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Abstract: To date, several algorithms for the retrieval of cyanobacterial phycocyanin (PC) from ocean
colour sensors have been presented for inland waters, all of which claim to be robust models. To address
this, we conducted a comprehensive comparison to identify the optimal algorithm for retrieval of PC
concentrations in the highly optically complex waters of Lake Balaton (Hungary). MEdium Resolution
Imaging Spectrometer (MERIS) top-of-atmosphere radiances were first atmospherically corrected
using the Self-Contained Atmospheric Parameters Estimation for MERIS data v.B2 (SCAPE-M_B2).
Overall, the Simis05 semi-analytical algorithm outperformed more complex inversion algorithms,
providing accurate estimates of PC up to +7 days from the time of satellite overpass during summer
cyanobacteria blooms (RMSE|,g < 0.33). Same-day retrieval of PC also showed good agreement with
cyanobacteria biomass (R? > 0.66, p < 0.001). In-depth analysis of the Simis05 algorithm using in situ
measurements of inherent optical properties (IOPs) revealed that the Simis05 model overestimated
the phytoplankton absorption coefficient [apn(1)] by a factor of ~2. However, these errors were
compensated for by underestimation of the mass-specific chlorophyll absorption coefficient [a*cn1a(4)].
This study reinforces the need for further validation of algorithms over a range of optical water types
in the context of the recently launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3.

Keywords: cyanobacteria; phycocyanin; MERIS; Sentinel-3; remote sensing; Lake Balaton

1. Introduction

It has recently been estimated that there are as many as 117 million lakes on Earth covering
approximately 3.7% of the planet’s non-glaciated land surface [1]. While they comprise only a small
fraction of the Earth’s land surface, inland water bodies play a fundamental role in many global and
regional biogeochemical processes [2,3]. Lakes are also highly sensitive to environmental perturbation
and change impacting their airsheds and watersheds. For example, inputs of nutrients derived from
anthropogenic sources to lakes have increased in recent years, with eutrophication recognised as one
of the most universally widespread ecological, economic and social issues affecting the quality of
freshwaters globally [4]. Eutrophication of lakes is acknowledged as a major global ecological concern,
particularly in developing countries where annual phosphorus (P) loads are estimated to be ten-fold
larger than in developed countries and the risk of P-stimulated eutrophication is higher [5].
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Nutrient-enriched lakes have phytoplankton communities that are often dominated by blue-green
algae or cyanobacteria, which are notorious bloom-forming prokaryotes. Blooms of cyanobacteria can
have profound and often highly adverse impacts on lake ecosystems [6]. Some species of cyanobacteria
can fix dissolved dinitrogen gas into organic nitrogen, thus allowing them to outcompete other
phytoplankton species and thrive in conditions with a low nitrogen to phosphorus ratio [7-12]. Other
adaptations such as the ability to store excess nutrients like phosphorus [13], low light requirements [14],
increased growth rates at higher temperatures [15] and buoyancy regulation mechanisms [16] further
allow cyanobacteria to prosper in warmer, nutrient enriched waters.

Cyanobacteria can also pose significant risks to animal and human health, as many species produce
cyanotoxins with neurotoxic, hepatotoxic, cytotoxic, genotoxic, endotoxin and tumor-promoting
properties [17]. Given the health risks they pose, it is vital that methods are developed for the accurate
and rapid assessment and monitoring of cyanobacteria blooms in lakes. Traditional water sampling
methods are often shore-based and lack sufficient spatial coverage to capture the heterogeneity of
cyanobacteria populations. Furthermore, laboratory methods for enumeration and identification of
cyanobacteria taxa are time-consuming and costly. In contrast, earth-observing satellites can provide
data at a spatial and temporal resolution to permit rapid detection and monitoring of cyanobacteria
populations in lakes on an operational basis. Numerous algorithms for retrieval of cyanobacterial
pigments from inland waters have been presented to date, however there are no comprehensive
validation studies to identify the most robust model(s). To this end, this study aims to assess the
capability of semi-empirical, semi-analytical and inversion algorithms for retrieval of cyanobacterial
pigments from inland waters using data from the ocean colour sensor MERIS (MEdium Resolution
Imaging Spectrometer that was flown on the Envisat satellite) captured over the highly turbid, optically
complex waters of Lake Balaton, Hungary. The ultimate aim of this research is to rigorously validate
algorithms for future use in near real-time operational detection and monitoring of cyanobacterial
blooms in lakes.

Remote sensing is used operationally for monitoring phytoplankton in the global ocean, but remote
sensing of inland waters has not progressed as rapidly due to the greater complexity in the atmospheric
and in-water optical properties of lakes [18]. Chlorophyll-a (Chl-a) can be retrieved with algorithms
from remote sensing measurements as an indicator of total phytoplankton biomass [19-21]. However,
Chl-a does not provide information about the phytoplankton community composition or reliably
indicate the presence of potentially toxic cyanobacteria blooms. Cyanobacteria-specific information
can be acquired by also estimating the concentration of phycocyanin (PC), an indicator pigment
for cyanobacteria [22-29]. The unique optical properties of phycocyanin-containing cyanobacteria
allow them to be distinguished from other phytoplankton using the shape and magnitude of the
remote-sensing reflectance (R,s(0+,1)) signal observed during blooms [30].

PC can be most simply estimated from Ry; (0+,A) using semi-empirical algorithms incorporating
(Rys(0+,A)) band-ratios or band-differences which target the main absorption feature at ~620 nm. The
earliest approaches for PC estimation from MERIS include the semi-empirical baseline algorithm by
Dekker [31] and the band ratio approach introduced by Schalles and Yacobi [32], hereafter referred
to as Dekker93 and Schalles(00, respectively. The semi-analytical algorithm for PC estimation was
subsequently developed by Simis et al. [28] (hereafter referred to as Simis05) adapted from the related
algorithm for Chl-a retrieval by Gons [33] and Gons et al. [19,34] (hereafter referred to as Gons05).
Both Simis05 and Gons05 were specifically tailored to the bands for MERIS and have been validated in
a range of inland waters [22,23,35-38]. More recently, other algorithms for PC retrieval compatible
with MERIS and OLCI have been developed and published, including the adapted quasi-analytical
algorithm (QAA) developed by Mishra et al. [39], the PC Index (PCI) by Qi et al. [40], the IOP Inversion
Model of Inland Waters (IIMIW) by Li et al. [41], and the 4-band semi-analytical model by Liu et al. [42]
that builds upon the 3-band model developed by Hunter et al. [23], hereafter referred to as Mishral3,
Qi14, Li15, Liul8, and Hunter10, respectively. These algorithms were identified as the most relevant PC
retrieval methods presently available for MERIS and OLCI data and were thus selected for comparison
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in this study. Literature reviews of phycocyanin retrieval algorithms and approaches can be found in
Matthews et al. [43], Li and Song et al. [44] and Yan et al. [45].

Despite the growing portfolio of PC retrieval algorithms, the practical use of some of the
algorithms developed is limited by the spectral coverage and resolution available with current satellite
instruments [27,45]. Although the MERIS sensor is no longer operational, the data archive remains
immensely useful for algorithm development and validation studies, particularly because the OLCI
instrument on the European Space Agency’s recently launched Sentinel-3 satellite has a strong MERIS
heritage. Indeed, OLCI is being implemented for the monitoring of water quality parameters in large
lakes (e.g., Lake Balaton [46]) and is considered the only operational satellite sensor in orbit applicable
for measurement of PC [45]. Importantly, MERIS and its successor OLCI have a waveband centered at
620 nm near the PC absorption maximum, therefore there is great value in the MERIS archive with
regard to robust validation of existing PC algorithms over inland waters.

Algorithms tend to be developed for use in specific water bodies and there is a real need to assess
whether they are transferable to other lakes with differing optical and biogeochemical properties,
and further understanding is required of the uncertainties over the full range of optical water types
(OWTs) [18,47,48]. Many validation studies have used in situ measurements of subsurface reflectance,
however to date there have simply been few attempts to validate PC algorithms over inland waters
using satellite data such as MERIS or OLCI (Sentinel-3). Furthermore, the published PC algorithms for
inland waters all claim to provide optimal performance, however no comprehensive validation of all
PC algorithms has been undertaken to date. For instance, previous validation studies have focused on
performance of a limited set of algorithms (e.g., reflectance-based empirical approaches only [49] or
three empirical, semi-empirical and semi-analytical approaches [27]). These studies have tested PC
models using in situ [22,27,49] or airborne reflectances [50] rather than satellite-derived reflectances.
To address this deficiency in PC algorithm validation, this study aims to comprehensively test existing
PC algorithms for ocean colour sensors using a MERIS and in situ dataset on Lake Balaton (Hungary),
a site with recurrent summer cyanobacteria blooms, a gradient of phytoplankton biomass and CDOM,
and optical properties that are highly influenced by inorganic particulates [51,52]. More specifically,
this study aims to firstly test a series of algorithms for PC retrieval from MERIS data over Lake Balaton,
comparing retrieval of PC from MERIS data within 1 day of in situ measurements. The best-performing
algorithm is investigated in greater detail over a range of matchup windows, and retrieved pigments
are validated with a time series of pigment and cell count data from 2007-2011 (Chl-a) and 2010-2011
(PC). Finally, the sources of error are examined by validating retrieval of absorption and backscattering
coefficients with a dataset of in situ and laboratory inherent optical property (IOP) measurements from
August 2010.

2. Materials and Methods

2.1. Study Site

Lake Balaton (46.8°N, 17.7°E; Figure 1) is the largest shallow lake in Europe by surface area
(592 km?), with a mean depth of just 3.2 m. It has a large catchment, dominated by the Zala River,
and a history of eutrophication and summer cyanobacteria blooms. The lake itself typically has a
gradient in phytoplankton biomass and Chl-g, with the highest Chl-a concentrations occurring in the
western Keszthely basin (~3-45 mg m~2), and lower phytoplankton biomass and Chl-a in the eastern
Siéfok basin (~3-20 mg m~2). Cyanobacteria biomass tends to peak in late summer (anywhere from
June-October), with PC values up to ~60-100 mg m~> in the westernmost basins [9]. In recent years,
summer cyanobacteria populations in Lake Balaton are dominated by nitrogen-fixing species, including
Raphidiopsis raciborskii (Wotosz.) (former genus name Cylindrospermopsis), Aphanizomenon flos-aquae
((L.) Ralfs), Cuspidothrix issatschenkoi (Usachev) (former genus Aphanizomenon), Sphaerospermopsis
aphanizomenoides (Forti) (former genus name Aphanizomenon) and Dolichospermum spiroides (Kleb.)
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(former genus name Anabaena). During a bloom, cyanobacteria often contribute to >70% of the total
phytoplankton biomass [9].

Despite the frequently high concentrations of phytoplankton that occur in Lake Balaton during
the summer, light attenuation is largely determined by the frequent wind-driven resuspension of
mineral particles from the lake bottom. Total suspended matter in the lake is mostly of inorganic
origin, with concentrations typically in the order of 18-28 mg L~! (2010 annual mean), but can exceed
100 mg L~! during windy periods. These high loads of mineral particles contribute significantly to
light absorption and scattering; absorption by non-algal particles (anap(440)) is typically 0.2 m~! and
particulate backscattering (by,(532)) varies between 0.04 and 0.2 m~! [51]. These fine particles have
a high backscattering efficiency (by,:b, up to 0.03) and thus contribute strongly to the water-leaving
radiative signal and impart the lake with its characteristic turquoise colour.

Lake Balaton also demonstrates highly localised concentrations of coloured dissolved organic
matter (CDOM). CDOM absorption coefficients (acpom(440)) typically ranging from 0.09 to 1.4 m~1,
with the highest CDOM absorption observed at the mouth of the Zala River (acpon(440) up to 9.5 m™1)
where water rich in dissolved organic carbon produced in the reservoir system Kis-Balaton discharges
into the western portion of the lake [51]. However, CDOM is rapidly diluted and bleached through
photodegradation as water passes through the system [52].
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Figure 1. Map of Lake Balaton, indicating the routine monitoring stations (Balaton Limnological
Institute, BLI; Central Transdanubian (Regional) Inspectorate for Environmental Protection, KdKVI),
and the 35 stations from the August 2010 field campaign (August 2010).

2.2. Validation Datasets

Lake Balaton is regularly monitored by Balaton Limnological Institute (BLI, MTA CER) at a
bi-weekly to monthly frequency at up to 5 stations across the lake (Figure 1), thus it has an extensive
archive of data for satellite validation studies. In this study, we compiled the routine Chl-a concentration
and phytoplankton count data from the years 2007-2011 and more recent measurements of the PC
concentrations from the years 2010-2011. This dataset is referred to as “BLI” throughout.



Remote Sens. 2019, 11, 1613 5 of 50

Further Chl-a data from 2007-2011 were obtained from the Central Transdanubian (Regional)
Inspectorate for Environmental Protection, Nature Conservation and Water Management
(Kozép-dunantuli Kornyezetvédelmi, Természetvédelmi és Viziigyi Feliigyel6ség (KDT KTVE)).
However, for consistency with previous publications, the abbreviation “KdKVI” is used throughout
for this Chl-a dataset. These data were collected at 4 stations at the center of the respective basins
(Figure 1).

In addition to the routine monitoring programmes, a separate sampling campaign for MERIS
validation was conducted from 18 to 26 August 2010 to coincide with an Envisat MERIS overpass
on 22 August 2010. IOP measurements and water samples were collected at 35 stations during this
campaign (Figure 1). In situ radiometry data were collected at 30 stations only, as the raw data files
from stations 31-35 were corrupted. Large volume water samples (5 L) were taken from the surface
(~0.5 m) using an acid-rinsed wide-necked polyethylene carboy for subsequent analysis of pigments
(Chl-2 and PC), phytoplankton absorption and phytoplankton counts. Samples were stored on ice in
the dark prior to analysis for pigments. This dataset is referred to as “August 2010” throughout.

