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Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer is one of five
instruments operating on the National Aeronautics and Space Administration (NASA) Terra platform.
Launched in 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
has been acquiring optical data for 20 years. ASTER is a joint project between Japan’s Ministry of
Economy, Trade and Industry; and U.S. National Aeronautics and Space Administration. Numerous
reports of geologic mapping and mineral exploration applications of ASTER data attest to the unique
capabilities of the instrument. Until 2000, Landsat was the instrument of choice to provide surface
composition information. Its scanners had two broadband short wave infrared (SWIR) bands and a
single thermal infrared band. A single SWIR band amalgamated all diagnostic absorption features
in the 2-2.5 micron wavelength region into a single band, providing no information on mineral
composition. Clays, carbonates, and sulfates could only be detected as a single group. The single
thermal infrared (TIR) band provided no information on silicate composition (felsic vs. mafic igneous
rocks; quartz content of sedimentary rocks). Since 2000, all of these mineralogical distinctions,
and more, could be accomplished due to ASTER’s unique, high spatial resolution multispectral bands:
six in the SWIR and five in the TIR. The data have sufficient information to provide good results
using the simplest techniques, like band ratios, or more sophisticated analyses, like machine learning.
A robust archive of images facilitated use of the data for global exploration and mapping.

Keywords: ASTER; mineral exploration; geologic mapping

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of
five instruments on the U.S. Terra spaceborne platform (the other instruments are the Moderate
Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth’s Radiant Energy System
(CERES), Multi-angle Imaging SpectroRadiometer (MISR), and Measurement of Pollution in the
Troposphere (MOPITT)). Launched in December 1999, ASTER has been continuously acquiring image
data for 20 years. ASTER is a joint project between Japan’s Ministry of International Trade and
Industry (MITI) (later changed to Ministry of economy, Trade and Industry (METI)) and the U.S.
National Aeronautics and Space Administration (NASA). Japanese aerospace companies built the
ASTER subsystems for METL; NASA provided the Terra platform and the Atlas 2AS launch vehicle.
Both organizations are responsible for instrument calibration, scheduling, data archiving, processing,
and distribution.

ASTER was conceived as a geologic mapping instrument. It was designed to provide several
improvements over instruments existing at the time, like Landsat. The science team pushed for better
spatial resolution, high spectral resolution short wave infrared (SWIR) bands, multispectral thermal
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infrared (TIR) bands, and along-track stereo capability. Until April 2008, the ASTER subsystems
performed nominally. At that time, the SWIR subsystem had a failure of the detector cooling apparatus
(not the Stirling cycle cooler), so no further SWIR data could be captured. Since April 2016, all of the
ASTER scenes in the data archive, and all of their derived products, were made available to all users at
no cost.

As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific
disciplines, including land use/land cover, urban monitoring, urban heat island studies, wetlands
studies, agriculture monitoring, forestry, etc. [1]. Significant resources are devoted to monitoring 1500
active volcanoes and 3000 valley glaciers. However, of special importance is the use of ASTER data for
geologic applications: lithologic mapping and mineral exploration.

This article reviews the geologic applications of early spaceborne optical instruments, discusses
the history of the ASTER instrument, describes the instrument, and reviews applications of ASTER
data for lithologic mapping and mineral exploration

2. Early Geologic Applications of Spaceborne Instruments

The first optical satellite data applied for geologic mapping were acquired by NASA’s Landsat
1 (also known as ERTS (Earth Resources Technology Satellite)) Multispectral Scanner (MSS) with
four bands in the visible to near infrared wavelengths (VNIR), and about 80 m spatial resolution,
launched in 1972. Several studies demonstrated the usefulness of these data for geologic mapping.
An early publication by Goetz and his team in 1975 [2] described mapping the geology of the Coconino
Plateau on the south rim of the Grand Canyon in northern Arizona. They were able to distinguish
lithologic units and faults, applying the results for ground water exploration. Identification of the
composition of sedimentary geologic units was not possible, given the scanner’s broad bands and
restricted wavelength position; different mappable units could, however, be separated and mapped.
Baker [3] reviewed similar applications in presentations delivered at one of the first geology applications
symposia, focusing on additional results using Landsat MSS data.

In 1978 and 1980, two very influential textbooks describing the usage of Landsat 1 for geologic
applications alerted the general applications community to the value of remote sensing data. The first
of many textbooks describing geologic applications of satellite data was Remote Sensing: Principles
and Interpretations written by Floyd Sabins in 1978 [4]. He introduced remote sensing to Chevron,
leading to oil discoveries in Sudan and Papua New Guinea. His programs for digitally processing
Landsat images discovered world-class Chile copper deposits. A second influential book was Remote
Sensing in Geology, edited by Siegal and Gillespie [5] published in 1980. These two books alerted the
general geologic community to the possible applications of satellite remote sensing data, and led
several resource exploration companies to form their own in-house technical divisions.

In 1982, NASA launched the first in a series of Landsat Thematic Mapper (TM) instruments,
on Landsat 4. This groundbreaking scanner had 30 m spatial resolution, repeat global coverage,
and seven spectral bands: four in the VNIR like the MSS, two in the SWIR, and one in the TIR [6].
The late addition of SWIR band 7 in the 2-2.5 micron region, was directly the result of studies using
aircraft instrument data, demonstrating the application of data from the SWIR region for detecting
hydrothermal alteration minerals [7] (a change in mineralogy as a result of interaction of the rock with
hot fluids). The Cuprite, Nevada test site, used for this study, became a spectral validation site for
most future optical instruments.

A seminal study, detailing a 4-year NASA sponsored project, was the joint NASA and Geosat
test case report, published in 1985 [8]. The project was a joint collaboration between NASA and the
non-renewable resources exploration industry to test and document the applications of remote sensing
data for porphyry copper, uranium, and petroleum exploration. Methods used for data processing
were adopted by later researchers and exploration geologists.

For the next 18 years after 1982, Landsat TM data were the workhorse of the geology remote
sensing community. A sampling of relevant publications includes geologic mapping and mineral
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targeting in Precambrian terrain in India [9]; mapping mafic and ultramafic rocks in the Oman Ophiolite,
and targeting hydrothermal alteration zones related to possible massive sulfide copper deposits [10]
(band 7 data were crucial for detecting hydrothermal alteration); mapping ophiolite lithologies in
Cyprus, and delineation of a critical lithologic boundary to target possible massive sulfide deposits
(all TM bands were needed to distinguish two types of lava flows [11]). Several geologic mapping
studies in the Arabian Shield and Middle East focused on mineral exploration for uranium, gold,
copper, and other metal deposits [12,13]; again, the availability of SWIR data was critical to detect
hydrothermal alteration. In 1999, Sabins [14] published a comprehensive review of the application
of remote sensing data for mineral exploration. Following on the heels of his earlier book on remote
sensing applications to geology, this publication was key in influencing exploration companies to
further embrace remote sensing technology in their reconnaissance exploration strategies.

