned primitives. We denote this index attribute
as assignment attribute (Ass).

For the sake of clarity, linear primitives are divided into four categories according to their relative
position attribute to candidate planes and other line segments: border line (lines of the plane contour),
crease line (a border line is marked as crease if it is overlapped with another Border Line from different
planes, i.e., an intersection line), inner edge (lines assigned to a plane but not a border or a crease line),
and needle line (unassigned lines).

5.2. Plane Detection from Lines and Validation Criterion

5.2.1. Line-and-Plane (LaP) Group

Generally, the RANSAC-based shape detection algorithm forms the basic shape hypothesis from
points. However, scenes such as poor texture in MVS point clouds or façades uncovered by LiDAR
scans invalidate the point-based detection, especially in the urban environment [28]. Given Lines
Candidate CL, RANSAC-based plane detection is redesigned using line segments as seed elements
to detect potential planes which cannot be segmented by original point clouds. The consensus set
requires at least two segments samples which satisfies that these segments are coplanar, and they are
unassigned needle lines or belong to different planes, i.e., for the seed set of the k-th RANSAC iteration
Sk ⊂ CL:

∀li, l j ∈ Sk : s.t.

 Ass(li) = UA ∪Ass
(
l j
)
= UA∪Ass(li) , Ass

(
l j
)(

→
nli ×

→
nl j

)
·

(
→

Plsi −
→

Pls j

)
< εzero

(14)

where l is represented by the start point and end point, l = (Pls, Ple).
→
nl is the normal of l. εzero

constrains the thickness tolerance of the plane model.
After iterated sampling, line-and-plane groups are generated, each of which contains at least two

segments nevertheless many of them may be erroneous at this stage.

5.2.2. Line-and-Line (LaL) Unit

In each LaP group, relations of each segment are analyzed including connectivity, parallelism, and
relative position attribute. Firstly, the convex hull of each plane is calculated and candidate lines closest
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to each convex hull segment are marked as Border Lines while the rest as Inner edges. Secondly, check
if the border lines are connected or parallel otherwise and divide the LaL units into three categories:
connected junction including three sub-classes, parallel pair, and scattered lines. In Figure 8 an example
is displayed and the judgment is conducted successively from (a) to (e) as illustrated in Figure 9.
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Figure 9. Validation criterions for Line-and-Line Unit.

1. Connected junction. Border Lines are considered as connected and snapped together if they
satisfy that two lines intersect, and the sum of the distance from the intersection point to the
closer end point of each segment is less than a distance threshold. (a) If three or more border
lines are connected as a triple junction, check if the extended line of the outward borders meets
an existing plane candidate. Connect the intersection points on the plane if found, otherwise,
connect the two outward endpoints of the triple junction as the contour to enclose the unit. (b) If
only two border lines connected, check if there are planes intersect with the junction. Take the
connections of intersection points as contour segments if planes are found. If no plane is around
(refer to the third subfigure in Figure 9b), find inner edges from LUA and points from PUA inside
the angle between the two segments. When more than Nsup candidates are found, close the group
polygon by convex hull; otherwise, add parallel segments to CL but leave this LaP group pending
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in the candidate pools. (c) For the junction that the segments are intersected but the endpoints
are not connected, interrupt the segments by the intersection point and divide the group into 4
areas, each of which forms as the type (b). Examine each sub-part as (b) and confirm that with the
largest sum of candidates the final LaP group.

2. Parallel pair. Border lines that are confirmed as parallel pair are valid only if more than Nsup

candidates can be attached to the LaP. Then the borders are connected similarly to the triple
junction as illustrated in Figure 9a.

3. Scattering lines. LaP group where no connected junction or parallel pair can be detected is treated
as a group of scattering lines (Figure 9e) and is validated simply by the number of lines and
points attached to it, i.e., abandon the group to which less than Nsup candidates can be attached.

This greedy strategy detects line-and-plane groups from all the candidates globally and then
validate line-and-line units on the group at the local circumstance, which tends to excavate potential
planes as complete as possible and ensure that only valuable planes adopted.