2.2.1. Chlorophyll-a

BLI routine water samples were collected as depth integrated over the first 2-3.5 m of the water
column, depending on the maximum sample depth at each station. A 5-L sample was stored in the dark
on ice before Chl-a extraction, within 24 h. Samples were filtered under low vacuum pressure through
GF/C (Whatman) filter papers and subsequently extracted in 90% hot methanol for 1 min. Depending
on the sample turbidity, between 500 and 1500 mL was filtered. Sample absorbance was measured
spectrophotometrically (Shimadzu UV-1601), as in Iwamura et al. [53]. The concentration (mg m~3)
of Chl-a was then determined by the following equation, where A, is the measured absorbance at
wavelength x (nm):

Chl-a (mg m_3) = 17-12(A666 - A750) - 8.68(A653 - A750). 1)

KdKVI routine monitoring consists of water samples collected at the surface, followed by filtration
under low vacuum pressure through GF/C (Whatman) filter papers. Chl-z was extracted in ethanol
and measured spectrophotometrically, with concentration calculated as in Equation (1). To investigate
any systematic difference between the KdKVI and BLI archive datasets, coincident Chl-a data have
been compared between BLI depth integrated samples and KdKVI surface samples. Results indicated
no significant difference between the medians of the two datasets (non-parametric Mann-Whitney
U-test, n =7, p = 0.710) [54].

For the August 2010 sampling campaign, a subsample of a 5 L surface water (0.5 m) sample
was filtered on the boat immediately after sample collection under low vacuum pressure through
GF/F (Whatman) filter papers. Depending on the water clarity at the location (using Secchi depth),
between 20 and 70 mL of sample water was filtered. Filter papers were then flash frozen in liquid
nitrogen for <12 h and placed in a —80 °C freezer until analysis (no more than 6 months). Frozen
GFJ/F filter papers were thawed in the dark from —80 °C and chlorophyll-a was extracted in 90%
hot methanol and measured spectrophotometrically (Shimadzu UV-1601), as for the BLI routine
monitoring programme. For all dataset methods, there was no correction included for absorption by
phaeopigments, a degradation product of Chl-a.

2.2.2. Phycocyanin

The samples collected for BLI routine monitoring were depth integrated over the first 2-3.5 m of
the water column, depending on the maximum sample depth at each station. A 5-L sample was stored
in the dark on ice before PC extraction, within 24 h. Samples were filtered under low vacuum pressure
through GF/C (Whatman) filter papers and subsequently extracted in a solution of 15 mL 0.05M
phosphate buffer (pH = 6.8). Depending on the sample turbidity, between 70 and 450 mL of water was
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filtered. Filter papers in the buffer solution underwent one freeze-thaw cycle as in Sarada et al. [55], and
phycocyanin was extracted by sonication over ice for 15 seconds (Ultrasonic Homogeniizer 4710 Series,
Cole-Palmer Instrument Co., USA), as detailed in Horvath et al. [9] (Method E). Finally, extracts were
filtered (GF/C Whatman) and the absorption measured on a spectrophotometer (Shimadzu UV-1601,
Shimadzu Co., Japan). Phycocyanin concentrations were calculated using the following equation [56],
where Ay is the measured absorbance at wavelength x (nm):

PC (mgm™) = (Ag15 — 0.474 X Agsp) /5.34. )

For the August 2010 dataset, subsamples of a 5 L surface water (~0.5 m) sample were filtered
on the boat immediately after collection under low vacuum pressure through GF/F (Whatman) filter
papers. Depending on the water clarity at the location (using Secchi depth), between 20 and 70 mL of
sample water was filtered. Filter papers were then flash frozen in liquid nitrogen for <12 h and placed
in a —80 °C freezer until analysis (no more than 6 months). Frozen GF/F filter papers (2 replicates)
were thawed from —80 °C to 9 °C (+1 °C) and the pigment concentration was obtained according to
the method described above for the BLI dataset, using Equation (2). As only 2 replicates were analysed
for PC concentration, standard error is not presented on these data, however there was generally good
agreement between the replicates with good agreement between PC and cyanobacteria biomass for the
August 2010 dataset (R? = 0.94, CV = 1.7%) [9].

2.2.3. Phytoplankton Biomass

Phytoplankton biomass data for BLI routine monitoring were depth integrated water samples,
while data from the August 2010 campaign were collected as subsamples of a 5L surface water
sample. All water samples for analysis of phytoplankton biomass were collected in 50 mL polyethylene
containers and preserved in Lugol’s solution immediately after collection for analysis within 6 months.
At least 25 cells (or filaments) of each species were measured to determine biomass and at least 400
were counted using an inverted plankton microscope [57]. The wet weight of each species was then
calculated from cell volumes [58].

2.2.4. Measurement of Absorption and Backscattering Coefficients

Measurements of particulate absorption and backscattering coefficients were made during the
August 2010 campaign only. For particulate absorption, a subsample of a 5 L water sample was
filtered on the boat immediately after sample collection under low vacuum pressure. Depending on
the location, 20-70 mL of water was passed through GF/F (Whatman) filter papers and the filters were
immediately flash frozen in liquid nitrogen for <12 h prior to storage at —80 °C. All samples were
analysed within 6 months of collection. Frozen GF/F filters were defrosted in the lab from —80 °C
in the dark. The absorbance of the material on the filter was measured from 350 to 750 nm using a
dual beam spectrophotometer retro-fitted with Spectralon coated integrating spheres, according to the
‘transmittance-reflectance” method of Tassan and Ferrari [59]. Absorption was measured before and
after bleaching with a 1% solution of NaClO to obtain particulate absorption (2,(1)) and absorption
by non-algal particles (an4p(A)), respectively. The pathlength amplification correction of Tassan and
Ferrari [59] was applied and absorption by phytoplankton (a,,(1)) was calculated as the difference
between a,(A) and an4p(A). Chlorophyll-specific absorption (a*cyi,(A)) coefficients were calculated by
dividing a,;,(A) by the respective Chl-a concentration.

Particle backscattering coefficients (b, (1)) were derived from measurements collected with an
ECO-BB3 backscatter meter (WET Labs, Inc.). The calibration was performed by the manufacturer
prior to sampling, and it was assumed that there was no drift in the calibration coefficients and/or dark
counts. The ECO-BB3 measures the total volume scattering function (8; (1,124°)) from a centroid angle
of scattering (124°) at 3 wavelengths (A = 470, 532 and 650 nm). The transformation of the raw counts
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into by(A) was done following the manufacturer’s user guide [60] and the methods as in Slade and
Boss [61].

Firstly, the instrument raw counts were converted into an uncorrected value of the volume
scattering function, (8,(A,124°)):

Pu(A,124°) = s(A)[raw(A) —d(A)], ®

where sand d are scaling and dark counts factors, respectively, with values supplied by the manufacturer.
The scaling factors change with time at a typical rate of 10%, 4% and 3% per year for blue, green
and red wavelengths, respectively [62]. As this sampling campaign was conducted over 10 days, the
expected maximum change over time is about 0.3% of the signal, and laboratory tracking from 2013
to 2015 of the scaling factor on this ECO-BB3 corroborated this assumption (Martinez-Vicente, pers.
comm.). Secondly, ,(A,124°) was corrected to account for the light attenuation within the instrument
path length using an attenuation factor, K(A):

K(A) = exp(Lapg()\)), 4

where L is the effective pathlength (0.015 m) and apg(A) is the absorption due to particulate and dissolved
matter. ap¢(1) was simultaneously measured in situ by a AC-9 (WET Labs, Inc.), and these data were
processed using the temperature proportional? scattering correction from Rottgers et al. [63] and pure
water calibrations measured before and after the campaign. In each case, the nearest wavelengths to
the ECO-BB3 wavelengths were applied (i.e., 488, 532 and 660). ;(A,124°) is then calculated as:

Br(A,124°) = Bu(A,124°) X K(A). (5)

Thirdly, the value of the volume scattering function of water was subtracted from $;(A,124°) using
the model by Zhang et al. [64] with fixed temperature and salinity values of 24.0 °C and 0.4 psu,
respectively. Finally, the volume scattering function of the particles at 124° is extrapolated to the
backwards direction to derive the particulate backscattering coefficient, by,(1), using a conversion
factor of x,(124°) = 1.08 as in Sullivan et al. [62]:

byp(A) = 2mxp(124°) X [B(A, 124°) = (A, 124°)). (6)

Mean by, (1) values were calculated over 1-5 min measurement periods. As CDOM is assumed to be
non-scattering, byy(A) is referred to here as by(A).

2.2.5. In Situ Radiometry

In situ radiometry data were collected during the August 2010 campaign only at Stations 1-30
(n = 30), using a HyperSAS (Hyperspectral Surface Acquisition System; Satlantic) for validation of the
atmospheric correction of MERIS data. Three radiometers were positioned at a height of 3.5 m from a
pole at the bow of the boat. The boat was positioned on station to point radiance sensors at a relative
azimuth angle of 135° from the sun, and the zenith angles of the sea- and sky-viewing radiance sensors
were fixed at 40°. The three radiometers measured downwelling irradiance (Es(A)), surface radiance of
the water (L¢(1)) and sky radiance (Lg,(1)). Measurements were made at each station for 30 min with
an integration time of 21 seconds. The sensors measured over a wavelength range of 348.9-801.6 nm
with a sampling interval of 3.3 nm (137 bands) and a spectral width of 10 nm.

L¢(A) and L, (1) were used to calculate the water-leaving radiance (L (A)) after correction for
air-sea interface reflection as follows [65,66]:

Ly(A) = Li(A) _PskyLsky(A)f @)
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where Pskys the air-water interface reflection coefficient, is estimated for sunny conditions as a function
of wind speed (W; m s71) (Ruddick et al., 2006):

psky = 0.0256 + 0.00039 x W + 0.000034 x W2. (8)

The HyperSAS raw data were processed to level 3a using Satlantic ProSoft software (v.7.7.10).
After processing, all spectra underwent quality control for any outliers due to variable cloudiness
or sun glint due to lake surface state. Remote sensing reflectance, R;s(A) (sr™1), was then calculated
as follows:

Rys(A) = Ly(A)/Es(A). )
2.3. MERIS Data Processing

MERIS full resolution full swath (FRS) 300 m Level-1b data for Lake Balaton were obtained for a
period of 5 years (2007-2011) from the European Space Agency’s Merci system (https://earth.esa.int/web/
guest/data-access/online-archives). The geolocation of the data was improved using the AMORGOS
(Accurate MERIS Ortho-Rectified Geo-location Operational Software) v.4.0 processor. Images with high
cloud cover were discarded, leaving 34 images with matching Chl-a data, 21 images with matching
cell biomass data and 5 images with matching PC data (within 7 days of overpass date). The MERIS
data were atmospherically corrected using the Self-Contained Atmospheric Parameters Estimation for
MERIS data (SCAPE-M) automatic atmospheric correction processor developed by Guanter et al. [67],
following the SCAPE-M_B2 implementation as in Dominguez Gémez et al. [68]. SCAPE-M_B2 is
an improved version of SCAPE-M, which corrects MERIS band 2 with an interpolation between the
values of band 1 and band 3 [68]. It is noted that this is the first implementation of the SCAPE-M_B2
correction to MERIS FRS data, as opposed to FR (full resolution) data, and that SCAPE-M_B2 will
be adapted to OLCI data in the future. SCAPE-M and SCAPE-M_B2 have been shown to compute
accurate water-leaving reflectances for lakes, particularly for highly turbid waters [69-73].

Following atmospheric correction with SCAPE-M_B2, water-leaving reflectance (p, (1)) was
extracted from the MERIS images using BEAM VISAT v.4.11 (Brockmann Consult, v.4.11). p,(A) was
converted (denormalised) to remote sensing reflectance (R;s(A)) through division by pi (7). Each
algorithm was then applied to the extracted R;s(A), and the best performing algorithm was implemented
using the Graph Processing Framework in BEAM to produce mapped time-series products.

2.3.1. Validation of Atmospheric Correction

MERIS Ry;(A) data for a 3x3 pixel kernel (i.e., 9 pixels) were extracted for the corresponding in
situ sampling locations, and the mean and standard deviation for each kernel was calculated. The
SCAPE-M_B2 atmospheric correction was validated using same-day (+1 day) matchups with in situ
Rys(A) only from the August 2010 dataset (n = 7), as this was considered a suitable approach for a
validation over a dynamic lake system. However, all available matchups of MERIS SCAPE-M_B2
and in situ R,s(A) are presented here to investigate the ability to use a broader temporal window for
validation of the atmospheric correction (n = 30; +4 days). All matchups were cloud-free for the August
2010 dataset, and no spatial homogeneity method was employed.

Rys(A) was compared at all 15 MERIS bands with in situ R;s(A) collected by HyperSAS radiometry.
For this, HyperSAS R,s(A) data were simulated to the MERIS spectral response using the band centres
and full width half maximum (FWHM), assuming a Gaussian distribution for the spectral response
function (SRF). At each station, R,s(A) for each MERIS band was also plotted over the range of in situ
Rys(A) measured by the HyperSAS at the respective station (n = 30). This allowed for comparison of
the spectral shape and magnitude of R,s(1) between the MERIS SCAPE-M_B2 and HyperSAS data for
each station.
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2.3.2. Validation Matchup Data

MERIS R;5(A) data for a 3x3 pixel kernel (i.e., 9 pixels) were extracted for the corresponding in
situ sampling locations, and the mean, standard deviation and coefficient of variation (CV%) for each
kernel was calculated, where CV is the ratio of the standard deviation to mean value expressed as a
percent. To reduce the effects of spatial variability on the validation, any MERIS R;s(A) or retrieved
parameter with CV>20% was removed, similar to the methods for spatial homogeneity employed in
Goyens et al. [74] and Jamet et al. [75]. This resulted in MERIS data which were generally discarded
due to cloud cover or where there was interference from land pixels from near-shore sampling locations
(adjacency effect). MERIS-retrieved parameters were then validated with in situ data at time windows
of + 1, 3 and 7 days from a MERIS overpass, with duplicate matchups discarded (i.e., where more than
one sampling date corresponded to the same MERIS image for a particular station). All in situ R;s(A)
and IOP measurements for validation were part of the August 2010 dataset and thus collected + 4 days
of the MERIS overpass (22 August 2010). The in situ Rs(A) data measured by HyperSAS radiometry
are shown in Figure 2, and a summary of the resulting available pigment matchup data from each in
situ dataset is shown in Table 1.