A fascinating application of Landsat 5 TM data for geobotanical mapping was reported by
Almeida et al. [15]. Their goal was to detect geobotanical anomalies associated with hydrothermal
alteration in epithermal high-sulfidation gold deposits in the Amazon region in an area of virgin tropical
rain forest, Brazil. Their method was to concentrate information and reduce data dimensionality by
applying spectral indices, principal component analyses to the indices, another principal component
analysis to the original VNIR and SWIR bands, and convolutional filtering. Field information showed
a near-perfect spatial correlation between color classes highlighted in this Landsat image product and
hydrothermal alteration facies identified in outcrops.

In 1992, NASDA/MITI/STA (National Space Development Agency/Science and Technology Agency)
launched the Japanese Earth Resources Satellite (JERS-1) with a synthetic aperture radar instrument,
and a high resolution optical scanner (OPS) with eight bands. In addition to three VNIR bands, OPS had
four SWIR bands. The instrument was designed to provide remote sensing data to Japan’s resource
exploration industry to search globally for non-renewable resources. The instrument had a 75 km
swath width, and about 25 m spatial resolution [16]. The SWIR band performance was fairly poor,
with excessive noise (the VNIR and SAR bands performed well). In one report [17], advanced image
processing techniques were applied to the SWIR data. When combined with Landsat TM data for a
test site in Eritrea, JERS-1 data permitted routine identification of marbles, and allowed distinction of
rocks bearing either Al-OH or Mg-OH phyllosilicates. In 1998, JERS-1 ceased operations, with very few
geologic studies reported. However, it did provide the foundation for the next generation Japanese
instrument, by demonstrating the value of multispectral SWIR bands for geologic applications. As a
result, ASTER came into being, as described in the following sections.

3. ASTER History

ASTER has its roots in several moderate resolution imaging sensors [18]. The Landsat instruments
(Multispectral Scanner, and Thematic Mapper) had developed a large and devoted user community
adapted to analyzing multispectral data. The second most used data was provided by the French
SPOT (Satellite Pour I'Observation de la Terre) instruments, with 1020 m VNIR wavelength data,
and cross-track stereo. Between 1992 and 1998, the JERS-1 OPS acquired three bands of VNIR data,
four bands of SWIR data, and along-track stereo data.

The Earth Observing System (EOS) ASTER program began as two separate instruments proposed
separately by the U.S. and Japan [19] in the 1980s. The US had a proposal for the Thermal Infrared
Ground Emission Radiometer (TIGER), a 14 channel imager plus a profiling spectrometer. At the same
time Japan’s MITI was designing and proposed the Intermediate Thermal Infrared Radiometer (ITIR)
with five SWIR bands and four TIR bands [20,21] as a follow-on to JERS-1. Once again, the design
of the Japanese instrument focused on geologic applications. Starting in 1989, the joint U.S. and
Japan science team worked jointly to come up with a compromise design for a VNIR-SWIR-TIR
instrument to go on NASA’s EOS AM-1 platform (re-named Terra after launch). The number of TIR
bands was increased to five; the number of SWIR bands was increased to six; spatial resolution was
decided; VNIR band 3 was selected for the along-track stereo; and bandpasses of all the channels were
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determined. In December 1999, ASTER was launched on NASA'’s Terra spacecraft, along with four
other Earth observing instruments.

4. ASTER Instrument

The ASTER instrument comprises three separate scanners, located on different sites on the Terra
platform (Figure 1). Each was built by a different Japanese aerospace company.

Figure 1. Artist’s rendition of Terra platform and position of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)'’s visible to near infrared wavelengths (VNIR), short wave infrared
(SWIR) and thermal infrared (TIR) imaging sensors.

In accordance with the scientific objectives of the mission, the ASTER instrument was designed
to meet certain baseline performance requirements. In addition, several specific improvements were
included to better ASTER’s performance compared to existing optical sensors such as Landsat TM,
SPOT HRV and JERS OPS:

e increased number of SWIR bands to six to improve mapping of surface composition;

e increased number of TIR bands to five to derive accurate surface temperature and emissivity
measurements [22];

e improved radiometric accuracy and resolution [23].

e increased base-to-height (b/h) ratio of the stereo data, from 0.3 to 0.6, to improve surface
elevation determination

ASTER acquires swaths of images that are 60 km wide, while orbiting the earth at 705 km altitude,
in a sun-synchronous near-polar descending orbit. The equatorial crossing time is 10:30 am, a few
minutes behind Landsat 7. ASTER (on the Terra platform) flew in formation with NASA’s EO-1 satellite
and Argentina’s SAC-C satellite to form the morning constellation. ASTER must be tasked to acquire
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data; however, because the instrument has been in operation for almost 20 years, near-global coverage
of the land has been achieved (Appendix A).

The three VNIR bands, with 15 m spatial resolution, have bandpasses similar to Landsat TM bands
2, 3, and 4 and the optical sensor of the JERS-1 OPS (Figure 2). In addition, the VNIR has along-track
stereo coverage in band 3, with nadir and backward-looking telescopes. The base-to-height ratio of 0.6
allows calculation of Digital Elevation Models with 30 m postings, and about 15 m vertical accuracy [24].
The SWIR bands, with 30 m spatial resolution, were chosen mainly for the purpose of surface soil
and mineral mapping. Band 4 is similar to TM band 5 located at 1.6 um; bands 5-9 are narrow SWIR
bands, replacing TM’s single band 7, positioned in the 2-2.5 pm region to detect the presence of
mineral absorption features, such as occur in clays, carbonates, and sulfates (Figure 2). The TIR bands,
with 90 m spatial resolution, provide two major improvements over TM’s single TIR band: derivation
of emissivity values allows estimation of silica content, which is important in characterizing silicate
rocks, the most prevalent rocks at the earth’s surface [25]; and by correcting for emissivity, accurate
surface kinetic temperature can be determined for energy flux modeling and climate modeling. Thus,
ASTER data have greater mineral and lithologic mapping capability than Landsat data due to more
SWIR and TIR bands with corresponding higher spectral resolution (Figure 2).
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Figure 2. Spectral bandpasses of ASTER, Landsat Thematic Mapper, and the Operational Land Imager
(OLI), the newest Landsat 8. Background is atmospheric transmission (Testa, F. et al. 2018).

5. Lithologic Mapping with ASTER Data

5.1. Mapping Using Only ASTER Data

In 2003, Rowan and Mars were one of the first researchers to report on lithologic mapping using
ASTER data, over the rare earth mineral deposit at Mountain Pass, California [26]. Using all 14 ASTER
bands, they were able to distinguish calcite from dolomite, mapped skarn deposits and marble in
the contact metamorphic zones, distinguished Fe-muscovite from Al-muscovite in the granites and
gneisses, and discriminated quartzose rocks. None of these discriminations could be accomplished
with Landsat TM data, due to the lack of multispectral SWIR and TIR spectral bands. Watts and
Harris [27] applied this method to map granite and gneiss in domes in the Himalayas. Yamaguchi
and Naito [28] developed spectral indices using orthogonal transformation with ASTER SWIR bands
for lithologic mapping. Their method relied on band ratios and thresholding. Wherever there were
good rock exposures, ASTER data produced good results. Analyzing all of the ASTER spectral bands,
Byrnes et al. [29] mapped volcanic lava flows from the Maunu Ulu eruption, Island of Hawaii. The TIR
data highlighted variations in the silica coatings, the VNIR and SWIR bands indicated relative ages
of the flows as they developed surface weathering products. Gomez et al. [30] published a paper
describing lithologic mapping in arid Namibia using ASTER’s VNIR and SWIR bands. They first
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converted the data to apparent reflectance, then processed the data with principal components analysis
and supervised classification. Comparison with an existing 1:250,000 scale geologic map indicated that
the ASTER data could be used to discriminate most of the geologic units. Several additional units were
found, based on compositional differences, though the geologic map defined them as belonging to
the same stratigraphic unit. Kargel et al. [31] reviewed applications of ASTER data for glaciological
studies. The data were used to distinguish differences in surface cover on top of glaciers, as well as the
extent of glacial lakes.