5.3. Deduction Iterations

The complete routine of the plane deduction is explained in this section, and the workflow is given
in Figure 10. And an example of the deduction iteration is illustrated in Figure 11 Take candidates CΩ,
CL, and CP as input, the deduction strategy involves an iteration procedure as following steps:

1. Planes are detected from CL based on RANSAC and new LaP groups
{
LaPi =

(
Ωnew

i ,LΩnew
i

)}
are formed.

2. For each LaPi, the LaL Unit is identified and evaluated according to each unit pattern. Once the
LaL Unit is validated, assemble the lines ofLΩnew

i
as a new plane Ωnew

i and assign lines and points
candidates that are εd-close to this plane, retrieving from LUA and PUA respectively, to Ωnew

i .
3. Subsequently, the structural contour of the plane Ωnew

i is extracted based on the algorithm
proposed in Section 4 and the contour segments are added into CL if available.

4. Back to start and repeat steps 1–3. The next iteration starts with the increased CL until no more
LaP group can be detected and/or no more LaL units can be validated.
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To recover the missing planes as complete as possible, a few erroneous planes may be generated by
the deduction although validation criterion gives strong constraints. However, the erroneous deduced
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plane hardly contains intensive points or lines candidates, thus can be discarded during the polygon
model reconstruction, which will be expatiated in the next section.
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Figure 12. Invalid face elimination in a single plane. (a) The original candidate faces of a planar 
primitive generated by intersection. (b) The valid candidate faces after elimination. The black frame 
delineates the merged boundary of the original plane and the polygon colors are rendered by the 
confidence of each candidate face in PolyFit from red (high) to blue (low). (c) The remaining plane 
candidates, from which the planes of the final polyhedral models are selected (refer to Dublin2 in 
Table 1 for the original points and the final model). 

Figure 11. The pipeline to construct planes by plane deduction. (a) The LaP group segmented by
plane detection from lines. (b) Validated LaL unit on the LaP group. (c) The structural contour of the
validated LaP. (d) Another two new planes validated by the next iteration.

5.4. Watertight Polyhedral Model Reconstruction based on Optimized PolyFit

In [35], Nan and Wonka proposed a framework to reconstruct the polygonal surfaces from point
clouds as a binary labeling problem, which generates a reasonably large set of face candidates by
intersecting plane primitives and then select an optimal subset from the candidates. The main problems
that restraint its applicability in complex urban scenes are the missing data and the large amount of the
candidates to be selected. The original PolyFit intersects all the planes as infinitely extending planes in
the case of topology holes, which generates an avalanche of redundant candidate faces.

After plane detection, we have already repaired the topology of the buildings, which can be used
as planar primitives to reconstruct the watertight polyhedral model. In addition, with the complete
set of planar primitives and the optimized contours, we can eliminate the facets which are obviously
invalid, which minimizes the amount hypothesis to improve efficiency and robustness. Each planar
primitive is intersected by all other planes and is split into pieces of facets as the candidate faces.
We assume that the candidate face is invalid if the minimal distance from the boundary of the face to
the boundary of the original plane is larger than εints, which is the same threshold we used to generate
intersection lines. Figure 12 shows an example to eliminate invalid candidates. Note that the enclosed
boundary generated in Section 4.1 and the structural contour optimized in Section 4.2 are merged as
the boundary of the original plane on the account of the completeness requirement at this stage.

Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 26 

 

 

(a) (b) 

 

(c) (d) 

Figure 11. The pipeline to construct planes by plane deduction. (a) The LaP group segmented by plane 

detection from lines. (b) Validated LaL unit on the LaP group. (c) The structural contour of the 

validated LaP. (d) Another two new planes validated by the next iteration. 

5.4. Watertight Polyhedral Model Reconstruction based on Optimized PolyFit 

In [35], Nan and Wonka proposed a framework to reconstruct the polygonal surfaces from point 

clouds as a binary labeling problem, which generates a reasonably large set of face candidates by 

intersecting plane primitives and then select an optimal subset from the candidates. The main 

problems that restraint its applicability in complex urban scenes are the missing data and the large 

amount of the candidates to be selected. The original PolyFit intersects all the planes as infinitely 

extending planes in the case of topology holes, which generates an avalanche of redundant candidate 

faces. 