0.06
Siofok
0.05 r Szemes
—Szigliget
T 004 —Keszthely
2,
< 003
0
o
< 0.02
®
@
g-‘ 0.01
= O
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Figure 2. Mean in situ HyperSAS Rys(1) spectra measured in August 2010 in Lake Balaton (n = 30),
showing the variability by basin from west (Keszthely) to east (Sidfok).

Table 1. Descriptive statistics of Chl-a, PC, phytoplankton biomass, cyanobacteria biomass, aph(665),
a,,(620) and by(650) from each in situ dataset used for validation of MERIS-retrieved parameters. The
sample size (n) is the resulting number of matchups after removal of duplicate matchups, cloud cover
or interference from land pixels (i.e., standard deviation of a 3x3 pixel window value >2).

Matchup Parameter Dataset n Min Max Mean St Dev Units
Window
August 2010 13 8.31 344 19.1 9.60 mg m™3
Chl-a BLI 18 243 33.8 134 9.39 mg m™>
KdKVI 105 1.50 57.0 121 10.5 mgm™3
+1 day PC August 2010 14 2.34 31.8 11.8 8.26 mgm~3
BLI 8 3.20 83.1 29.2 317 mg m™3
Phytoplankton August 2010 13 2047 8368 4240 1840 mg m™>
biomass BLI 15 482 8078 3334 2158 mg m3
Cyanobacteria August 2010 14 510 7590 2996 1762 mg m™3

biomass BLI 19 158 7050 1848 1975 mg m™
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Table 1. Cont.

Matchup Parameter Dataset n Min Max Mean St Dev Units
Window

August 2010 13 8.31 344 19.1 9.60 mg m™3

Chl-a BLI 18 243 33.8 13.4 9.39 mgm~3

KdKVI 105 1.50 57.0 12.1 10.5 mg m3

+1day PC August 2010 14 2.34 31.8 11.8 8.26 mg m~3

BLI 8 3.20 83.1 29.2 317 mg m™3

Phytoplankton August 2010 13 2047 8368 4240 1840 mgm™>

biomass BLI 15 482 8078 3334 2158 mg m~>

Cyanobacteria August 2010 14 510 7590 2996 1762 mg m™3

biomass BLI 19 158 7050 1848 1975 mg m™3

Chl-a August 2010 23 5.45 39.1 16.7 10.1 mg m~3

BLI 20 2.43 33.8 13.2 9.06 mg m™>

KdKVI 113 1.50 57.0 12.0 10.3 mg m™3

+3 days PC August 2010 22 2.34 31.8 11.8 7.57 mg m~3

BLI 8 3.20 83.1 29.2 31.7 mg m~>

Phytoplankton August 2010 23 859 8794 3670 2098 mg m™3

biomass BLI 17 482 8078 3184 2117 mg m™3

Cyanobacteria August 2010 22 210 7590 2831 1845 mg m™>

biomass BLI 19 158 7050 1848 1975 mg m~>
+4 days ,1,(665) August 2010 29 0.035 0.339 0.123 0.084 m™!
(I0Ps a,1(620) August 2010 29 0.020 0.238 0.078 0.055 m~!
only) by (650) August 2010 29 0.027 0.108 0.080 0.025 m!

Chl-a August 2010 29 5.45 39.1 15.7 9.22 mg m~3

BLI 52 2.43 45.1 15.8 115 mg m™3

KdKVI 113 1.50 57.0 12.0 10.3 mg m™>

+7 days PC August 2010 28 2.34 31.8 11.6 6.80 mg m~>

BLI 12 3.20 99.6 37.0 39.2 mg m~3

Phytoplankton August 2010 29 859 8794 3549 1914 mg m™>

biomass BLI 32 482 11097 3371 2638 mg m™>

Cyanobacteria August 2010 28 210 7590 2654 1708 mg m~3

biomass BLI 36 0 9449 1856 2340 mg m™3

2.3.3. Algorithm Implementation and Performance Assessment

A summary of the algorithms implemented for PC retrieval is provided in Table 2, with further
details of their implementation to MERIS data for this study included in Appendix A. These algorithms
were compiled based on a literature review and selected based upon the criteria that they: (1) are
applicable or easily adapted to MERIS/OLCI data, and (2) were specifically developed or calibrated for
inland waters.

Table 2. Summary of algorithms for retrieval of phycocyanin (PC) applicable to MERIS and OLCI
data (further details provided in Appendix A). Models are a function of remote sensing reflectance
(Rys), absorption by phycocyanin (a,c), absorption by water (ay), backscattering (by), absorption by
chlorophyll-a (a.,), mass-specific absorption by phycocyanin (a*c), absorption by phytoplankton (a,y),
total minus water absorption (at.w), absorption by coloured detrital matter (acpys) and absorption of
phytoplankton minus phycocyanin (4,1, ) at the respective wavelengths (A). Coefficient values, where
relevant, are provided within the table.

Model Formula(e) Reference(s)
Dekker93 PC (mgm™2) o 0.5 X [(Rrs(560) + Rys(665)) — Rys(620)] [31]
Dekker93_modified PC (mg m=) oc 0.5 [(Rys(560) + Rys(665)) — Rys(620)] = Rys(754) [23,31,76]

Schalles00 PC (mg m‘3) o % [32]
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Table 2. Cont.

Model Formula(e) Reference(s)

Simis05 ape(620) = [ggggg; X (2:0(709) + by) — by — aw(620)] x [28,37]

671 = (e X acyq(665)),
where 6 = 0.84 and ¢ = 0.24, and

-3\ a,:(620)
PC (mgm ) = afw(ﬁzo)'

where *,0(620) = 0.007 m? mg .
Hunter10_Duan PC (mg m~3) o [R,571(620) = Rrs™1(709)] x Rys(753) [22,23]

Y1y, (620)—a,;, (665)

Mishral3 apc(620) = =0 [39]

> ,
where 1 = a14(665)/ac,12(620) and o = a,c(665)/a,c(620), and
23\ ac(620)
PC (mg m ) = af,,f(szo) ’
where a*c = 0.0048 m? mg~!.

Mishral3_Simis As in Mishra13 except % = 0.007 m? mg~". [37,39]

— 620-560
PC Index (PCI) = (Rys(560) + gz5=2¢0 [40]
X[Rys(665) — Rys(560)]) — Rys(620)
PC (mg m_s) = aeb*PCI,
where a = 3.87 and b = 1154.
Qil4_Balaton As in Qil4 except calibrated to Lake Balaton, where [40]
a=21.26and b =-139.3.
Lil5 apy(A) = ar—w(A) —acpm(A) [41]
Aph—pe(A) = 1.1872 C1(A) ar—w (665) + C2(A)
Where C1 and C2 are wavelength dependent regression coefficients
outlined in Table A1 in Li et al. [41].
Ape (620) = Aph (620) - aph—pc(620)
3\ a,(620)
PC (mg m ) = a:,,c(620)
where a*pc(620) = 0.0046 m?mg .
Lil5_Simis As in Li et al. (2015) except a*,(620) = 0.0007 mzmg‘l. [37,41]
Liul8 Four band semi-analytical algorithm for PC [42]
— 1 04 0.6
(FBApc) = [Rh(ezo) T Rs(560) ~ Rr5(709)] X Rys(754)
PC (mgm=) = mxFBApc + B
where m = 462.5 and B = 22.598.

Liu18_Balaton As in Liul8 except calibrated to Lake Balaton, where m = 76.7 and B = 23.09. [42]

Qil4

The performance of each algorithm for PC retrieval from MERIS data was assessed using matchups
within 1 day of in situ PC measurements from 2010 and 2011 (n = 22; Table A1). The strength of the
relationship between the algorithm estimated values and measured values was evaluated using linear
least squares regression analysis. The agreement (goodness of fit) is reported by the coefficient of
determination (R%) and p value. Algorithm accuracy was quantified with measures of error, including
the Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Bias. RMSE and Bias
were also calculated in log space (RMSE),; and Biasjg, respectively), following recent recommendations
on error metrics for the performance assessment of satellite ocean colour data products [77]. The Median
Absolute Percentage Error (MdAPE) and Symmetric Mean Absolute Percentage Error (SMAPE) were
also quantified, as these metrics are less sensitive to outliers. Performance metrics were additionally
calculated for MERIS-retrieved PC values validated with in situ PC< 50 mg m~3 only. The formulae
for the error metrics are provided in Table 3.



Remote Sens. 2019, 11, 1613 12 of 50

Table 3. Formulae for error metrics, where M, O and n represent the modelled value, observed value
(from in situ measurements) and number of samples, respectively.

Error Metric Formula
RMSE Il (OM)
n
Bias L OM 1noi’Mi
MAPE 100x 1 xxr_ | 95|
MdAPE median[lOO x| Qs H
1 n O —M;|
SMAPE 100 x n Xzizl[m]

3. Results

3.1. Pigments and Cell Counts

Inter-annual variations in cell counts are shown from 2007 to 2011 for total phytoplankton and
cyanobacteria biomass, alongside Chl-2 and PC pigment data (Figure 3). Lake Balaton generally has
a spring (January—March) diatom bloom, which is indicated by the smaller peaks in phytoplankton
biomass and Chl-a. This is followed by a late summer (August-October) bloom in cyanobacteria, as
indicated by the larger peaks in phytoplankton biomass and Chl-a. Keszthely is the westernmost basin,
which has higher Chl-a concentrations than Tihany in the eastern basin. Both Keszthely and Tihany
show the same timing of peaks in phytoplankton abundance, although the late summer cyanobacteria
bloom is more prolific in Keszthely, with cyanobacteria biomass reaching nearly an order of magnitude
higher than that in Tihany.

3.2. Validation of Atmospheric Correction

MERIS remote sensing reflectance spectra atmospherically corrected with SCAPE-M_B2 were
compared to in situ measurements made with a system of HyperSAS radiometers, which were
resampled to the MERIS bands, assuming a Gaussian distribution for the SRFs. Scatterplots of data
from the same day as the MERIS overpass (22 August 2010) showed acceptable agreement at all 12
bands compared (RM'SE1Og < 0.205, Bia51Og < 0.197, MAPE < 58.7%, n = 7; Figure 4). Agreement was
poorest over the NIR wavelengths (Bands 10-12) and blue portion of the spectrum (Band 1), while
agreement was better for Bands 2-9 (RMSE,; < 0.113, Biasj,g < 0.107, MAPE < 28.5%). Agreement
declined when the entire dataset was considered (+4 day matchups; RMSElOg < 0.316, Biasjog < 0.152,
MAPE < 98.6%, n = 30; Figure 4), however errors were still lowest for Bands 2-9 (RMSE1og < 0.176,
Biasjog < —0.000348, MAPE < 37.7%). Despite the small same-day matchup dataset (n = 7), the
SCAPE-M_B2 atmospheric correction shows acceptable performance, particularly from 443 to 709 nm
(Bands 2-9).

MERIS SCAPE-M_B2 Rs(A) spectra are presented alongside in situ Rys(A) for all stations in
Figures 5 and 6. For same-day matchups (stations 16-22), MERIS bands generally fell reasonably
within the range of in situ Rys(A). However, for matchups out with the +1 day matchup window
(¢4 days), Rrs(A) was frequently under (stations 1-15) or overestimated (e.g., stations 29-30).

It is noted that there was a high standard deviation for MERIS Rs(A) in the NIR range for 3
stations (10, 14 and 24) because these 3x3 pixel windows were impacted by the adjacency effect (i.e.,
were influenced by land pixels). When these 3 stations were removed from the validation dataset as
outliers, the validation errors using the entire dataset were reduced by 51-84% in the 3 NIR bands
(Bands 10-12). Therefore, data from these stations were disregarded in this study. Thus, with this
improvement, the SCAPE-M_B2 model shows good performance across all MERIS bands with the
exception of Band 1. Importantly, Band 1 (413 nm) is not used in any of the PC models tested, and
therefore is not of concern for the purpose of this study.
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Figure 3. Inter-annual variations in (a,b) Chl-g, (c,d) phytoplankton biomass, (e,f) PC and (gh)
cyanobacteria biomass at Keszthely (westernmost basin) and Tihany or Siofdk (easternmost basin; data

from BLI routine monitoring).
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Figure 4. Validation scatter plots of MERIS R,s(A) atmospherically corrected with SCAPE-M_B2 as a
function of in situ Rys(1) measured by the HyperSAS for each of the 12 MERIS bands (a)—(i). In situ
HyperSAS Rys(A) was simulated to each MERIS band using the spectral response functions, assuming
a Gaussian distribution. Scatterplots include all stations with in situ data (n = 30), with same day
matchups shown in red (n = 7). Statistics correspond to the same day matchups only.
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Figure 5. MERIS R;s(A) spectra atmospherically corrected with SCAPE-M_B2 and in situ HyperSAS
radiometry R;s(A) data for stations 1-15. MERIS R;s(A) are the mean of a 3x3 pixel window with error

bars indicating standard deviation. HyperSAS R,s(A) are shown as a range, with lines indicating the

minimum to maximum Rys(A) recorded at each station.
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Figure 6. MERIS R;s(A) spectra atmospherically corrected with SCAPE-M_B2 and in situ HyperSAS
radiometry R,s(A) data for stations 16-30. MERIS R,s(A) are the mean of a 3x3 pixel window with error
bars indicating standard deviation. HyperSAS R,s(A) are shown as a range, with lines indicating the
minimum to maximum R,s(A) recorded at each station. Same-day matchups include stations 16-22
only, shown in red (n = 7). Note the different ranges for y-axis values.