One of the first applications of ASTER TIR data for lithologic mapping was published by
Ninomiya et al. [32]. They developed mineralogical indices using blended ratios of the TIR bands to
create a Quartz Index, Carbonate Index, and Mafic Index; then tested their technique over arid parts of
northwest China, eastern central Australia, and southern Tibet. Their results demonstrated the stability
of the mineral indices to temperature and atmospheric changes. In succeeding years, many projects
used Ninomiya “indices” for lithologic mapping with ASTER TIR data. More quantitative analyses of
ASTER TIR data were reported by Hook et al. [33], who determined weight percent silica in igneous
rocks, and validated the findings with laboratory measurements of field samples.

About the same time, Rowan et al. [34] reported on lithologic mapping of ultramafic rocks with
ASTER data in Mordor Pound, NT, Australia. Analysis of the data, coupled with lab measurements,
showed dominantly AI-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra,
and ferrous-iron and Fe,Mg-OH features in the mafic—ultramafic rock spectra. ASTER ratio images,
matched-filter, and spectral-angle mapper processing were evaluated for mapping the lithologies.
Combining analyses of VNIR, SWIR and TIR data resulted in discrimination of four mafic-ultramafic
categories; three categories of alluvial-colluvial deposits; and a significantly more completely mapped
quartzite unit than could be accomplished by using either data set alone. Hewson et al. [35] described
a method to seamlessly mosaic 35 ASTER scenes to produce a regional mosaic for analysis. They then
mapped Al-OH and carbonate from SWIR data, and quartz content from TIR data. SWIR bands were
also used to map Al-OH composition. Comparison with large-scale maps and airborne hyperspectral
data, supplemented with field sampling, constrained the ASTER map accuracy.

Qiu et al. [36] compared several spectral classification techniques, using a laboratory spectral
library, ground spectral measurements, or selecting endmembers from the image. In the Allaqi-Heiani
suture, Egypt, they found all three methods fairly similar, and allowed successful mapping of the
well-exposed lithologies. Mapping carbonates and associated rocks in Oman was published by
Rajendran et al. [37] and Rajendran and Nasir [38]. They were able to separate the ophiolitic rocks,
carbonates, quartz-rich silicates, and surficial deposits. The remote sensing maps were very similar
to the published geologic maps, and they recommended using ASTER data for mapping in other,
similar environments. Guha et al. [39] also mapped carbonates, using ASTER data for the Kolkhan
limestone in India. They applied different spectral mapping techniques; the results were similar with
each of them. In the region near Askja volcano, Iceland, Grattinger et al. [40] used ASTER data to map
glaciovolcanic deposits, including glaciovolcanic tuffs and subaerial pumice. The results were applied
to paleo-ice reconstruction in a relatively inaccessible area. Tayebi et al. [41] mapped salt diapirs and
surrounding areas using neural network models in the Zagros fold belt, Iran. Field observations and
X-ray diffraction analysis of field samples confirmed the minerals identified remotely.

Yajima and Yamaguchi [42] used simple color composites of TIR data to separate mafic-ultramafic
rocks (such as gabbro, dolerite and dunite) from various quartz-rich felsic rocks (such as granite and
alluvium). This is a simple method to display lithological information from the TIR bands. Ninomiya
and Fu [43] applied Ninomiya indices (Quartz Index, Mafic Index, and Carbonate Index) for ASTER
TIR data to do lithological mapping in Tibet. Mapping relied on classification of quartzose rocks based
on variations on the carbonate and mafic indices, and the granitic rocks based on the feldspar content.
Ozyavas [44] applied standard image processing techniques to ASTER data over the study area around
the Salt Lake Fault, Turkey. They were able to map gypsum and carbonate rocks, primarily based
on spectral differences in the SWIR bands. A variation of the band ratio method was described by
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Askari et al. [45] for lithologic mapping of sedimentary rocks, north Iran. Using VNIR and SWIR bands,
they mapped quartz, carbonate, Al, Fe, Mg-OH bearing minerals, and created lithologic maps that
matched well with existing geology maps. Hubbard et al. [46] used ASTER TIR emissivity images to
characterize the physiochemical characteristics of sand dunes at seven different sites. They found that
“ ... less dense minerals typically have higher abundances near the center of the active and most
evolved dunes in the field, while more dense minerals and glasses appear to be more abundant
along the margins of the active dune fields.” ASTER data were applied to characterize limestones
for industrial rock resource assessment in Oman by Rajendran et al. [47]. They were able to separate
dolomite from calcite-bearing marble; this has a direct application in the industrial rock business.

Several studies focused on mapping granitoid rocks. Massironi et al. [48], working in the Saghro
massif, Morocco, used all the ASTER bands, applying simple processing techniques. They were
able to distinguish different granitoid rocks with similar silica content based on secondary minerals,
and separate plutons with varying silica content using TIR data. Bertoldi et al. [49] used field and
laboratory data to guide processing of ASTER data to map lichen-covered granitic rocks in the western
Himalayas. Their maps were based on characterizing spectral differences from various lichens,
with spectral characteristics of muscovite. In the Dahab Basin, Egypt, Omran et al. [50] used band
ratios of ASTER VNIR, SWIR, and TIR data, combined with field investigations, to map and separate
granitoid rocks of Cambrian and Cretaceous ages. They revised and updated existing geologic maps
by adding rock units and re-interpreting the geologic history. Zheng and Fu [51] used band ratios of
ASTER SWIR and TIR data to separate alkali-feldspar granite, granite, granodiorite, and monzogranite.
These distinctions relied on determination of silica difference expressed in the TIR bands. In the
Anti-Atlas Mountains, Morocco, El Janati et al. [52] used classification algorithms to map the spatial
distribution of porphyritic granites, granodiorites, and peraluminous leucogranites. They also were
able to map different kinds of metamorphic rocks and carbonate cover rocks. Guha and Kumar [53]
developed a variation of Ninomiya’s thermal indices to map granitoids in Dharwar Craton, India.
They found that their mafic index was comparable with Ninomiya’s index, but their quartz index was
better, for their study area. Asran et al. [54] used band ratios of ASTER data to separate granodiorite,
monzogranite, syenogranite, and alkali-feldspar granite. Mapping their distribution, with structural
information and microfabric data, led to revised interpretation of their deformation history.