After plane detection, we have already repaired the topology of the buildings, which can be used 

as planar primitives to reconstruct the watertight polyhedral model. In addition, with the complete 

set of planar primitives and the optimized contours, we can eliminate the facets which are obviously 

invalid, which minimizes the amount hypothesis to improve efficiency and robustness. Each planar 

primitive is intersected by all other planes and is split into pieces of facets as the candidate faces. We 

assume that the candidate face is invalid if the minimal distance from the boundary of the face to the 

boundary of the original plane is larger than �����, which is the same threshold we used to generate 

intersection lines. Figure 12 shows an example to eliminate invalid candidates. Note that the enclosed 

boundary generated in Section 4.1 and the structural contour optimized in Section 4.2 are merged as 

the boundary of the original plane on the account of the completeness requirement at this stage. 

(a) 

 

(b) 
 

(c) 

Figure 12. Invalid face elimination in a single plane. (a) The original candidate faces of a planar 

primitive generated by intersection. (b) The valid candidate faces after elimination. The black frame 

delineates the merged boundary of the original plane and the polygon colors are rendered by the 

confidence of each candidate face in PolyFit from red (high) to blue (low). (c) The remaining plane 

candidates, from which the planes of the final polyhedral models are selected (refer to Dublin2 in 

Table 1 for the original points and the final model). 

Figure 12. Invalid face elimination in a single plane. (a) The original candidate faces of a planar
primitive generated by intersection. (b) The valid candidate faces after elimination. The black frame
delineates the merged boundary of the original plane and the polygon colors are rendered by the
confidence of each candidate face in PolyFit from red (high) to blue (low). (c) The remaining plane
candidates, from which the planes of the final polyhedral models are selected (refer to Dublin2 in
Table 1 for the original points and the final model).
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6. Experimental Results and Discussion

6.1. Data Overview

Several real-world buildings from three different test areas with varying completeness levels,
densities, and complexity are selected to evaluate our approach. Since our methods dedicate to
reconstructing LoD3 models, dense LiDAR point clouds captured at low altitude are preferred. We use
the Dublin datasets provided by Urban Modelling Group, University College Dublin, Ireland [50].
The MVS point clouds generated by MVE [51], and a set of sparse LiDAR point clouds captured at a
rather high altitude in Ningbo, China are used for robustness test. The initial RANSAC-based plane
segmentation results are taken as input data since plane segmentation is outside the scope of this study.
We counted the planes manually as ground truths just for reference. Considering the high complexity
of the building structures and the lack of standard, tiny planes smaller than 2 m2 and subsidiary parts
are ignored when counting ground truths of planar primitives. The input data and reconstructed
models are displayed in Table 1 and the properties are listed in Table 2 Buildings in Dublin are of good
point distribution but some of the planes are lost due to noise and segmentation scale; the façades of
glass material are missing in the MVS point clouds; the building in Ningbo is partially covered by laser
scanners and some of the planes are incorrectly segmented.

Table 1. Data overview and modeling results.

Input Planar Segments Reference Image Output Models

Dublin1
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Table 1. Cont.

Input Planar Segments Reference Image Output Models

Ningbo
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Table 2. Data properties and quantitative statistics.

Bld.
Input Data Model Reconstruction

#Points/av.
Spacing 1 #Images/H/Gsd 2 #Planes/

#Segments 3
#Deduced/

#Model Planes 4 Runtime (s)

Dublin1 1.1M/0.11 115/300/3.4 103/65 125/109
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23.6

1 The average spacing of the point clouds (m). 2 The number of images in which the building is visible, the surveying
altitude (m), and the ground sampling distance (cm). 3 The number of planes of ground truth and the input plane
segments.4 The number of deducted planes and the planes of the final model.