3.3. Phycocyanin Algorithm Performance

The performance results for each algorithm tested are provided in Figure 7, with associated error
metrics shown in Table Al. Dekker93 retrieved PC concentrations with low accuracy (RMSEjog = 0.444,
Bias)og = 0.148, MAPE = 224%, MAAPE = 84.4%, SMAPE = 88.3%), however errors reduced markedly
when the fourth term was added (Dekker_93_modified; RMSE,g = 0.354, biasog = 0.0542, MAPE = 142%,
MAAPE = 69.3%, SMAPE = 72.3%). The Schalles00 band ratio algorithm retrieved PC concentrations
relatively well (RMSE),; = 0.370), however bias (biasj,; = 0.238) and percentage error metrics
(MAPE = 124%, MdAPE = 111%, SMAPE = 112%) were high due to poor performance for retrieval
over low PC values. The Simis05 algorithm retrieved PC concentrations with the lowest RMSE
(11.8 mg m~3), MAAPE (50.8%) and SMAPE (48.2%), with low values for the other error metrics
(RMSEjog = 0.272, bias)og = 0.147, MAPE = 77%) and a high coefficient of determination (R? =0.710,
p < 0.0001). The Hunter10_Duan12 algorithm-retrieved PC concentrations were strongly correlated
with in situ values, however errors were high as low concentrations were overestimated and high
concentrations were underestimated (RMSEj,g = 0.356, biasjog = 0.107, MAPE = 153%, MdAPE = 114%,
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SMAPE = 77%). The Mishral3 algorithm had the poorest relationship between retrieved and measured
PC, with an R? value of 0.00836 using a*pc(620) values from both Simis et al. [37] and Mishra et al. [39],
and this was mainly driven by poor prediction at higher PC concentrations. However, Mishral3_Simis
had the lowest RMSEjo, (0.246) and MAPE (61.2%) of all algorithms tested. Qil4 demonstrated
the poorest performance overall, with a poor relationship to in situ PC and markedly higher error
metrics (RMSE1Og =1.55, biaslog =1.38, MAPE = 6197%, MdAPE = 3512%, SMAPE = 158%), although
errors were reduced considerably when the coefficients for Qil4 were calibrated for Lake Balaton
(RMSEjog = 0.403, bias)yg = 0.0563, MAPE = 101%, MdAPE = 52.8%, SMAPE = 64.4%). While PC
retrieved with Lil5 had a high coefficient of determination (R2 = 0.716, p < 0.0001) and the lowest
bias (biasjeg = 0.0349), agreement was poor (RMSE,,; = 0.503, MAPE = 205%, MdAPE = 170%,
SMAPE = 141%) with negative PC retrieved for in situ concentrations <10 mg m~2. Furthermore,
using the value of a*,(620) from Simis et al. (2007) made little difference to algorithm performance
(Li15_Simis; RMSE|og = 0.523, bias),g = —0.147, MAPE = 150%, MdAPE = 131%, SMAPE = 136%).
Similarly, PC retrieved with the Liul8 semi-analytical algorithm had a strong correlation with in situ
PC (R? = 0.634, p < 0.0001), however errors were typically high (RMSE,, = 0.841, biasjog = —0.305,
MAPE = 184%, MdAPE = 122%, SMAPE = 134%) with low PC values poorly predicted. Calibration of
Liul8 coefficients to Lake Balaton did improve algorithm performance (RMSE)og = 0.354, bias),g = 0.088,
MAPE = 155%, MdAPE = 113%, SMAPE = 78.2%), however the model overpredicted for low PC
concentrations and underpredicted high concentrations.

All algorithms were additionally validated against same day matchups for PC concentrations less
than 50 mg m~2 (Table A2). These results indicated lower RMSE for all algorithms with the exception
of Qil4, however the rest of the error metrics typically increased for algorithms validated against
low PC concentrations. The main exception was Mishral3_Simis, which demonstrated improved
performance with lower RMSE (5.14 mg m~3), RMSE;g (0.224), MAPE (59.5%), MdAPE (36.3%) and
SMAPE (48.2%) when validated with low PC concentrations. This highlights the variable performance
of PC retrieval algorithms over different PC concentration ranges, and should be considered when
choosing an algorithm for use in a specific optical water type [78]. While the Mishra_Simis model
performed best for low values of PC, the Simis05 algorithm performed best with consistently low
errors for the full range of PC values in Lake Balaton. Thus, the Simis05 semi-analytical algorithm was
investigated in further detail for the remainder of this study.
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Figure 7. Algorithm performance for phycocyanin (PC) retrieval from MERIS data over Lake Balaton
from 2010 to 2011 using (a) Dekker93, (b) Schalles00, (c) Simis05, (d) Hunter10_Duan12, (e) Mishra13,
(f) Qil4, (g) Lil5 and (h) Liul8. Matchups are +1 day of in situ measurements (n = 22). Note the
different axis scale for Qil4 due to high retrieved PC values >1000 mg m™3. Negative retrieved PC
values are not shown in log scale for Schalles00, Mishral3 and Lil5. For algorithm details see Table 1
and Appendix A.

3.4. Chlorophyll-a Retrieval

The Gons05 algorithm for Chl-a retrieval is the predecessor and foundation for the Simis05
algorithm for PC retrieval, and therefore is considered here. More specifically, the Gons05 algorithm
estimates 4,;,(665), which is assumed to comprise absorption from Chl-a only (apn(665)= acyi,(665)).
acnia(665) is extrapolated to 620 nm and subtracted from the combined pigment absorption to obtain
apc(620) (see Appendix A for the Gons05 and Simis05 algorithm descriptions). Thus, errors in the
retrieval of acpa(665) using Gons05 will propagate through to the estimate of PC. It is beyond the
scope of this study to comprehensively test Chl-a algorithms, and moreover, this has recently been
done in turbid, optically complex waters elsewhere (e.g. [54,79-81]). Thus, only the Gons05 algorithm
is considered here purely as a basis for the best performing PC algorithm, Simis05.

Chl-a was retrieved from MERIS after estimating the absorption coefficient of phytoplankton
at 665 nm. At %1, 3- and 7-day matchup intervals, the Gons05 algorithm retrieved Chl-az with
good performance using all datasets for validation, however MERIS-retrieved values typically
overestimated measured values (RMSE)o, = 0.369-0.394, Biasjog = 0.296-0.329, MAPE = 132-151%,
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MJAPE = 74.2-86.4%, SMAPE = 63.0-68.5%; Figure 8; Table A3). There was also increased scatter
in the relationship between retrieved and measured values at Chl-a concentrations <10 mg m~3
(£7 days: RMSE|og = 0.476, MAPE = 208%) compared to higher Chl-a concentrations, >10 mg m~3
(£7 days: RMSE),; = 0.384, MAPE = 142%). Furthermore, retrieved Chl-a values validated with
surface samples from August 2010 only had higher R? values (R? = 0.906-0.943, p < 0.0001) and better
agreement (RMSE,g = 0.185-0.203, Biasjog = 0.167-0.199, MAPE = 50.0-58.9%, MdAPE = 50.6-52.7%,
SMAPE = 38.1-45.0%; Table A4) than those validated with integrated samples routinely taken by
BLI (R? = 0.723-0.810, p < 0.0001, RMSE,o, = 0.331-0.337, Biasjog = 0.249-0.271, MAPE = 107-112%,
MAAPE = 61.5-76.5%, SMAPE = 55.7-59.9%; Table A5) or surface samples from the KdKVI dataset
(R? = 0.784-0.786, p < 0.0001, RMSE),; = 0.416-0.421, Biasjog = 0.352-0.355, MAPE = 165-169%,
MJAPE = 101%, SMAPE = 72.7-73.3%; Table A6). When retrieved Chl-a values were restricted to
those stations also used for PC validation, there was better agreement between MERIS-retrieved
and in situ Chl-a concentrations (RMSE, = 0.211-0.241, Bias),g = 0.174-0.216, MAPE = 55.9-70.0%,
MAAPE = 50.1-51.9%, SMAPE = 39.2-48.0%; Figure 9 and Table A7).

Gons05 retrieved Chl-a values were also partially validated with phytoplankton counts (Figure 10).
There was good agreement between the Chl-a values retrieved from MERIS and total phytoplankton
biomass, with little difference in the R? values for +1 (R* = 0.667, p < 0.001), +3 (R? = 0.698, p < 0.001) and
+7 (R? = 0.636, p < 0.001) day matchups (Table A3). There was no marked difference in agreement for
validation using surface (August 2010) versus integrated (BLI) samples (Tables A4 and A5, respectively).
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Figure 8. Gons05 retrieval of Chl-a from MERIS at matchups with measured Chl-2 within (a) +1 day, (b)
+3 days and (c) +7 days. Retrieved values shown are mean pixel values within two standard deviations.
Linear regression results shown are for all data. Dashed line is 1:1.
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Figure 9. Gons05 retrieval of Chl-a from MERIS at matchups with measured Chl-a within (a) +1 day,
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Retrieved values shown are mean pixel values within two standard deviations. Linear regression
results shown are for all data. Dashed line is 1:1.
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Figure 10. Gons05 retrieval of Chl-a from MERIS at matchups with phytoplankton biomass from
(a) +1 day, (b) +3 days and (c) +7 days. Retrieved values shown are mean pixel values within two
standard deviations. Linear regression results are shown for all data.

3.5. Phycocyanin Retrieval

Phycocyanin concentrations were retrieved from MERIS data after estimation of a,;,(620), and were
validated with measured concentrations from the August 2010 campaign and BLI routine monitoring
data. The PC concentrations retrieved using Simis05 showed good agreement with the in situ data
for matchups within 1, 3 or 7 days of the overpass (RMSE|og = 0.261-0.273, Bias),g = 0.0218-0.147,
MAPE = 63.0-77.0%, MdAPE = 49.5-50.8%, SMAPE = 48.2-49.8%; Figure 11 and Table A3). At all three
time windows, retrieved PC values were a better fit with August 2010 surface samples for matchups
+7 days (R? = 0.718, p < 0.0001; Table A4) than those validated with integrated samples routinely taken
by BLI (R? = 0.580, p < 0.01; Table A5). Determination coefficients were high for matchups with BLI
data at +1 and 3 days (R? = 0.910, p < 0.001), however this is likely driven by the small sample size at
these windows (n = 8). Overall, PC retrieved at all three time windows showed better agreement with
the August 2010 surface samples (RMSE|og = 0.246-0.254, Biasjog = 0.042-0.189, MAPE = 59.3-71.6%,
MAAPE = 52-61.2%, SMAPE = 49.4-49.9%) than the BLI-integrated samples (RMSE,,; = 0.301-0.324,
Biasjog = —0.026-0.100, MAPE = 71.7-86.4%, MdAPE = 33.1%, SMAPE = 45.4-50.7%). As with Gons05,
the Simis05 algorithm did not accurately retrieve PC values below approximately 5 mg m~2, and this
was most noticeable with the greatest matchup window of +7 days (PC < 5 mg m™~: RMSE]g = 0.366,
Biasjog = 0.284, MAPE = 126%, MAAPE = 69.7%, SMAPE = 58.7%; PC > 5 mg m™>: RMSE, o, = 0.253,
Biasjog = —0.0244, MAPE = 51.9%, MdAPE = 45.6%, SMAPE = 48.2%).

100 - 100 ¢ — 100 -
(a) 1 day A0 t (b) 3 day 0 (c) 7 day /‘6
= A A O r A A D A 4 O
E Lk 10 im0 Y -
o - s 4,'
= .’ L &
o A A © A
g o q & q o q
g 1w & - 10 + S 10 4 B e
S A LAD F A A KO A A KGOA 4
'g A O" Ak OBLI [ A A O‘ A‘Ai A A O,,A “‘:‘
g . AAug-10 ; -~ 5 2
» y=0.722x +8.95 r y=0777x +7.44 y = 0.443x + 9.41
o R? = 0.710, p<0.0001 L o Rz = 0.663, p<0.0001 S R? = 0.433, p<0.0001
g RMSE = 11.8 mg m™ RMSE = 11.5 mg m™2 F & RMSE =18.3 mgm?
n=22 n=30 n=40
14k ‘ 14 1.3 !
1 10 100 1 10 100 1 10 100

Measured PC (mg m?)

Figure 11. Simis(05 retrieval of PC from MERIS at matchups with measured PC from (a) =1 day,
(b) £3 days and (c) +7 days. Retrieved values shown are mean pixel values within two standard
deviations. Linear regression results shown are for all data. Dashed line is 1:1.

PC concentrations retrieved from the SimisO5 algorithm were also partially validated with
measured cyanobacteria biomass (Figure 12). There was significant scatter around the linear regression,
however PC estimates were significantly related to cyanobacteria counts with R? values from 0.462 to
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0.525 (p < 0.001) depending on the temporal window used for matchup. There was no evidence of
degradation in the relationship between retrieved PC and cyanobacteria biomass, with correlation
coefficients actually improving from +1 to 7 days. Although, this is perhaps simply due to the greater
number of matchups at +3 and +7 days and the increased data range as compared to +1 day. It should
also be noted that determination coefficients improved very slightly when a linear regression was
performed using retrieved PC as a function of combined cyanobacteria and cryptophyte biomass
(R? = 0.489-0.554, p < 0.0001). The relationship between retrieved Chl-a and phytoplankton biomass
was stronger than the relationship between retrieved PC and cyanobacterial biomass at all matchup
intervals (see Table A3).
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Figure 12. Simis05 retrieval of PC from MERIS at matchups with cyanobacteria biomass from (a) 1 day,
(b) £3 days and (c) +7 days. Retrieved values shown are mean pixel values within two standard
deviations. Linear regression results are shown for all data.