Another group of reports described applications of ASTER data for mapping ophiolite complexes.
These unusual terranes expose dominantly mafic and ultramafic rocks. ASTER data have been shown
to be particularly effective in separating the dark rocks. Li et al. [55] mapped the Derni ophiolite
complex using spectral matching methods with spectra from a spectral library. Their results were of
mixed accuracy, dependent on the quality of their spectral library. Using similar methods, Huang and
Zhang [56] were more successful in mapping various rock types, in the Yarlung-Zangpo suture zone,
Tibet. They used both the VNIR-SWIR data, and TIR data to achieve their results. In the Neyruz
ophiolite, Iran, Tangestani et al. [57] used field and laboratory spectral measurements to train supervised
classification of ASTER data with spectral feature fitting algorithm. Results suggested that this method
could be applied to map other, more poorly mapped, ophiolite complexes. Ozkan et al. [58] mapped
an accretionary complex in Turkey using hybrid color composite images combining ratio images and
principal components images. They were able to delineate peridotite, gabbro, basalt, epi-ophiolitic
sedimentary rocks, siliceous and carbonate rocks, and degrees of serpentinization.

5.2. Lithologic Mapping with ASTER and Other Remote Sensing Data

Deller and Andrews [59] combined Landsat, ASTER, and Advanced Land Imager (ALI) data
to discriminate three laterite facies in Eritrea and Arabia, based on differences of iron and clay
minerals. The results can be used to assess ground water quality, agricultural land, building resources,
and potential mineralization sites. Qari et al. [60] used Landsat data to identify lineaments, and ASTER
data to map lithology of the basement rocks in an area of Saudi Arabia. The resulting 1:100,000 geologic
map was validated by fieldwork. Lithologic mapping in the Sighan ophiolite complex, Iran, was the
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subject of work by Pournamdari et al. [61]. They used band ratios and principal components analysis to
separate mafic and ultramafic rocks. In the Neyriz ophiolite, Iran, Eslami et al. [62] also applied ASTER
and Landsat data for lithologic mapping, using similar techniques. In North Africa, Adiri et al. [63]
combined Landsat and ASTER data to map sedimentary rocks in Morocco. Lamri et al. [64] combined
airborne magnetic and gamma-ray spectrometry data with ASTER data to map geology in a hardly
accessible area in Saharan Africa. Integration of the two data sets allowed mapping of the Paleozoic
and aeolian sand sedimentary cover, and the underlying granitoids. In West Africa, Metelka et al. [65]
analyzed ASTER, Landsat, Radarsat, and Japanese Phased Array type L-band Synthetic Aperture Radar
(PALSAR) radar data, combined with airborne gamma-ray spectrometry, to map geomorphological
landform units. The resulting maps, over an area of long-term lateritic weathering history, were more
accurate than existing maps. Yang et al. [66] combined ASTER data with high spatial resolution
Chinese GaoFen-1 data to map lithologic units in the Tien Shan mountains, China. In comparison with
lithologic mapping results using ASTER data alone, the fused data set was more accurate. Ge at al. [67]
combined ASTER data with Sentinel-2A and digital elevation data to map lithologies in the Shinbanjing
Ophiolite Complex, Mongolia. They found their method yielded high classification accuracy.

Hassan et al. [68] combined analyses of Landsat and ASTER data to map the basement rocks
associated with the Meatiq dime, Egypt. ASTER data analysis revealed four granitic varieties,
and Landsat data analysis allowed regional geologic mapping. Ali-Bik et al. [69] used data from ASTER,
Landsat, and Sentinel-2 to map gneiss complex, low-grade ophiolitic and island-arc assemblages in the
Gebel Zabarra area, Egypt. They used ASTER mineral indices, principal components analysis, and color
composites to map the different rock types. They were able to propose revised metamorphic and
tectonic history for the area based on the remote sensing results. Hadigeh and Ranjbar [70] combined
ASTER data with panchromatic Indian Remote Sensing (IRS) data (moderate to high spatial resolution
VNIR data) to map lithologies in Iran. Their classification maps closely matched published geologic
maps. By combining ASTER data with SPOT-5 data, Lohrer et al. [71] mapped weathered wadi deposits
in Jordan. They found that the initial transformation from hematite to goethite is the dominant process,
and it is possible to predict new archaeological areas using remote sensing techniques. Over the
Newer Volcanic Province, Australia, Boyce et al. [72] used ASTER data, airborne magnetic data, digital
elevation models, and Google Earth images to identify eruptive centers. Seven previously identified
eruptive centers were brought into question, and three new ones were identified.

Soltaninejad et al. [73] compared ASTER data and Landsat data for mapping evaporite minerals
of Sirjan Playa, Iran. They used both spectra from field samples, and endmember spectra to classify
both sets of images. Classification accuracy was about 92% for both data sets; better accuracy was
achieved using image derived spectra. Chen et al. [74] mapped variations in metamorphic rocks in the
Wauliangshan Mountains, China. They looked for spectral differences from minerals such as actinolite,
chlorite, epidote, biotite, muscovite, hornblende, and sillimanite. Identification of metamorphic rocks
in five mapped areas were consistent with existing data. Two new areas of unmapped metamorphic
rocks were identified for further field study. In a vegetated area in the Yanshan Mountains, China,
Wang et al. [75] used ASTER data to classify quartz sandstone, carbonate rocks, gneiss and andesite.
Compared to the outcrop geologic map, accuracies were 90%, 87%, 77%, and 52% respectively. This is
excellent, considering the presence of vegetation contamination and cover. A final example, published
in this 20th Anniversary ASTER Special Issue, by Kurata and Yamaguchi [76] proposed a method of
combining and visualizing multiple lithological indices derived from ASTER data, and topographical
information derived from digital elevation model data, in a single color image that can be easily
interpreted from a geological point of view. Indices highlighted silicate rocks, carbonate rocks,
and amounts and types of clay minerals. Results were verified by field survey and comparison with
previous studies in the test area.
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6. Mineral Exploration with ASTER Data

6.1. Technique Development for Alteration Mapping

Many studies focused on developing techniques to extract mineralogical information from ASTER
data. Crosta et al. [77] applied principal components analysis to data over epithermal deposits in
Patagonia. The method was adopted by many later users and is referred as the “Crosta” method.
Galvao et al. [78] demonstrated that ASTER data could be useful for alteration detection even in tropical
savannah environments where there was some surface material showing between the vegetation cover.
More image processing technique development by Moore et al. [79] applied principal components
analysis and matched filter processing to identify unknown targets based on training sets over known
deposits. Data from ASTER’s thermal infrared bands were used by Rockwell and Hofstra [80] to
identify quartz and carbonate minerals in Nevada based on detection of emissivity features in the
TIR region. ASTER’s unique multispectral TIR bands particularly allow mapping of SiO; variation,
often a key characteristic of alteration associated with mineralization. Hosseinjani and Tangestani [81]
used sub-pixel unmixing to determine the relative proportions of different minerals within each pixel.
This technique relies on having a laboratory of mineral spectral responses, or end-member spectra
extracted from the data. Another application of principal components analysis by Honarmand et al. [82]
combined this with spectral angle mapper [83] to determine the probability of a mineral being present
in a pixel.