The settings of the key parameters involved in the proposed algorithms are listed in Table 3.
εd and segpts are used in plane segmentation, which is set according to the geometric precision and
density of the point clouds. The buffer threshold γv mainly matters the level of details of the building
model, which is referred to decide how close two adjacent lines can be connected, and the area of the
supporting zone of a line candidate during the contour optimization. The scalar parameters involved
in PolyFit are set as λ f = 0.46,λc = 0.27,λm = 0.27 to resolve the linear program.

Table 3. Parameter settings and representation.

Parameter
Value Representation

Dublin Ningbo MVS

εd 0.1 m 1 m 1 m Distance threshold in plane segmentation
segpts 1000 200 1000 Min points number to support a plane segment
εα 2AvP Max square of circumradius of facets in α-shape mesh
εints 2m Max distance to intersect two planes
γv 0.5 m 2 m 2 m Buffer threshold to support a line
λs 10 Smooth scalar in contour optimization

Nsup 5 The min number of the sum of lines and points to
support a new LaP group.
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6.2. Building Reconstruction Results

The orthogonal distance from input points to their corresponding plane P2M and the shortest
distance from object points to input points on corresponding faces O2P are used as the measures to
evaluate the model fitness as concluded by [52]. P2M reveals how well the input data fits to the output
models and O2P for the model accuracy.

To evaluate the correctness of the model, the ratio of the number of correctly reconstructed planes
and the number of total planes is calculated as the correction rate, Corr. The plane is identified as
correct if the O2P is smaller than ε. Then the correction rate of modelM at distance ε is formulated as:

Corrε(ΩM) =
#
{
Ωi ∈ ΩM

∣∣∣O2Pmean(Ωi) < ε
}

#
{
Ωi ∈ ΩM

} (15)

where O2Pmean(Ωi) measures the mean O2P distances of plane Ωi. ΩM represents the reconstructed
planes of the modelM.

The proposed method, TopoLAP, is compared to three cutting-edge related works, including 2.5D
dual contouring [53], a LoD2 method [21], and PolyFit. Visual results and the quantitative assessment
are listed in Table 4. Among these algorithms, the 2.5D-DC traces the boundaries of rooftops and lifts
them up to form the 2.5D model of buildings, which ignores the topology information. The LoD2
algorithm reconstructs the rooftop model with more details preserved but the boundaries of each roof
are deviated, which leads to lower O2P. In Figure 13, we give the visualization comparison for the
distance evaluation. Compared to PolyFit, our method recovers the missing topology of the incomplete
point clouds, especially for the bottom planes which cannot be captured by aerial systems. Quantitative
results show that high accuracy, as well as a high correction rate, can be achieved in the meanwhile.
More details of the comparative results are displayed in Figure 14. In general, models by the proposed
method preserve less detail parts compared to the contouring or rooftop-based models since some of
the façades or open walls are failed to be recovered; but the planes in our polyhedral models are of
higher correctness and better fit to the original point clouds, which implies that the main frame of the
building is well reconstructed and achieved a higher topological accuracy than the other methods.

Table 4. Visual and quantitative comparison to the related works.

2.5D-DC 1 LoD2 PolyFit TopoLAP

Dublin4
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P2Mmean P2MRMS 0.446 0.885 0.209 0.517 0.535 0.946 0.392 0.761
O2Pmean O2PRMS 830 × 10−3 0.918 59 × 10−3 0.638 6.69 × 10−3 0.224 6.12 × 10−3 0.169

#Planes 1121 342 12 14

Corr0.05 Corr0.1 62.3% 67.4% 73.6% 82.1% 66.7% 66.7% 92.8% 100.0%
1 For 2.5D dual contouring, the corresponding plane of a point is the closest facet in the model.
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The runtime of each model is displayed in Table 2, where the colorized blocks represent the steps
from left to right: feature detection, structural contour extraction, plane deduction, and polyhedral
model generation, respectively. The computer used for testing is a laptop running windows 10 with
Intel Core CPU i7-7700HQ clocked at 2.80GHz with 24GB RAM. For the Dublin1 dataset that contains
103 planes as input, the PolyFit generates more than 176k faces, which makes the function unsolvable.
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Our optimized method generates only 3271 candidate faces, while the correction rate of 93.4% is
achieved with acceptable runtime.