An example time-series of the mapped PC products produced using the Simis05 algorithm is
shown in Figure 13 for 2008. Retrieved PC concentrations show a significant peak in late summer
during the cyanobacteria bloom, from mid-August into September. A gradient in PC is indicated
across the lake, with the highest concentration generally in the western basins. It is also noted that a
smaller spike in estimated PC is shown in western basins in the image for 26 May 2008 (Figure 13),
however this is not mirrored by the cyanobacteria cell counts (Figure 3g,h).
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Figure 13. Time series of estimated PC from MERIS (Simis05 algorithm) for May-September 2008.

3.6. IOP Retrieval

The Gons05 semi-analytical algorithm was deconstructed and the component parts were validated
using the IOP measurements from the August 2010 sampling campaign on Lake Balaton. The Gons05
algorithm retrieves a,;,(665), which is assumed to comprise Chl-a absorption only (a,,(665) = acy1,(665)),
using a correction factor, y [28,34]. a,;,(620) is then extrapolated from a,,(665), using a correction factor,
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&, which is then used to estimate PC concentration using the Simis05 algorithm (see Appendix A for
Gons05 and Simis05 algorithm descriptions).

This study compared the retrieved a,;,(665) against those determined using the filter-pad absorption
measurements (Figure 14a). Although the coefficient of determination for least squares linear regression
was high (R? = 0.836, p < 0.0001), the retrieved values for a,,(665) were found to overestimate the
measured a,;,(665) by a factor of 2 with large errors (RMSE,g = 0.444, Biasj,g = 0.430, MAPE = 178%,
MAAPE = 175%, SMAPE = 90.6%; Table A4). Summed absorption by Chl-a and PC at 620 nm was also
retrieved with Simis05 and compared to measured a,;(620) from August 2010 (Figure 14b). Again,
the coefficient of determination was high (R? = 0.834, p < 0.0001), however the values retrieved with
Simis05 were found to overestimate measured pigment absorption by a factor of 3 (RMSEjog = 0.645,
Biasjog = 0.635, MAPE = 346%, MdAPE = 332%, SMAPE = 123%; Table A4). Similarly, the bio-optical
models of Mishral3 and Li15 also overestimated a,,(A) (Figure A1), and by(A) was poorly represented
by both models for same-day matchups (Figure A2). However, the Mishral3 and Lil5 estimates of
apn(A), especially Lil5 retrieved a,,(665), showed better agreement with in situ data than Simis05. It
is important to note, however, that filter-pad absorption measurements can be subject to significant
errors due to unresolved issues with path-length amplification [82], therefore some of this error may
be a result of the method itself.
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Figure 14. Retrieval of (a) 4,;,(665) and (b) a,;,(620) using Simis05 for 22 August 2010 with matchups +
4 days (n = 29).

The Gons05 and Simis05 algorithms estimate by,(A) from reflectance at 778.75 nm based on the
assumption that it is spectrally invariant over the wavelengths used in the algorithm [33]. This
assumption was tested using b,(A) coefficients measured at three wavelengths with an ECO-BB3 at
35 stations during the August 2010 sampling campaign (Figure 15a). Backscattering was highest at
470 nm, with lower coefficients at 532 and 650 nm. Measured b, (1) coefficients at 650 nm were then
compared with the retrieved by(A) coefficient from MERIS band 12 (778.75 nm) using the image from
22 August 2010 (Figure 15b). by(650) was chosen because it lies between the 620 nm and 665 nm bands
used in the Gons05 and Simis 05 algorithms. If backscattering was spectrally neutral and the algorithms
were accurately retrieving the by(A) coefficient, a correlation between MERIS-retrieved by,(778.75) and
measured b, (650) may be expected. However, there was no linear relationship between the measured
and retrieved by(A) coefficients (R? < 0.001, p > 0.5; Table A4). Similarly, b;,(1) was poorly retrieved by
the bio-optical models, Mishral3 and Lil5 (Figure A2). The assumption of spectral neutrality may
be reasonable based on the flat trend between 532 and 650 nm (Figure 15a), although it is unknown
how by (A1) varies between 650 and 780 nm. In general, the retrieved b,(A) coefficients also showed
significantly less variation across the stations sampled in Lake Balaton than was actually measured.
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Figure 15. (a) Spectra of backscattering at three wavelengths as measured by the BB3 during the August
2010 field campaign (n = 35) and (b) MERIS-retrieved b,(778.75) using Simis05 with matchups of in situ
measured by(650) + 4 days (n = 29).

3.7. Time Series Analysis

The pigment concentrations retrieved from MERIS (+ 7 days) using Gons05 and Simis05 were
compared alongside the available time series of pigment and cell biomass data from the BLI dataset
(Figure 16). Generally, MERIS retrieved concentrations of Chl-a and PC followed the interannual patterns
of in situ Chl-a, phytoplankton biomass and cyanobacteria biomass. However, retrieved pigments
tended to match the variability better in Keszthely (Figure 16a,c,e) than in Tihany (Figure 16b,d,f).
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Figure 16. MERIS-retrieved concentrations of Chl-a (a—d) and PC (e—f) over the time series of in situ measurements of Chl-a (a-b), phytoplankton biomass (¢—d) and
cyanobacteria biomass (e—f) at Keszthely (westernmost basin) and Tihany (easternmost basin).
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4. Discussion

4.1. Algorithm Performance

The Gons05 and Simis05 algorithms retrieved pigment concentrations (Chl-a and PC, respectively)
in Lake Balaton with acceptable accuracy (see Table A3 to Table A7 in Appendix B for a summary of
retrieval parameters and errors). Using +1 day matchups, Chl-a (RMSE,,g = 0.394, Biasjog = 0.329,
MAPE = 151%, MdAPE = 86.4%, SMAPE = 68.5%) and PC concentrations (RMSEj,; = 0.272,
Biasjog = 0.147, MAPE = 77%, MdAPE = 50.8%, SMAPE = 48.2%) could be retrieved with from
MERIS, thus this study can attest to the good performance of Gons05 and Simis05 algorithms for
pigment retrieval in Lake Balaton.

Several models for PC retrieval from MERIS data were compared for Lake Balaton, and of
these Simis05 provided the most accurate PC estimates over the full dataset. The other empirical,
semi-empirical and semi-analytical models (Dekker93, Schalles00, Hunter10_Duan and Liul8) had
generally larger errors than Simis05 or the bio-optical models, with the Qi14 model performing
the poorest overall (Table Al). However, errors could be markedly reduced by using site-specific
adaptations of each model, for example by the addition of an additional term to account for absorption
by water (Dekker92_modified) or calibration of model coefficients with the 2010-2011 Balaton dataset
(Qil4_Balaton or Liul8_Balaton).

Lower error metrics were observed for Simis05 and the bio-optical models (Mishral3 and Li15).
However, although a stronger linear relationship was found between MERIS-retrieved and in situ PC
using Li15, this model significantly underestimated PC values <10 mg m~> and overestimated for
concentrations ~10-100 mg m~. The Li15 model was developed using three reservoirs in Indiana
(Eagle Creek, Geist and Morse Reservoirs), where PC concentrations ranged from 0.73 to 370 mg m~3,
while the PC validation dataset for Lake Balaton varied over a narrower range (2.34 to 113 mg m=>).
However, the discrepancy in performance using Lil5 is more likely related to the high concentration of
inorganic particles in Lake Balaton (in August 2010, 3-30 mg L~ and comprising up to 91% of the
total suspended matter or TSM), therefore the model coefficients developed for the reservoirs may not
be appropriate in Lake Balaton. Although TSM concentrations were relatively similar between the
Indiana reservoirs and Lake Balaton, we are unaware as to what fraction of the TSM in the Indiana
reservoirs was comprised of organic or inorganic particles and cannot therefore compare. In contrast,
retrieved PC concentrations from the Mishral3 algorithm had no significant relationship with in situ
PC, although agreement with in situ PC improved greatly for lower PC concentrations (<50 mg m™).
In fact, Mishral3_Simis demonstrated the lowest errors across the board when validated with the
low PC dataset only (Table A2). This is unexpected as Mishral3 was developed using a training set
from hypereutrophic aquaculture ponds (Chl-a = 59.4-1376.6 mg m~3; PC = 68.1-3032.5 mg m~2). The
Mishral3 model is based on the well-validated QAA for Chl-a retrieval in ocean waters [83], and uses
physics-based relationships to invert reflectances into absorption and backscattering properties of the
optically active substances. In this way, the Mishral3 model should be adaptable to variable OWTs, and
indeed, it performed well in Lake Balaton where PC concentrations were <50 mg m~3. However, further
work is needed to test the applicability of Mishral3 at lower cyanobacterial biomass and particularly
in conditions representative of the early stages of bloom development. It is also noted that both the
Mishral3 and Lil5 inversion algorithms were also developed using in situ reflectance measurements
and recommended different methods for conversion of above surface to below surface R,s(A).

Ultimately, the Simis05 algorithm was found to outperform both simple empirical algorithms
and more complex inversion algorithms over full the range of PC concentrations found in Lake
Balaton (Table A1). Recent studies on Chl-a retrieval have recommended a return to simple empirical
models [84], however our results suggest semi-analytical approaches are more accurate for PC retrieval.
Although there were also differences in the bio-geo-optical properties of the lakes used to calibrate
Simis05, Lake Loosdrecht and Lake IJsselmeer are noted to have generally high absorption by non-algal
particles (up to 50% of water constituents), which is comparable to that in Lake Balaton (up to 40%) [51].
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Therefore, it may be that semi-analytical and analytical models for PC retrieval are more appropriate
for use in lakes with high concentrations of suspended inorganic particles.

4.2. Biomass Retrieval

The estimated PC and Chl-a concentrations from MERIS were also partially validated using
microscopy-based estimates of cyanobacteria and total phytoplankton biomass, respectively. PC and
Chl-a retrieval with Gons05 and Simis05 was a good prediction of cell biomass measured from surface
and/or integrated samples for %1, 3- and 7-day temporal windows (R? > 0.4, p < 0.01; Tables A3-A5).
The coefficients of determination were lower for the linear regressions between retrieved pigments
and cell biomass (R? = 0.462-0.698, p < 0.0001) in contrast to measured pigments (R? = 0.433-0.803,
p < 0.0001), when using the complete dataset for validation (Table A3). This was expected due to the
variability in PC cell quotas among freshwater cyanobacteria taxa [9]. The exception to this was for the
+7-day PC matchups, where MERIS-retrieved PC was explained marginally better by cyanobacteria
biomass (R? = 0.494, p < 0.0001) than by measured PC (R? = 0.433, p < 0.0001).

These results demonstrate that satellite retrieved PC concentrations can be used as an indicator of
cyanobacterial biomass, and allows the use of cyanobacterial cell counts for partial-validation of the PC
algorithms. Lake Balaton, like many other lakes, has longer and more complete data on phytoplankton
cell counts than on PC measurements. However, the relationship between PC and cyanobacteria
biomass in Balaton may be seasonally variable and largely dependent on nutrient availability. It is also
important to note that this strong relationship may not be found in other lakes, where intracellular PC
content in cyanobacteria can vary in response to environmental stressors, such as nitrogen limitation
or increased irradiance (photoacclimation). Recently, cell counts were successfully retrieved from
numerous lakes in the eastern US, with a significant positive correlation between MERIS-retrieved and
in situ cyanobacteria cell counts for matchups within 7 days of MERIS overpass [85]. Although both
Lunetta et al. [85] and the present study found significant scatter around this relationship, both studies
confirm the capability of remote sensing for monitoring cyanobacteria cell counts in lakes.

Additionally, there was little variation in accuracy at the three matchup ranges when validating
with cell counts, with no apparent degradation in PC or Chl-a retrieval capability within +7 days
of image acquisition. It was noted, however, that the relationship between retrieved Chl-a and
phytoplankton biomass was better than that for retrieved PC and cyanobacterial biomass. This is
perhaps because PC may be more spatially variable within a pixel. Although in its time MERIS
provided the best available resolution for satellite application to lakes, the pixel size (300 m) is still
quite large given that cyanobacteria blooms can vary markedly over a few metres or hours [86].
Therefore, it is likely the time difference between in situ samples and the MERIS overpass causes
this discrepancy. Furthermore, the validation approach for PC in inland waters requires further
investigation, as application of methods from ocean and coastal waters (e.g., use of a 3x3 pixel window)
may be unsuitable for use in heterogeneous waters.

4.3. Temporal Window for Validation

When the complete in situ pigment dataset is considered, Chl-a retrieval deteriorated only slightly
over the +1 to 7-day windows, with only a small reduction in errors (Figure 8; Table A3). RMSEjqg¢
ranged from 0.369 to 0.394, while MAPE ranged from 132 to 151% for the three temporal windows,
confirming that the Gons05 algorithm can retrieve Chl-a concentrations in Lake Balaton within +7 days
of MERIS overpass with acceptable accuracy. When considering the KdKVI surface Chl-a dataset only,
there was no notable decrease in retrieval accuracy (Table A7). This is simply due to the consistently
large sample size for the KAKVI validation dataset, which varied little with increasing temporal
windows (n = 105, 113 and 113 for +1, 3 and 7 days, respectively). As with Chl-a, PC concentrations
were retrieved with comparable accuracy at all three time windows when the full dataset is considered
(Figure 11; Table A3). Surprisingly, the lowest errors were typically for the largest temporal window of
+7 days, however validation with same day in situ data yielded the highest R? of 0.710 (p < 0.0001)
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which deteriorated to R? = 0.433 (p < 0.0001) at +7 days (Table A3). This limited change in pigment
retrieval over time may be simply driven by the increase in sample numbers with the increase in
temporal window (Table A3). Specifically for PC, all matchups with MERIS were from August and
October, typically during a cyanobacteria bloom (Figure 16). For this dataset, the cyanobacteria
population was typically formed of Nj-fixing species (e.g., Cylindrospermopsis raciborskii) which are
known in Balaton to form persistent planktonic populations that can last up to 2 months [87]. In
these conditions, cyanobacteria biomass is unlikely to change significantly over a 7-day period, which
could explain the minimal difference in PC retrieval capability over the range of time windows. This
indicates that there is little impact of the matchup time window for MERIS retrieval of PC during late
summer cyanobacteria blooms (August-October), however in non-bloom conditions with lower and
more variable concentrations of pigments, a shorter time window is optimal. Therefore, the Simis05
algorithm is likely limited to retrieve PC at larger time intervals (~7 days) only during cyanobacteria
blooms, whereas reliable retrieval of PC during non-bloom conditions should be no more than +1 day
from the satellite overpass.