In Birjand, Iran, Abdi and Karimpour [84] also applied spectral angle mapper to ASTER data to
discriminate hydrothermal alteration. Spectral feature fitting method was used in Rabor area, Iran,
to enhance hydrothermal alteration by Abbaszadeh and Hezarkhani [85]. This method compares
the fit of image spectra to reference spectra using a least-squares technique. Additionally, in Iran, in
the Dehaj-Sarduiyeh Copper Belt, Zadeh et al. [86] used mixture tuned matched filtering approach
to map alteration. This method estimates the relative degree of match to each reference spectrum,
and estimates the sub-pixel abundance [87]. More sophisticated (complicated) image processing
methods were reported by Tayebi et al. [88]. They integrated coded spectral ratio images with SOM
neural network models. Results were acceptable, though the method is transportable to other areas,
and able to be used by other researchers, with great difficulty. Continued interest in application of
sub-pixel unmixing was published by Modaberri et al. [89] for areas in Iran. They sought to map the
usual assortment of alteration minerals, including alunite and jarosite.

6.2. General Alteration Mapping

In one of the first studies to appear, Rowan et al. [90] used ASTER data to map hydrothermal
alteration minerals and zones at the Cuprite, Nevada test site. The work verified earlier results obtained
with airborne scanners, and validated the mineralogical information extractable from the ASTER
VNIR, SWIR, and TIR data. Numerous subsequent studies used newly-developed image processing
techniques (described in the previous section) for alteration mapping. Bhadra et al. [91] reported on
their analysis of ASTER data for mineral potential mapping in central Rajasthan, India, using standard
image processing classification methods. In Jiafushaersu Area, China, Liu et al. [92] used color
composites and principal components to map alteration associated with molybdenum mineralization
adjacent to granitoid intrusions. Popov and Bakardjiev [93] used band ratios and spectral angle mapper
analyses to identify alteration minerals in a humid and vegetated area. Known deposits with pits and
tailings ponds were found. Several other possible, unknown targets were identified. In the Gobi Desert
area, China, Son et al. [94] used band ratios to characterize a known Cu-Au mineral deposit. Using the
indicator mineral assemblage, they identified a new area with pervasive argillic alteration. Two test
sites in India, exposing intrusive and volcanic rocks, were sampled by Canbaz et al. [95] for material to
analyze in the laboratory, using XRD (X-ray diffraction) and spectrometer measurements. They used
the lab measurements to help interpret ASTER ratio and principal components images, and found that
the combination of lab and remote sensing data were effective in mapping argillic alteration zones. In
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a highly vegetated area in India, Mahanta and Maiti [96] used band ratios and principal components
analysis of ASTER data to map alteration assemblages: iron-rich gossans, sericitization, ferruginization,
and chloritization. They identified two potential mineral prospects, one for hydrothermal polymetallic
sulfides, and secondary iron and manganese mineralization. In Egypt, band ratios and principal
components analysis were used by Abdelkareem and El-Baz [97] to identify hydrothermal alteration
zones. Spectral analyses allowed characterization of chlorite, kaolinite, muscovite, and hematite.
Validation by field investigations and XRD analyses contributed to the delineation of important
prospects for gold and massive sulfide mineralization.

In another example, ASTER data were even used for lithological and alteration mapping in
Antarctica. Pour et al. [98] reported work in the Oscar II coast area, northeastern Graham Land,
Antarctic Peninsula. They applied special band ratios and band combinations with all 14 ASTER bands
to detect muscovite, kaolinite, illite, montmorillonite, epidote, chlorite, and biotite. In their three-scene
strip area, good geologic maps existed for the central scene, providing some control. However,
poor or no maps existed for the northern and southern areas. Despite shadows, snow, and glaciers,
they concluded that their approach for lithological and alteration mapping was highly successful.

In 2012, Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO)
released a series of Geoscience mineral maps for the continent of Australia, described by Cudahy [99].
These maps were created from thousands of ASTER scenes, acquired between 2000 and 2008. The CSIRO
maps are the first (and only) continental-scale mineral maps generated from an imaging satellite,
designed to measure clays, quartz, and other minerals. There are 17 Australia Geoscience products,
such as kaolinite abundance, iron oxide species, and quartz content. Each product is a calibrated
index of the geoscience product it represents. Color-coded displays are a visualization of the product’s
values. Their 100 m spatial resolution allows them to be used at the deposit as well as the regional
scale. An example of the iron oxide abundance map is shown in Figure 3.

Figure 3. Australian ASTER Geoscience map of iron oxide abundance. Color code is red for high,
to black for low [99].

More recent publications attest to the continuing use of ASTER data for mineral exploration.
Testa et al. [100] described their work on the eastern flank of the Andean Cordillera, Argentina to
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do lithologic and hydrothermal alteration mapping of epithermal, porphyry, and tourmaline breccia
districts. Argillic, phyllic, propylitic, and silicic alteration mineral assemblages were identified and
mapped from the ASTER images. The results from field control areas confirmed the presence of the
targeted minerals. They concluded “ASTER image processing of large areas has the ability to effectively
discriminate smaller targets where it is possible to find mineral deposits. We believe it is critical
to understand that interpreted hydrothermal alteration zones may not be real, so field verification
is essential.”

6.3. Alteration Mapping with ASTER Data and Other Data Sources

A few years after launch, geologists starting using ASTER data in combination with other remote
sensing data and geophysical data for alteration mapping. An early study by Hubbard et al. [101]
compared alteration mapping with ASTER, Hyperion, and ALI data in the VNIR and SWIR regions.
Hyperion’s hyperspectral data provided more information about mineralogy than either ASTER or
ALI However, the 7.5 km swath width was a distinct limitation. In Greenland, Bedini [102] used
aircraft HyMap data with ASTER data to detect alteration minerals (HyMap has 128 bands in the
0.4-2.45 um region and 5 m spatial resolution). Results and conclusions were similar to the previous
study. In the Kerman magmatic arc in Iran, Honarmand et al. [103] used ASTER and ALI data
to map alteration. Since ALI has broad spectral bands, similar to Landsat, very little additional
information was added to the ASTER data. In another project Pour and Hashim [104] used ASTER,
ALl and Hyperion data for both lithologic and alteration mapping. Hyperion added additional
mineralogical separation information, but ALI added very little to the ASTER data. Similarly, in
a project reported by Ramos et al. [105] in the Andes, Hyperion data supplemented ASTER data
for alteration mineral mapping, but was limited by its spatial coverage. In Gabal Dara, Egypt,
Gemail et al. [106] used airborne magnetic geophysical data to complement mineralogical information
from ASTER data for mineral exploration. The geophysical data added lithologic characteristics
not available from optical remote sensing data. In Australia, most of the country is covered with
weathered regolith, making exploration challenging. Lampinen et al. [107] used ASTER SWIR data
with surface geochemistry analysis and gamma-ray spectrometry over a known base-metal deposit.
The geophysical data allowed discrimination of lithologic units underneath the regolith. This guided
interpretation of the geochemical and ASTER spectral information. Two recent studies over sites in
China described combined use of ASTER data with other, seldom-reported, remote sensing instruments.
Liu et al. [108] combined information from the Chinese hyperspectral scanner on the Tiangong-1
space station, with ASTER data for regional alteration mapping in the Jintanzi-Malianquan area.
The hyperspectral instrument allowed detection of muscovite, kaolinite, chlorite, epidote calcite and
dolomite, while ASTER data allowed detection of the first five, not dolomite. Hu et al. [109] combined
ASTER data with Sentinel-2A multispectral data and Hyperion data. The image processing results
were validated by field investigations. Identified hydrothermally altered rocks corresponded with five
porphyry copper deposits. By extrapolation, three new prospects were discovered as a result.