6.3. Performance Analysis of the Linear Primitives

The rooftops of MVS dataset are selected to show the results of the structural contour extraction
algorithm in Figure 15, and the model reconstructed based on the structural contour is compared to
that using a line grow-based algorithm [18] as displayed Figure 16. The structural contours may ignore
the tiny or slender parts of the boundaries such as the eave or parapet wall to preserve the mainframes
of the plane, which are a substantial hint for the plane deduction. The linear primitives are merged
and regularized before the candidate generation to avoid superabundant variables.
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Figure 15. Optimized rooftop contours superimposed on the image. (a) The original boundary line
is kept, not fitting to the image line which is the inner boundary. (b) The boundary of the façade is
extruded upwards from the rooftop; thus, the intersection line is not the accurate upper outline of the
adjacent façade. (c) The boundary line is snapped to the closest image line which represents the outer
boundary. (d) The influence of the smooth-term coefficient. (e) The intersection information is lost in
the absence of the adjacent façade.
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Figure 16. Model correctness comparison based on different linear primitives. The top row displays 
the corresponding models reconstructed from the structural contours (a) and the line grow-based 
contours (b), respectively. Planes inside the corner can be deduced based on the structural contours. 
And (c) displays the optimization progress of the front façade. From left to right: original points of 
the plane, three types of feature lines, the lines rendered by data-term, and the optimized structural 
contours. 

6.4.  Limitations 

Figure 16. Model correctness comparison based on different linear primitives. The top row displays the
corresponding models reconstructed from the structural contours (a) and the line grow-based contours
(b), respectively. Planes inside the corner can be deduced based on the structural contours. And
(c) displays the optimization progress of the front façade. From left to right: original points of the plane,
three types of feature lines, the lines rendered by data-term, and the optimized structural contours.

6.4. Limitations

Our method can handle incomplete point clouds and recover the partially missing planes.
However, no Manhattan constraints are used so that partial covering of the façade walls are still
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required since the structural information is needed for the plane deduction. If only a few initial façade
segments can be detected, it is hard to abstract the structural information of the plane composed by
sparse points and the deducted planes are not reliable enough. In addition, to ensure the model is
manifold and watertight, mainframe of the plane-based building is preserved while slender parts,
open walls, subsidiary components are ignored such as eaves, parapet walls, and small chimneys, etc.
(red circle in the bottom line of Figure 14 for example).

7. Conclusions

Although the acquisition devices are developed and point clouds of high density can be obtained,
building reconstruction from point clouds continues to pose significant challenges. The data noise,
missing data, and varying densities, etc. make it hard to reconstruct the building models with high
automation, high efficiency and high precision in order to handle the multi-functional components of
the buildings and the iteratively upgraded city models.

The proposed pipeline, TopoLAP, resorts to the relationships between the planar and linear
primitives and generates a complete set of planes for building reconstruction. Structural contours
are extracted taking full advantage of the complementary characteristics of point clouds and images.
The energy minimization-based strategy stands out as an optimal trade-off solution to fit the outline to
sharp lines both in the point cloud and images. The plane deduction excavates the potential planes from
the impaired point clouds by analyzing the relationships of the existing planar and linear primitives.
The pipeline makes it possible to efficiently reconstruct LoD3 models of both high topological and
geometrical precision from partially impaired point clouds.

Although our modeling strategies optimize the plane segmentation results, the modeling result
still relies on the initial segmentation, which is a common problem for primitive-based methods.
Other types of geometry objects exclude planes, as well as the small planes whose point clouds
are sparse and ignored by the polyhedral modeling, can be added as the subsidiary components to
corresponding planes, which enables the detailed reconstruction of the complex buildings. In addition,
considering the similarity of the method in indoor modeling, the proposed pipeline can also be
extended to reconstruct indoor scenes. These improvements will be addressed in future works.
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