4.4. Impact of Dataset and Sampling Methods on Validation

MERIS-retrieved Chl-a from the Gons05 algorithm validated with the August 2010 surface samples
only had the highest accuracy, with the lower errors for +1 day matchups than when validated with
either the BLI or KAKVI datasets (Tables A4—-A6). The August 2010 Chl-a samples were intentionally
collected at the surface during the dedicated field campaign for the purpose of satellite validation,
and it is therefore unsurprising that these data align well with MERIS-retrieved Chl-a. PC was also
retrieved with the highest accuracy within +1 day when validated with August 2010 surface samples
only as compared to BLI-integrated samples only (Tables A4 and A5). As sunlight penetration in turbid
lakes can be very limited, it is expected that surface samples would be more comparable with satellite
retrieved values. We found this to be the case in Lake Balaton, where low Secchi depths indicated
turbid conditions (e.g., August 2010 mean Secchi depth = 0.74 m).

4.5. Sources of Error Explained with IOP Measurements

In the case of both Chl-a and PC retrieval, concentrations were overestimated by the models, and
this is most notable for retrieval of Chl-a. This can be explained, in part, due to the application of
constant 2%, (665) and a*,,c(620) coefficients for calculating Chl-a and PC concentrations, respectively.
These coefficients are taken from previous studies [34,37] and may not be representative of the
phytoplankton community in Lake Balaton during the period of analysis, which was often dominated
by the subtropical cyanobacterium C. raciborskii. The specific absorption coefficient (or absorption
efficiency) may also vary across the lake or between phytoplankton communities due to differences in
pigmentation, physiology, cell size and pigment packaging effects [88]. However, pigment packaging
has a stronger impact on a*,;, in the blue wavelengths with more consistent a*,; values in cyanobacteria
over the red portion of the spectrum [89], therefore pigment packaging is unlikely to be the cause
for variability in a*,(665). The mean measured a*,,(665) during August 2010 in Lake Balaton was
0.0075 m? mg_1 Chl-a (+0.0015), a much lower value than employed by Gons et al. [34] (0.0139 m? mg_1
Chl-a). Subsequent studies have also investigated measurement of a*,.(620) in laboratory algal cultures
using a timed bleaching procedure, although the authors deemed this method unsuitable for mixed
phytoplankton communities and thus it was not employed in this study [89]. More recently, a*,:(625)
was estimated by subtracting the effect of chlorophylls at 625 nm, and a*,.(625) was found to vary
widely for low PC concentrations (<10 mg m~2) [90]. The phycocyanin specific absorption coefficient
published in Simis and Kauko [89] was a*(622) = 0.0071 m? mg_1 PC and the range recommended
by Yacobi et al. [90] was a%,c(625) = 0.007-0.008 m*> mg~! PC, which both agree with the value of
0.007 m? mg~! PC recommended in Simis et al. [28,37] and was adopted in this study. However,
given the lower value of a*;,(665) measured in Lake Balaton, it is plausible that the published data for
a*yc(620) may also misrepresent the phytoplankton community in Lake Balaton.
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The error in the Gons05 and Simis05 algorithms is further explained by the retrieval of the
phytoplankton absorption coefficients. a,,,(665) was overestimated compared to the measured values
from the August 2010 sampling campaign (Figure 14). However, because the standard algorithm
uses a higher a%,(665) coefficient (0.0139 m? mg_l Chl-q) than that measured in Lake Balaton
(mean = 0.0075 m? mg~! Chl-a), the errors effectively cancel out, resulting in relatively good agreement
between the measured and MERIS-retrieved Chl-a concentrations. Substitution of the a%,,(665)
coefficient measured in Lake Balaton (August 2010) into Gons05 actually results in greater errors,
with Chl-a overestimated by a factor of 1.9 for matchups +7 days (RMSE,,; = 0.621, Biasjog = 0.579,
MAPE = 347%; compare with results in Table A3). In fact, for the August 2010 dataset only, substitution
of the Balaton a%,;,(665) results in an even greater overestimate by a factor of 2.5. Thus, using the
site-specific a*,(665) measured in Balaton does not compensate for the fundamental issue with
the Gons05 and Simis05 algorithms, i.e., overestimation of aph(665), and results in a poorer Chl-a
estimate. Mishral3- and Lil5-retrieved a,;,(1) values were also overestimated, however these models
still performed better for ay;(1) retrieval than Simis05 (Figure A1). Given the poorer performance
of Mishral3 and Lil5 for PC retrieval, it suggests that these bio-optical models have errors in other
model components which propagate to the PC estimates. It is also important to note that Lake Balaton
is subject to changes in the relative contributions of IOPs as a result of wind-driven resuspension
events [51]. However, MERIS-retrieved a,;,(665) and a,;,(620) on the sampling date following a wind
event (26 August 2010, Stations 31-35) showed no difference in performance from the rest of the dataset.
Thus, this suggests that the errors within the application of the Gons05 and Simis05 algorithms to Lake
Balaton lie within the estimates of the IOPs (4,,(4) and b,(A)) rather than the SIOP (a%y,(1)).

The by(A) coefficient was estimated by the Simis05 algorithm at MERIS band 12, or 778.75 nm,
as in Gons [33]. During the August 2010 campaign, backscattering was measured by an ECO-BB3,
which does not measure explicitly at this wavelength (778.75 nm), however it is useful to examine
the assumptions that are also employed in the Simis05 semi-analytical algorithm. From the in situ
measurements, it was found that there was little difference in by(A) across the green and red wavelengths
(Figure 15a), therefore it is a valid assumption that backscattering is spectrally neutral [33]. However,
it was also shown that there is no significant linear relationship (R? < 0.001, p > 0.5) between b,(A)
measured in situ and that estimated with Simis05 (Figure 15b), and a similar result was found for
Mishral3 and Lil5 retrieved by(A) (Figure A2). Although the in situ backscattering is measured at a
different wavelength, it is reasonable to expect to see a relationship between retrieved and measured
bp(A). As this is not the case, the b,(A) estimation by the Simis05 algorithm is a potential source of error
to PC retrieval from MERIS.

The measured particulate b,(532) in Lake Balaton during August 2010 varied over a wide range from
0.06 t0 0.34 m~!, with a high mean ratio of backscattering to total suspended matter (b,(532):TSM = 0.016).
This was mainly due to the high percentage (~40-90%) of inorganic mineral sediments that were
frequently resuspended in Lake Balaton. The distinctive biogeochemical composition and optical
properties of Lake Balaton may then explain why the backscattering coefficient is not estimated well
by the Gons05 and Simis05 algorithms. However, it is also worth noting that there were greater errors
in the atmospheric correction of MERIS data for band 12, R,s(778.8) (see Figure 41), the band at which
Gons05 and Simis05 estimate b,. Therefore, the atmospheric correction may also contribute to the poor
estimation of by, by the Gons05 and Simis05 algorithms.

When measured b,(650) is substituted into the Gons05 algorithm for each station in the August
2010 dataset, Chl-a is overestimated by a factor of 2.8 for a +7-day matchup window (RMSE,, = 0.376,
Biasjog = —0.341, MAPE=133%). Thus, as with substitution of a*,;,(665), applying the measured b;,(650)
actually results in higher errors than Chl-a retrieval using estimated b, at MERIS band 12 and does not
improve the algorithm (see Table A4). In the case that b,(1) was measured at the same wavelength
as MERIS band 12 (778.75 nm), the retrieved Chl-a concentrations would perhaps be more precisely
compared. However, adjustment of the by,(A) coefficient does not seem to appreciably alter the retrieved
Chl-a concentrations from Gons05, or at least not as significantly as with the modification of a*,,(665).
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4.6. Applicability of Pigment Algorithms

Maps of MERIS-retrieved PC concentrations showed a peak in the western basins (26 May 2008;
Figure 13), however this was not mirrored by cyanobacteria cell counts for this date (Figure 3g-h). It is
known that algae containing chlorophyll b or c (1+2) also have a reflectance minimum (absorption peak)
around the same wavelength as PC absorption (~640 nm). In particular, laboratory measurements of
diatom cultures have reported a reflectance minimum (absorption peak) around the same wavelength
as PC absorption (~640nm), possibly related to the high concentrations of chlorophyll ¢ (1+2) found
in diatoms [30]. Thus, it could be that in large enough numbers (i.e., a diatom bloom), the pigments
of other algal groups are incorrectly interpreted by the Simis05 algorithm as PC. Indeed, BLI routine
monitoring data indicate an increase in total diatom biomass in Keszthely (western basin) between
7 May and 16 June 2008 (100-759 mg m~2) while nitrogen-fixing cyanobacteria biomass was low
(0-60 mg m~3), therefore this diatom peak may be responsible for the false positive for PC retrieval.
Similarly, Simis et al. [37] found that PC was significantly overestimated in the presence of chlorophyll
b and fucoxanthin, particularly for low concentrations of PC. This suggests that the Simis05 algorithm
performs better for retrieval of PC during low diatom abundance.

There was also a distinct lower limit for MERIS-retrieved pigment concentrations (Figure 8;
Figure 11). This is perhaps most noticeable on the PC plots, and especially in the figures for +7-day
matchups. This may suggest differences in the water sampling methods, where the routine monitoring
data for Chl-a is derived from to depth-integrated samples but the August 2010 Chl-a data were
determined from surface samples. The effect is a much higher accuracy for the August 2010 samples as
opposed to the routine monitoring (Figure 8). Additionally, the euphotic depth (Z,,) in Lake Balaton in
August 2010 was typically less than 1.7 m. Thus, it is not surprising that MERIS-retrieved pigment
estimates show stronger agreement with surface rather than depth-integrated pigment concentrations.

Quite possibly, this minimum in retrieved pigments is due to limitations of MERIS itself or the
Gons05 and Simis05 algorithms. The retrieved pigment concentrations from Gons05 and Simis05
correspond well with the interannual patterns of in situ Chl-a, phytoplankton biomass and cyanobacteria
biomass (Figure 16). However, it was noted that the most accurate retrieved concentrations were in
the western basin, where Chl-a is generally higher (<60 mg m~3) than in the east of Lake Balaton
(Tihany), where Chl-a levels are predominantly lower (<20 mg m~). The Gons05 algorithm may
therefore not be appropriate for Chl-a retrieval in waters with low phytoplankton biomass (e.g., where
Chl-a <10 mg m~3). This is further supported by the poor accuracy and high scatter for retrieval when
Chl-a is low (Figure 8). Gons et al. [91] found that MERIS-retrieved Chl-a values were poorly predicted
by Gons05 at Chl-a <5 mg m~ in oligotrophic lakes, which was attributed to weak emerging light flux,
masking of the red Chl-a absorption peak by absorption of water, and an increased influence of Chl-a
fluorescence that is not taken into account by the algorithm. Dominguez Gomez et al. [68] applied a
different version of the Normalised Difference Chlorophyll Index (NDCI) for values of Chl-a greater or
less than a threshold of 17 mg m~3, as water-leaving reflectance is very low for Chl-a<17 mg m~. This
is further corroborated by a more recent study where the fluorescence line height (FLH) algorithm
retrieved Chl-a from MERIS most accurately at higher Chl-a concentrations [54]. It is therefore possible
that Gons05 and Simis05 algorithms have limited applicability. These algorithms were designed for
and perform optimally in eutrophic lakes as opposed to mesotrophic or oligotrophic waters, and are
insensitive to changes in Chl-a below 10 mg m~>. In addition, PC retrieval with Simis05 may also
be limited by interference of chlorophyll-b, particularly when cyanobacteria biomass is low and the
community is dominated by other eukaryotic phytoplankton groups, and this could be a factor in the
overestimation of PC when Chl-a is low [37]. Indeed, in this study the Mishral3_Simis algorithm was
found to outperform Simis05 at low PC concentrations (Table A2). It may be that the Simis05 and
Gons05 algorithms are better considered as part of an ensemble approach, as a single algorithm is
unlikely to work in all conditions, even within a single lake system.
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5. Conclusions

With the recent launch of ESA’s Sentinel-3 Ocean and Land Colour Instrument (OLCI), it is an
opportune time to explore the historic archive of data from satellite instruments, such as MERIS,
to investigate and improve retrieval of inland water quality parameters. In recent years, there has
been vast improvement to both the availability of ESA instrument data (e.g.,, MERCI and EUMETSAT
systems) and the tools for data analysis (e.g., Beam, SNAP), and this has allowed for corresponding
advances in the remote sensing of inland waters. There have also been developments in the atmospheric
correction of MERIS data, including this study as the first instance of implementing SCAPE-M_B2 for
the correction of MERIS FRS data. Further measurements of the optical properties of inland waters and
the corresponding development of bio-optical models have also been advanced with the accessibility
of MERIS and OLCI data and associated analytical tools.