6.4. ASTER Data Applied to Porphyry Copper Exploration

As early as 2003, a report was published by Volesky et al. [110] describing use of ASTER data
to characterize massive sulfide copper deposits in Saudi Arabia. ASTER’s SWIR data were crucial to
characterize hydrothermal alteration minerals associated with these deposits.

Starting about the same time, and continuing to the present, studies in Iran dominate the literature
on porphyry copper deposits, characterized by analysis of ASTER data. There are several reasons for
this: (1) Iran hosts the largest number of porphyry copper deposits yet found; (2) the deposits are
located in arid, desert landscapes: vegetation cover is minimal, exposures of the surface are almost
100%; (3) a wide range of alteration minerals are present, as erosion has cut into different depths of
individual porphyry copper systems, exposing alteration zones from potassic and phyllic to propylitic
and argillic.
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One type of report concentrated on characterizing existing, known deposits in Iran.
Karimpour et al. [111] described discrimination of erosion levels in the Maherabad, Shadan, and Chah
Shaljami areas. Mohebi et al. [112] reported on delineation of structural controls on alteration and
mineralization around Hanza Mountain. Sojdehee et al. [113] described discriminating hydrothermal
alteration zones using SWIR data at the Daralu copper deposit. Farahbanksh [114] combined ASTER
data with QuickBird data to characterize the Naysian porphyry copper deposit. Yousefi et al. [115,116]
discriminated alteration zones using SWIR and TIR data to map sericitic, phyllic, and quartz-rich
alteration zones in the Kerman Magmatic Arc. Safari et al. [117] combined Landsat and ASTER data
to characterize the Shar-e-Babak deposit. In every one of these studies, the unique mineralogical
information contained in the ASTER SWIR bands was critical to detect and map hydrothermal
alteration zones.

A second type of report on the Iranian copper deposits focused on using ASTER data as an
exploration tool to identify promising targets, usually extracting information gleaned by analyzing
known deposits, then extrapolating to poorly explored or unexplored areas. The use of ASTER
SWIR data featured strongly in Pour and Hashim’s [118,119] in the Urumieh-Dokhtar Volcanic
Belt. Applying a porphyry copper formation model, that postulated concentric alteration zones
with characteristic mineral assemblages, promising targets were identified. Honarpazhouh [120]
combined stream sediment geochemistry with ASTER data for reconnaissance mapping in the Khatun
Abad area. This was a more effective exploration strategy than using the remote sensing data
alone. Pazand et al. [121] applied ASTER data for reconnaissance exploration for porphyry copper
mineralization in the Ahar area. In the Daraloo-Sarmeshk area, Alimohammadi et al. [122] used ASTER
data to explore for undetected copper deposits using ASTER SWIR data to highlight alteration zones.
Similar projects were reported by Yazdi et al. [123] in the Chahargonbad area, by Saadat [124] in the
Feyz-Abad area, and by Zadeh and Honarmand [125] in the Dehaj-Sarduiyeh copper belt.

One of the best applications of ASTER data for regional mineral exploration in a copper belt was
published by Mars and Rowan in 2006 [126]. They mosaicked 62 ASTER scenes covering a 900 km-wide
belt in the Zagros magmatic arc, Iran. They first developed a series of logical operators involving
band ratios and thresholds of ASTER data to highlight the presence of spectral absorption features
associated with phyllic and argillic alteration. The operators were tested over the Cuprite, Nevada
calibration and validation site [7], before being applied to the Iran data. Based on the alteration patterns,
~50 potential porphyry coper deposits were mapped northwest of the Zagros-Makran transform zone,
and 11 potential deposits were mapped southeast of the transform. A small part of the mapped area is
shown in Figure 4, around the Meiduk copper mine. Note the two large alteration centers northwest
and southeast of the mine.

Studies focused on other areas of the world include Carrino et al.’s [127] project in the Chapi
Chiara area of southern Peru. They used ASTER data to map the geology and alteration mineralogy
of the region to define possible copper targets. Ibrahim et al. [128] applied ASTER and Landsat data,
with field data in the North Hamisana shear zone, Egypt, to detect structural and lithologic controls
for base metal sulfide deposits. By combining information extracted from ASTER and Landsat data,
Zhang et al. [129] mapped hydrothermal alteration minerals around the Duolong copper deposit in
Tibet. Rajendran and Nasir [130] characterized the spectral response of ASTER bands to map alteration
zones of volcanogenic massive sulfide deposits in several known deposits. Additional work in China,
by Zhang and Zhou [131] over the Baogutu porphyry copper deposit, used ASTER data to identify the
associated alteration zones. This information could be used to explore other nearby areas with similar
geology. In the Bangonghu-Nujiang metallogenic belt, Tibet, Dai et al. [132] used alteration detection
from ASTER data to define new target areas with characteristic spectral features related to desired
mineralogical assemblages.
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Figure 4. Landsat TM band 7 image with ASTER-derived argillic and phyllic alteration around the
Meiduk copper mine, Iran. (From [126], Figure 17).

6.5. ASTER Data Applied to Gold Exploration

Second in numbers to reports on applications of ASTER data for porphyry copper exploration,
are publications describing exploration for gold. The largest number of studies focused on describing
alteration associated with gold deposits, and developing methods to identify new targets in Egypt.
The mineralogical information provided in the ASTER SWIR bands provided the unique tool to
successfully detect and map different intensities of hydrothermal alteration, in the same way as was
done for porphyry copper exploration. Egypt is an arid, desert environment, with near 100% surface
rock and soil exposures; ideal for application of optical remote sensing data.

Amer et al. [133] used ASTER data to detect gold-related alteration in the Um Rus area.
Salem et al. [134] combined geologic mapping and alteration mapping with ASTER data to identify
new exploration targets at the Barramiya District. Mapping alteration associated with potential gold
deposits at Wadi Allaqi was published by Salem and Soliman [135]. Hasan et al. [136] combined
spectral analysis of ASTER data with aeromagnetic data to identify promising gold exploration targets
in the Eastern Desert. The two data sets provided complementary information on rock types and
mineralogy, allowing a fuller picture to be created of promising areas. By combining ASTER spectral
analysis with geochemical data from surface-collected samples, Salem et al. [137] were able to validate
alteration zones detected on the remote sensing data, and strengthen the association of ASTER-defined
targets with potential gold deposits. Abdelnasser [138] and Salem et al. [139], in separate studies,
reported similar ASTER-plus-geochemistry studies at the Atud gold deposit and the Samut area,
respectively. By establishing a physical tie between alteration and gold occurrence, an exploration
strategy using only remote sensing data was formulated.
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Orion Gold announced in 2013 [140] the discovery of new exploration gold target areas in
Queensland, Australia, based on analysis of ASTER images. The area has known productive mines
in low sulfidation epithermal gold systems and porphyry gold-copper systems. ASTER data were
interpreted to locate occurrences of high temperature illite, crystalline kaolinite, dickite, and possible
vegetation anomalies. Along with K/Th radiometric anomalies, five target areas were identified
(Figure 5) for further ground- and laboratory-based analyses. Follow-up drilling in 2015 intersected
multiple epithermal veins and stockwork zones.
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Figure 5. ASTER interpretation of clay anomalies and delineation of five target areas. Pick/shovel symbol
represents known gold of copper prospects. ASX (Australian Stock Exchange) announcement [140].