Specific to this study, the Simis05 and Gons05 semi-analytical algorithms performed well to
retrieve PC and Chl-a pigment concentrations in Lake Balaton, respectively. Phytoplankton and
cyanobacteria biomass were also retrieved, albeit to a lesser degree of accuracy, demonstrating a critical
step towards the monitoring medium-term changes in cyanobacteria abundance in lakes. Accuracy for
both Chl-a and PC retrieval was fairly consistent within +7 days of the MERIS overpass, however it
remains imperative that samples for pigment analysis are collected as temporally close as possible to
the date and time of the satellite overpass. Additionally, pigment retrieval from Gons05 and Simi05
algorithms matched the interannual patterns in Chl-a and biomass, although in situ data were better
predicted in the more eutrophic western basin than the meso- to oligotrophic eastern basin of Lake
Balaton. Although Gons05 and Simis05 performed well in Lake Balaton, in situ IOP measurements
crucially highlighted the sources of error in estimates of a,,(A) and b,(A), precursors to pigment retrieval
in these algorithms. Estimated by(A) was found to be unrelated to measured by(A), while a,;, at 665 and
620 nm was overestimated by the algorithms, then subsequently overcorrected using a higher a*,,(665)
than that measured in Lake Balaton. While substituting Balaton specific IOPs into the algorithms did
not improve retrieval of Chl-g, knowledge of the IOPs did elucidate the sources of error within the
Gons05 and Simis05 algorithms.

This study provides additional evidence for the success of Chl-a and PC retrieval algorithms
using MERIS data in an emblematic European lake, with a view to facing new challenges for remote
sensing of inland waters with the recently launched OLCI at match-up timescales of up to 7 days.
Furthermore, this study proves the effectiveness of collecting IOP measurements alongside pigment
and satellite data, in order to analyse the performance of pigment retrieval algorithms and the ability
to tune a semi-analytical algorithm to the waterbody of interest. Other recent studies have promoted
the effectiveness of simple empirical models for retrieval of phytoplankton pigments, however we
emphasize the utility of semi-analytical models which account for variations in phytoplankton IOPs
on the water-leaving signal. Through continued characterisation of bio-geo-optical properties, future
work can generate more informed decisions on the parameterisation of pigment retrieval algorithms
and achieve model transferability among inland waters models, e.g., via OWTs [78,81]. There remains
abundant opportunity for future work on the success of water quality algorithms for MERIS and OLCI,
and the ability to accurately retrieve parameters in a range of inland waters within the constraints of
contemporary satellite instruments.
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Appendix A. MERIS Phycocyanin Algorithms

Appendix A.1. Dekker93

Dekker93 is the earliest known method for estimating PC concentrations in lakes, calibrated with
data from eutrophic Vecht lakes in the Netherlands [31]. This algorithm is a semi-empirical baseline
approach which uses Rs at 600, 648 and 624 nm, however it can be adapted to MERIS and OLCI bands
centred at 560 nm, 620 nm and 665 nm as follows:

PC (mg m™) o< 0.5 X [(Rys(560) + Rys(665)) — Rys(620)]. (A1)

In this study, Dekker93 was also modified to include an additional term at a fourth wavelength
at which absorption is dominated by water and is minimally sensitive to absorption by pigments,
minerals, detritus and CDOM [23,76]. This is herein referred to as Dekker93_modified and is denoted
as follows:

PC (mg m™) o< 0.5 X [(Rrs(560) + Rys(665)) = Rys(620)] — Rys(754). (A2)

Appendix A.2. Schalles00

Schalles00 is a simple band-ratio algorithm that employs a ratio of the reflectance peak at 650
nm to the trough at 625 nm [32]. Schalles00 was calibrated over Carter Lake, USA, a eutrophic
groundwater-fed lake. Although not specifically developed for MERIS, this band-ratio can be adapted
to MERIS and OLCI bands centred at 665 nm and 620 nm as follows:

Rys(665)

PC (mg m_3) o m .

(A3)

Appendix A.3. Gons05 and Simis05

The Gons(5 algorithm is naturally considered here for retrieval of Chl-g, as it is the foundation
upon which the Simis05 PC algorithm evolved [28]. Specifically, the Gons05 algorithm calculates
acnia(665), and from this the summed absorption of Chl-a and PC at 620 nm is obtained. acy,(620) is
subtracted from summed Chl-2 and PC pigment absorption at 620 nm in order to obtain apc(620).

Gons05 was calibrated in the shallow eutrophic freshwaters of Ijssel Lagoon, Netherlands
(Chl-a = 4-185mg m~2), with initial validation in well-mixed and optically deep lakes in The Netherlands,
the Scheldt Estuary (The Netherlands and Belgium), Lake Taihu (China), the Hudson/Raritan Estuary
(USA) and the North Sea (Belgian coast) [19,33,34]. As a progression of Gons(05, Simis05 was initially
calibrated in the well-mixed and eutrophic Lakes Loosdrecht (Chl-a = 48-98 mg m~3, PC = 22-80 mg m ~3)
and IJsselmeer (Chl-a = 23-92 mg m~3, PC = 0.8-65 mg m~2) in The Netherlands [28], and has
subsequently obtained accurate retrieval of PC in mostly eutrophic inland waters with moderate to
high cyanobacterial biomass, including Spanish lakes and reservoirs [37], Indiana reservoirs [26,29,36],
Spanish and Dutch lakes and reservoirs [27], shallow eutrophic UK lakes [23] and eutrophic lakes in
East China [22]. The Simis05 algorithm in particular has undergone limited testing with independent
datasets of inland waters, and there is a need for validation in waters with differing optical properties.

The Simis05 algorithm can be applied to MERIS or OLCI data using a commonly acknowledged
relationship between inherent optical properties and reflectance [92], where backscattering (b) is
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assumed to be spectrally neutral and is derived from Ry at a single wavelength in the near infra-red
(NIR) [33], as detailed in Gons et al. [34]:

1.61 X Ry(779)
0.082 — 0.6 X R,s(779)

by(779) = (A4)

Total absorption at a particular wavelength can then be calculated from a reflectance ratio [Rys(A1)/
Rys(A2)], by and absorption at A; [a(A;)]:

Rrs()\2)

a(Ar) = Ro(h)

X [a(A2) + by] — by, (A5)

where the reflectance ratio of A1 = 665 nm and A, = 709 nm is effective for retrieval of Chl-a for
Gons05 [19,31,93] and A;=620 nm and A, = 709 nm is applied for the retrieval of PC for Simis05 [28].
The Gons05 algorithm for Chl-a absorption can then be described as a function of the R;s ratio, the
absorption coefficient of water (a,) and by,. A correction factor, y, was also introduced by Simis et al. [28]
to relate the R, ratio to measured pigment absorption, thus obtaining the following algorithm for
Chl-a absorption, modified from Gons et al. [19,34]:

Rys(709)

ECAS s -1 Al
R,»(665) v (40)

acha (665) = [( X (a,,(709) + by) — by —aw(665))

where a,,(709) = 0.727 m™, a5, (665) = 0.401 m~! and y = 0.68.
The Chl-a concentration can then be calculated by dividing the Chl-a absorption coefficient by the
specific absorption coefficient, a*cy,(665):

Achia(665)

—_—, (A7)
" Cpia (665)

Chl—a (mg m_3) =
where a*cj,(665) is 0.0139 m?mg~! for uncorrected Chl-a [34].

It is assumed that PC and Chl-a comprise absorption at 620 nm, as apparent from reflectance
spectra of cyanobacteria-dominated waters. Thus, in order to estimate PC absorption alone at this
wavelength, summative pigment absorption at 620 nm is calculated first. A factor 0 is introduced for
the correction of a(620), and the summed absorption of PC and Chl-2 at 620 nm can be estimated as:

Rys(709)

ELAREEA x 671, A8
Rps(620) (A8)

acna(620) + Apc (620) = [ X (a4,(709) + by,) — by, — a,,(620)

where a;,(620) = 0.281 m™! and 6 = 0.84.
Absorption by PC can then be derived by subtracting the absorption by Chl-a at 620 nm, using a
conversion factor, ¢, which relates in vivo absorption by Chl-a at 665 nm to its absorption at 620 nm:

Ry5(709)

Rys (620) X (aw (709) + bb) - bb - aw(620)] X 6_1 - (5 X AChla (665)>/ (A9)

apc(620) = [

where ¢ = 0.24.
Finally, the concentration of PC can then be calculated by dividing the solution PC absorption
coefficient by the specific absorption coefficient, a*,:(620):

apc(620)

PC (mg m_3) =

where %, (620) is 0.007 m?mg™! [37].
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Appendix A.4. Hunter10_Duan

Hunter et al. [23] developed a semi-analytical 3-band model, based on the theory from
Dall’Olmo et al. [76]. Hunter10 was calibrated using two shallow eutrophic lakes in the UK, Loch
Leven and Esthwaite Water, and has since then been adapted to MERIS bands by Duan et al. [22] and
validated in Lake Taihu, China. The Hunter10 algorithm can be implemented for MERIS and OLCI
data as follows:

Chl - a (mg m™) o< [Res™ (A1) = Res ™ (A2)] X Rys(A3), (A11)

where A; = 620 nm, A, =709 nm and A3 = 753 nm, as in Duan et al. [22].

Appendix A.5. Mishral3

As an inversion model, the Mishral3 algorithm builds upon the QAA algorithm for Chl-a
retrieval [83], which was developed for oceans and has been widely validated in ocean, coastal and
more recently inland waters. The Mishral3 model was calibrated for PC retrieval in turbid and highly
productive aquaculture ponds [39]. The wavelengths used for Mishral3 were adapted to coincide with
MERIS band centres (and can be similarly implemented for OLCI), and the subsequent retrieval of PC
concentrations is summarised below.

Above surface remote sensing reflectance (R;s) is first converted to subsurface remote sensing
reflectance (r;s) using the following equation:

frs = Rys/(0.52+ 1.7Rys). (A12)

75 is a function of u, which is defined as the ratio of the backscattering coefficient (b;) to the sum of
total absorption (a) and backscattering coefficients:

by(A)
A) = ——————. Al3
"W e 19
u is then empirically derived from r,s as in Gordon et al. [92]:
~g0+ (50 + 4g17s(A)
u(A) = , (A14)

Zgl

where gy = 0.089 and g; = 0.125.
Total absorption coefficients can then be estimated at a reference wavelength (1) as a function of
the absorption coefficient of water [a,,(709)]:

ﬂ(AO) — aw(709) + 10—0.8125—2.3404X+1.24)(2, (A15)

where Ay = 708 nm, as parameterised for turbid and productive waters in Mishra et al. (2014),
aw(709) = 0.7204 and

0.01 * 7,5(442.5) + r,5(620)

s (620 '
15(708.75) + 0.005 * % +175(620)

x = logio (Al6)

Next, the particulate backscattering coefficient at the reference wavelength [by,(10)] is retrieved

u(Ag)a(Ao)
—u(Ao)

as follows:

byp(Ao) = = by (Ao). (A17)
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The particulate backscattering coefficients at other wavelengths [by,(A)] are then estimated
from by, (Ao):

n
by (1) = bip(20)(22) (A18)

where the spectral power, 7, is empirically estimated as:

7rs(442.5)
= 2.0¢1—-1.2exp|-0.9———=|¢. A19
! { o [ 175(560) ]} A1
The total absorption coefficient [a(A)] can thus be calculated as:
(1= u(A))(brw(A) + bep(A)
a(l) = (e () (A20)

u(A)

The total absorption coefficient is then further decomposed into the combined absorption by
coloured dissolved organic matter (CDOM) and coloured detrital matter [acppr(A)] and phytoplankton
absorption [a,,(A)]:

[(412.5) — Ca(442.5)] — [a,,(411) — Cay, (411))]

a 443) = , A21
cpm (443) ¢ (A21)
where (411)
Ay 0.2
= = 0.74 , A22
¢ 0,7, (443) t 08+ 1,2(442.5) /1a(560) (A22)
_ acpM(411) (S(443-411) (A23)
acpm(443)

and a(411) = 0.0068.
acpm(A) can then be calculated using the exponential function:

acpm(A) = acpy(443)e~SA-43)) (A24)

where the slope S is 0.02 nm™L. apn(A) is subsequently calculated by subtraction of aw(A4) and acpa(A)
from total absorption:

Llph(A) = Ll(/\) —Ilw(A) —LICDM(A). (A25)

It is assumed that ay, (1) is approximately equal to absorption by chlorophyll-a and phycocyanin
[apn(A)~acuia(A) + apc(A)] at A = 665 and 620 nm, and a,c(620) is retrieved as:

Y1, (620) — a,,(665)
ayc(620) = , A26
pe(620) — (A26)
where 1 = a,14(665)/ac1,(620) and 1, = ay:(665)/a,:(620).
Finally, PC concentrations are calculated by dividing a,:(620) by the specific absorption coefficient
of PC, a*pc(620):

apc(620)

e (620) (A27)

PC (mg m™> ) =

For the application of Mishral3 in this study, PC concentration was calculated using two different

values of a%,:(620) from Mishra et al. [39] and Simis et al. [37] (0.0048 m? mg_1 and 0.007 m? mg_l,
respectively, herein referred to as Mishral3 and Mishral3_Simis).
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Appendix A.6. Qil4

Qil4, or the PCI, is a band subtraction model which was calibrated in Lake Taihu, China [40].
It has subsequently been tested in three Indiana reservoirs, USA, Lake IJsselmeer, the Netherlands,
and eight Chinese lakes and reservoirs, however no correlation was found with in situ PC values
(R? = 0.028) [42]. This algorithm was applied in this study for MERIS data (and can be similarly
implemented for OLCI) as follows:

620 — 560

PCL = (Rs(560) + —=— &

X [Rys(665) — Rys(560)]) — Rys(620), (A28)
where PC concentration can be calculated from the PCI according to an exponential relationship of
the form:

PC (mg m_3) = gePPCl, (A29)

In Qi et al. [40], coefficients were defined as a = 3.87 and b=1154 for Lake Taihu (herein referred
to as Qil4), however these coefficients were also calibrated to Lake Balaton 2010-2011 PC dataset as
a =21.26 and b = —139.3 (herein referred to as Qil4_Balaton).