The first gold discovery using the Australia ASTER Geoscience minerals maps (described
previously) was announced in 2014 by Kentor Gold Limited on the Australian Stock Exchange soon
after the public release of the satellite products [141]. Their discovery at Chukbo in the east Arunta of
the Northern Territory, Australia was based on recognition in the ASTER geoscience maps of coincident
phyllic and propyllitic alteration (Figure 6). Similar new additional targets are also apparent.

Articles have been published describing applications of ASTER data for gold exploration in other
parts of the world. An early work by Zhang et al. [142] applied ASTER data for lithologic mapping
and alteration detection in the Chocolate Mountains, California. They analyzed the geologic setting
of a known gold mine, then used the extracted characteristics to search for similar environments.
A similar study by de Palomera [143] was carried out in the Deseado Massif, Argentina to prospect for
epithermal gold-silver deposits. At Mount Olympus, Australia, Wells et al. [144] used ASTER data to
characterize alteration associated with sediment-hosted gold mineralization. Their results defined a
different suite of alteration minerals compared with hydrothermal alteration found in epithermal or
Carlin-type gold deposits. At the Gua Musang Goldfield, China, Yao et al. [145] applied ASTER SWIR
and TIR data to map rock types and quartz content to search for promising host rocks for possible gold
mineralization. Yousefi et al. [146] integrated ASTER and Landsat data to map geologic setting of the
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Zarshuran Carlin-type deposit in Iran. ASTER data provided mineralogical and lithologic information,
and Landsat provided regional structural information. Rani et al. [147] combined mineralogical
information from ASTER data with ground magnetic data, ground spectroscopy and gravity data to
identify potential targets for gold sulfide mineralization. This project was an improvement over many
other, remote-sensing only projects: bringing in geophysical data provided a more complete geologic
picture of the setting; ground spectroscopy provided validation of the mineralogical information
derived from the ASTER data.
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deposits

Figure 6. Published (from Kentor Gold) geology and mineral occurrences in the Jervois area, Northern
Territory (left) and propyllitic alteration (warmer colors) evident in the ASTER “MgOH” product,
which was critical in the discovery of Chukbo (right).

6.6. ASTER Data Applied to Exploration for Other Minerals

Several papers have appeared describing application of ASTER data in the search for iron
ore deposits. Using ASTER data alone, or in combination with data from other satellites (Landsat
and Hyperion) or airborne geophysics, methods were developed over targets in India, Iran, Brazil,
and Australia by Rajendran et al. [148], Huang et al. [149], Duuring et al. [150], Mansouri et al. [151],
and Mazhari et al. [152]. One report by Moghtaderi et al. [153] used ASTER and Landsat data to
determine iron mineral contamination in an iron mine area in Iran. These studies mainly relied on the
VNIR bands, as this spectral region covers the diagnostic spectral absorption features associated with
ferric and ferrous iron minerals.

A few articles have appeared where ASTER data have been applied in the search for specific
minerals. Cardoso-Fernandez [154] reported on the use of ASTER data in the search for lithium-bearing
pegmatites. TIR data were one of the key inputs to their exploration model. Shawky et al. [155]
processed ASTER data to detect the presence of known uranium localities in Egypt, hoping to develop
a more general exploration tool. In Australia, Hewson et al. [156] analyzed ASTER data to map geology
associated with manganese mineralization. In Kurdistan, Othman and Gloaguen [157] discovered a
new chromite body in the Mawat Ophiolite Complex. They combined lithologic mapping to delineate
possible host rocks, then identified targets using Support Vector Machine classification, searching for
unknown deposits using known targets as training sites.
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ASTER data have been applied in oil exploration to search for hydrocarbon seepage induced
alteration by Fu et al. [158], Shi et al. [159], Siydon et al. [160], Pena and Abdelsalam [161],
and Petrovic et al. [162]. Generally, surface effects are reduction/oxidation reactions, and alteration to
produce clay minerals. In a few cases, over known oil fields, alteration has been successfully detected.
Application as an exploration tool is still in the experimental stage; but ASTER data are considered an
addition to an exploration protocol.

7. Discussion and Conclusions

All of these examples conclusively demonstrate the tremendous advances in lithologic mapping
and mineral exploration provided by ASTER’s multispectral SWIR and TIR bands. For the first
time, global image data were acquired at sufficient spatial resolution to be applicable to deposit-scale
mapping, as well as regional reconnaissance exploration. In addition, the systematic search for
indicators of potential base and precious metal deposits was enabled by the ability to detect minerals
associated with propylitic, argillic, potassic, phyllic, and silicic hydrothermal alteration. Clays,
carbonates, sulfates, and other hydrous minerals were discriminated, not just lumped into a single
category as with Landsat data.

Researchers described a variety of initial ASTER data products (radiance-at-the-sensor, surface
reflectance, etc.) as their inputs for analysis. Further pre-processing steps varied, depending on
the final analysis and information extraction algorithms used. This variety of data analysis and
processing methods, then applied to the pre-processed ASTER data, shows that there is no “perfect
workflow” to successfully extract mineralogical information. The data have sufficient information
to provide satisfactory results using the simplest techniques like color composites and band ratios
of radiance-at-the-sensor data, or more sophisticated analyses, like machine learning. Mineralogical
indices seem to be a good middle ground (see Appendix B).

The aerospace commercial sector took note of the sizable exploration geology user community
using ASTER and Landsat data, and gauged there was a sufficiently large market to add multispectral
SWIR capability to a for-hire satellite scanner. Since 2015, DigitalGlobe’s WorldView-3 instrument has
provided data for sale to customers desiring high spatial resolution data. The instrument provides
eight SWIR bands with 7.5 m pixel size, four in the 1.6-1.75 pm region and four in the 2.15-2.35 um
region; and eight VNIR bands with ~1.2 m pixel size, and has bands with similar bandpasses to ASTER
VNIR-SWIR bands except for ASTER SWIR band 9. The images have a swath width of 13.1 km, so the
data are not suitable for reconnaissance of medium to large areas, as can be done with ASTER data.
However, the band positions allow better clay and carbonate mineral identification than with ASTER,
as reported by Mars [163] over the Mountain Pass, California site. No funded, future instrument by any
country or agency currently exists to provide high spatial resolution TIR data. Several hyperspectral
VNIR-SWIR scanners are either operational or planned for launch in the next few years. None of these
provide global coverage, as they are all sampling missions, with narrow (~30 km) swath widths.

Since the launch of the Landsat MSS scanner in 1972, geologists have increasingly turned to
satellite-based remote sensing data as an integral tool in lithologic mapping and mineral exploration
programs. The 1982 launch of the Landsat Thematic Mapper scanner, with its single 2-2.5 um band,
was a breakthrough for detecting hydrothermal alteration that could be associated with potential
mineral deposits. Japan’s 1992 launch of OPS with its four SWIR bands demonstrated the potential
capability to not only detect hydrothermal alteration minerals, but to identify individual and classes
of these minerals. The ASTER instrument, with its six SWIR bands, and five TIR bands, was the
next logical step in developing a spaceborne instrument with greatly enhanced geological mapping
capabilities. For the past 20 years, ASTER data have been shown again and again to be an important
tool to map the surface of the Earth. Several announced mineral deposit discoveries (and undoubtedly
many unannounced discoveries) attest to the success of ASTER’s design.
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Acronyms

AIST National Institute of Advanced Industrial Science and Technology
ALI Advanced Land Imager

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
CSIRO Commonwealth Scientific and Industrial Research Organisation
EO-1 Earth Observer

EOS Earth Observing System

ERTS Earth Resources Technology Satellite

GDEM Global digital elevation model

HRV High resolution visible

IRS Indian Remote Sensing

ITIR Intermediate Thermal Infrared Radiometer

JERS Japan Earth Resources Satellite

LPDAAC  Land Processes Distributed Active Archive Center

METI Ministry of Economy, Trade and Industry

MITI Ministry of International Trade and Industry

MSS Multispectral scanner

NASA National Aeronautics and Space Administration

NASDA National Space Development Agency

OLI Operational Land Imager

OPS Optical sensor

PALSAR Phased Array type L-band Synthetic Aperture Radar
SAC-C Scientific Application Satellite-C

SPOT Satellite pour I'Observation de la Terre

STA Science and Technology Agency

SWIR Short wave infrared

TIGER Thermal Infrared Ground Emission Radiometer
TIR Thermal infrared

™ Thematic Mapper

VNIR Visible and near infrared

Appendix A ASTER Operations

Appendix A.1 Data Acquisition

Due to its limited duty cycle, the ASTER instrument is scheduled each day for specific data
collections. On any given day there are thousands of possible data acquisitions that could be collected.
The ASTER science team developed an automatic scheduler to prioritize the possible acquisitions and
produce a daily acquisition schedule. On average, about 500-550 scenes are collected daily, limited
by the capacity of the onboard data recorders. To date, ASTER has acquired almost 4 million images
(Figure A1).
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Figure A1. Mosaic of ASTER browse images showing near-global coverage achieved over the lifetime
of the mission.

Appendix A.2 Data Products

The ASTER project provides the user community with Standard Data Products throughout the
life of the mission. Algorithms to create these products were created by the ASTER Science Team,
and were rigorously peer reviewed by outside scientists [164]. This ensured that the products met
NASA standards for accuracy and scientific soundness. Adhering to NASA procedures, products
are labeled by level, from 1 to 3. “Level 1A are reconstructed, unprocessed instrument data at
full resolution, time-referenced and annotated with ancillary information, including geometric and
radiometric calibration coefficients and georeferencing parameters computed and appended but not
applied to Level 0 data. Level 1B data are L1A data that have been processed to sensor units. Level 2
data are derived geophysical variables at the same resolution and location as Level 1 source data.
Level 3 data are variables mapped on uniform space-time grid scales, usually with some completeness
and accuracy.” [165]. A list of the ASTER data products can be found here [166].

Appendix A.3 Data Archiving and Distribution

In the U.S., NASA'’s Land Processes Distributed Active Archive Center (LPDAAC; https://Ipdaac.
usgs.gov) is responsible for archiving, processing, and distribution of all ASTER data products. In Japan,
Japan Space Systems (http://jspacesystems.or.jp) is responsible for archiving the entire ASTER Level 0
and Level 1 data. Distribution of a limited suite of ASTER products in Japan is implemented by the
National Institute of Advanced Industrial Science and Technology (AIST) through the Geologic Survey
of Japan (https://gbanks.gsj.jp/madas/). As of January 2019 ASTER had acquired over 3.8 million
images. A complete catalog of links to ASTER data providers can be found on the ASTER website
(https://asterweb.jpl.nasa.gov/data.asp).

Since April 2016, both METI and NASA agreed to distribute all ASTER data products to all users
at no cost. For the period April 2016 to April 2019, over 32 million ASTER Level 1, 2, and 3 files have
been distributed (excluding the Global Digital Elevation Model (GDEM)). For the past two years,
the most popular product has been the ASTER GDEM. The number of these files ordered has exceeded
55 million.
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Appendix B Spectral Indices

Appendix B.1 TIR Spectral Indices

In 2005, Ninomiya et al. [32] proposed mineralogical spectral indices using ASTER’s TIR bands.
The indices were based on spectral absorption features of silicates and carbonates, located in the
8-12 micron wavelength region.

CI = Carbonate index = B13/B14, where B13 is the value of radiance-at-sensor of ASTER TIR band 13;
Cl is high for calcite and dolomite

QI = Quartz Index = (B11 x B11)/(B10 + B12)

MI = Mafic Index = (B12 x B143)/B134

Appendix B.2 Logical Operators

In 2006, Mars and Rowan [126] developed logical operators to map argillic and phyllic alteration.
Their algorithms were written using IDL (Interactive Data Language). Input data were the ASTER
calibrated surface reflectance products, atmospherically corrected. In addition, the ASTER data were
adjusted using Hyperion data, resampled to ASTER bandpasses.

Argillic alteration:

((float(B3/B2 le 1.35) and (B4 gt 260) and ((float (B4)/B5) gt 1.25) and ((float(B5/B6) le 1.05) and
((float(b7)/B6) ge 1.03)

The first term masks vegetation; the second term masks dark pixels; the third term maps the
2.165 micron feature; the fourth term delineates argillic from phyllic alteration; the last term maps the
2.20 micron feature.

Phyllic alteration:

((float(B3)/B2) le 1.35) and (B4 gt 260) and ((float(B4)/B6) gt 1.25) and ((float(B5)/(B6) gt 1.05) and
((float(B7)/B6) ge 1.03)

The first term masks vegetation; the second term masks dark pixels; the third term maps the
2.20 micron feature; the fourth term delineates argillic from phyllic alteration; the last term maps the
2.20 micron feature.

Appendix B.3 Australian Geoscience Maps

In 2012, CSIRO released “Satellite ASTER Geoscience Products for Australia” [99]. These consisted
of 17 geoscience products for the entire continent of Australia, created from 35,000 ASTER images.
Fourteen were from the VNIR and SWIR bands, three from the TIR bands. The geoscience maps
started with ASTER radiance-at-sensor data products; further processing included geometric correction,
cloud and vegetation masking, mosaicking images to make a seamless mosaic, and application of
product masks/thresholds to generate the geoscience products.

The 17 products are false color (Bands 3,2,1 in RGB); Landsat TM Regolith ratios; green vegetation
content; ferric oxide content; ferric oxide composition; ferrous iron index; opaque index; AIOH
group content; AIOH group composition; Kaolin group index; FeOH group content; MgOH group
content; MgOH group composition; ferrous iron content in MgOH/carbonate; silica index; quartz
index; and gypsum index.

An example of the algortihms used is the MgOH group content, designed to highlight the
abundance of calcite, dolomite, magnesite, chlorite, epidote, amphibole, talc and serpentinite.

Algorithm = (B6+B9)/(B7+B8)
Masks = green vegetation <1.4 and cloud, water, shadow and sun glint
Stretch = linear 1.05-1.2
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