Appendix A.7. Lil5

The Lil5 algorithm is an extension of the IIMIW model first presented in Li et al. [26] for the
retrieval of Chl-a. Lil5 was calibrated with three central Indiana reservoirs Li et al. [41], however to
our knowledge at the time of writing the Lil5 algorithm has not been validated with independent
datasets. The steps for the application of the Lil5 are as in Table 3 of Li et al. [41], with wavelengths
adapted to correspond with MERIS band centres (and can be similarly implemented for OLCI), as
summarised below.

Above surface remote sensing reflectance (R;s) is first converted to subsurface remote sensing
reflectance (r;s) using the following equation, as in Li et al. [41]:

rrs(A) = Rys(A)/0.54. (A30)

The backscattering coefficient at MERIS band 12 (or for OLCI, band 16) [b,(778.75)] is then
estimated as a function of r,5(778.75) and absorption by pure water [a,,(778)]:

778.75 778
by(778.75) = I )aw (778) | (A31)
0.082 — 1,5(778.75)
The spectral power, 1), is empirically estimated as:
4425
n = 20{1 - 1.200p| ~0.0=H2I [ (A32)
7y5(560)

The particulate backscattering coefficient at 560 nm [by,(560)] can then be retrieved as follows:
by (560) = [by,(778.75) — by, (778.75)] / (0.7198)7, (A33)
and the backscattering coefficients at other wavelengths [b,(A)] are then estimated from by, (560):

by(A) = bbp(560)(5Aﬂ)q+bhw(A). (A34)
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Subsequently, total minus water absorption [a;,(A)], or absorption of particulate (p) and dissolved
() matter [ape(A)], can be calculated as:

715(708.75) by, (1) [a,,(708.75) + by, (708.75)]
715(A)by(708.75)

llt_w(/\) = _bb(A) —aw(A), (A35)

At this point in the algorithm steps, Chl-a concentration can be estimated using three different
approaches, as outlined in Li et al. [26]. Total absorption is further partitioned into acpp(4) and ap,(1)
by first calculating the in vivo phytoplankton absorption without the contribution from PC [, pc(A)]:

pppe(A) = 11872+ C1(A)ar—(665) + C2(A), (A36)

where C1 and C2 are the wavelength dependent regression coefficients outlined in Table A1l of
Appendix B in Li et al. (2015).
The combined absorption of CDOM, NAP and PC [acpp+pc(4)] is then calculated by subtraction:

“CDMerc(/\) = ar-»(A) _aph—pc(A)- (A37)

Absorption by coloured dissolved matter (CDM) [acpp(A)] can then be calculated using the
spectral slope of CDM (Scpm):

aCDM(A) = acpmMm (4125) exp[—SCDM X (A - 4125)], (A38)

where it is assumed acpp(412.5)=acpm+pc(412.5) and Scpy was set to a constant value of 0.020 nm™},
the mean measured value of Scpops for Lake Balaton in August 2010. acpy(708.75) is set to 0, with
acpm(A) values adjusted accordingly.

The phytoplankton absorption coefficients [a,;,(4)] can then be calculated by subtraction:

app(A) = a—w(A) —acpm(A). (A39)

The phycocyanin absorption coefficient [a,:(620)] is then calculated as the difference between
phytoplankton absorption and non-PC phytoplankton absorption at 620 nm:

pc(620) = ,,(620) — 2y, (620). (A40)

Finally, PC concentration is calculated by division of a,:(620) by the PC specific absorption
coefficient [a*yc(620)]:
PC (mgm™) = ,0(620)/a#,c (620), (A41)

where a%,:(620) is set to 0.0046 mzmg_l as in Li et al. [41] (herein referred to as Lil5) or 0.007 mng_l
as in Simis et al. [37] (herein referred to as Li15_Simis).

Appendix A.8. Liul8

Liul8 is a 4 band semi-analytical model, which builds upon the approach by Hunter et al. [23].
This was calibrated using three Indiana reservoirs, USA, Lake IJsselmeer, the Netherlands, and eight
Chinese lakes and reservoirs [42]. To our knowledge at the time of writing, Liul8 has not been validated
with independent datasets. Liul8 was implemented in this study by calculation of the FBA_PC index
for MERIS data (and can be similarly implemented for OLCI) as follows:

1 0.4 0.6

FBApc = _ _
re Rys(620)  Rys(560)  Rys(709)

X Ry5(754), (A42)



Remote Sens. 2019, 11, 1613 38 of 50

where PC concentration is then calculated according to linear least squares regression:
PC (mg m™) = mxFBApc + B. (A43)

The coefficients for a regression to relate PC concentration to the FBA_PC were as in Liu et al. [42]
(m = 462.5 and B = 22.598, herein referred to as Liul8) as well as those calibrated to the 2010-2011
dataset for Lake Balaton (m = 76.7 and B = 23.09, herein referred to as Liul8_Balaton).
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Appendix B. Validation Assessment Results

Table Al. Accuracy assessment results for PC retrieval algorithms using MERIS data from 2010-2011 (n = 22), including intercept (b), slope (m), coefficient of
determination (R?) and p-value (p) for a linear least squares regression (y = mx+b), and error metrics Root Mean Square Error (RMSE), log-space RMSE (RMSEj,g), Bias,
log-space Bias (Biasjog), Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error (MdAPE) and Symmetric Mean Absolute Percentage Error
(SMAPE). Matchups are + 1 day of in situ PC measurements. Bold values indicate lowest error for all algorithms.

Model b m R? p RMSE RMSE jog Bias Bias jog MAPE % MAAPE %  SMAPE %
mg m~3 mg m~3 mg m3

Dekker93 18.1 0.218 0.0992 0.153 21.6 0.444 3.94 0.148 224 84.4 88.3
Dekker93_modified 15.6 0.172 0.576 <0.0001 17.5 0.354 0.614 0.0542 142 69.3 72.3
Schalles00 4.58 0.822 0.595 <0.0001 14.6 0.370 1.35 0.238 124 111 112
Simis05 8.95 0.722 0.710 <0.0001 11.8 0.272 3.92 0.147 77.0 50.8 48.2
Hunter10_Duan12 17.9 0.160 0.662 <0.0001 17.8 0.356 2.66 0.107 153 114 77.0
Mishral3 17.3 0.0522 0.00836 0.686 229 0.330 0.0987 0.230 104 87.0 66.1
Mishral3_Simis 11.8 0.0358 0.00836 0.686 22.3 0.246 -5.62 0.0664 61.2 53.2 58.2
Qil4 632 —-7.68 0.0910 0.172 715 1.55 475 1.38 6197 3512 158
Qil4_Balaton 12.6 0.0211 0.0433 0.352 211 0.403 -5.18 0.0563 101 52.8 64.4
Lil5 -26.2 2.55 0.716 <0.0001 46.3 0.503 1.84 0.0349 205 170 141
Lil5_Simis -17.2 1.67 0.716 <0.0001 26.4 0.523 -5.00 —-0.147 150 131 136
Liul8 —6.40 0.906 0.634 <0.0001 16.5 0.841 -8.10 -0.305 184 122 134

Liul8_Balaton 18.3 0.150 0.634 <0.0001 18.0 0.354 2.88 0.088 155 113 78.2
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Table A2. Accuracy assessment results for PC retrieval algorithms using MERIS data from 2010-2011 for low phycocyanin concentrations (PC<50 mg m~3, n = 19),
including intercept (b), slope (m), coefficient of determination (R?), p-value (p), Root Mean Square Error (RMSE), log-space RMSE (RMSE)), Bias, log-space Bias
(Biasyyg), Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error (MdAPE) and Symmetric Mean Absolute Percentage Error (SMAPE). Matchups
are + 1 day of in situ PC measurements. Bold values indicate lowest error for all algorithms.

Model b m R? p RMSE RMSE 0, Bias Bias 1og MAPE % MAAPE% SMAPE %
mg m-3 mg m-3 mg m3

Dekker93 15.0 0.543 0.0719 0.267 17.84 0.467 10.2 0.295 251 92.0 90.5
Dekker93_modified 15.7 0.187 0.281 0.0195 9.52 0.328 7.11 0.198 155 86.6 69.5
Schalles00 -4.16 1.78 0.554 0.117 13.57 0.405 4.01 0.357 139 124 124
Simis05 —-0.146 1.69 0.793 <0.0001 10.7 0.286 7.09 0.191 85.1 53.0 51.1
Hunter10_Duan12 15.5 0.407 0.770 <0.0001 10.4 0.346 9.28 0.255 168 134 76.0
Mishral3 9.66 0.793 0.440 <0.001 9.76 0.355 7.69 0.296 119 110 62.8
Mishral3_Simis 4.90 0.715 0.605 <0.001 5.14 0.224 1.90 0.120 59.5 36.3 48.2
Qil4 734 -18.3 0.0588 0.317 766 1.66 532 1.54 7144 4595 173
Qil4_Balaton 12.3 0.0452 0.0225 0.539 7.66 0.339 2.28 0.172 105 43.8 54.0
Lil5 -26.0 2.82 0.697 <0.0001 20.2 0.561 -6.90 0.00889 222 171 155
Lil5_Simis -17.1 1.85 0.697 <0.0001 13.6 0.587 -8.14 -0.173 162 146 147
Liul8 =219 2.51 0.814 <0.0001 15.3 0.965 —-5.96 -0.349 208 138 149

Liul8_Balaton 15.7 0.417 0.814 <0.0001 10.6 0.340 9.56 0.247 170 129 774
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Table A3. Least squares linear regression results (y = mx+b) for Chl-a, PC, a,, and by, retrieval using Gons05 or Simis05 algorithms for all data, including integrated

and surface samples.

Match-up n X y b m R? p RMSE RMSE Bias Biasjo,; MAPE MdAPE SMAPE
Interval mg m~3 mg m-3 log mg m-3 % % %
Measured MERIS
PC 1 day 22 PC Retrieved PC 8.95 0.722 0.710 <0.0001 11.8 0.272 3.92 0.147 77.0 50.8 48.2
Measured MERIS
3 day 30 PC Retrieved PC 7.44 0.777 0.663 <0.0001 11.5 0.261 3.77 0.110 71.0 50.6 48.5
Measured MERIS
7 day 40 PC Retrieved PC 9.41 0.443 0.433 <0.0001 18.3 0.273 -1.30 0.0218 63.0 49.5 49.8
Cyanobacteria ~ MERIS
1 day 33 biomass Retrieved PC 7.72 0.00494 0462  <0.0001 - - - - - - -
Cyanobacteria ~ MERIS
3 day 41 biomass Retrieved PC 5.66 0.00539 0.525 <0.0001 - - - - - - -
Cyanobacteria MERIS
7 day 64 biomass Retrieved PC 6.18 0.00488 0494  <0.0001 - - - - - - -
Measured MERIS
Chl-a 1 day 136 Chl-a Retrieved 8.98 1.11 0.801 <0.0001 11.9 0.394 104 0.329 151 86.4 68.5
Chla
Measured MERIS
3 day 156 Chta Retrieved 8.53 1.11 0.803 <0.0001 11.5 0.382 9.97 0.319 143 82.2 66.6
Chl-a
Measured MERIS
7 day 194 Chl-a Retrieved 8.56 1.06 0.767  <0.0001 11.2 0.369 9.38 0.296 132 74.2 63.0
Chl-a
MERIS
1day pg  Phytoplankton o iieved 6.42 000527  0.667  <0.0001 - - - - - - -
biomass
Chl-a
MERIS
3 day g0  Phytoplankton g ieved 6.62 000515  0.698  <0.0001 - - ; - - . -
biomass
Chl-a
MERIS
7 day 61 Phytoplankton o iieved 7.43 000480  0.636  <0.0001 - - - - - - -
biomass

Chl-a




Remote Sens. 2019, 11, 1613

42 of 50

Table A4. Least squares linear regression results (y = mx+b) for Chl-a, PC, Aph, AChia+PC, and by retrieval using Gons05 or Simis05 algorithms, validated with surface

samples only (August 2010 only).

Match-up n X y b m R? P RMSE RMSE Bias Biasjo,g MAPE MdJAPE SMAPE
Interval mg m~3 or mg m~3 or log mg m~3 or % % %
m-1 m-1 m-1
PC 1day 14 Measured PC MERIS Retrieved PC -1.28 177 0836  <0.0001 117 0.254 7.79 0.174 716 612 499
3 day 22 Measured PC MERIS Retrieved PC -4.15 1.87 0.799 <0.0001 11.3 0.246 6.18 0.189 65.4 52.6 49.7
7 day 28 Measured PC MERIS Retrieved PC -5.95 1.85 0718 <0.0001 103 0.248 3.89 0.042 59.3 52,0 494
1 day 14 Cyanobacteria MERIS Retrieved PC -2.48 000737  0.660  <0.001 - - - - - - -
biomass
3 day 2 Cyanobacteria MERIS Retrieved PC -3.04 0.00743  0.745  <0.0001 - - - - - - -
biomass
7 day 28 Cyanobacteria MERIS Retrieved PC -3.88 000731 0709  <0.0001 - - - - - - -
biomass
Chl-a  1day 13 Measured Chl-a MERISCEE_ZHEVM 222 145 0943 <0.0001 122 0.203 109 0.199 589 5.7 45.0
3 day 23 Measured Chl-a MERlscﬁle_;“eved 2.38 1.38 0930  <0.0001 102 0.198 871 0.189 55.9 52.7 426
7 day 29 Measured Chl-a MERISCﬁe_;“e"ed 0.995 141 0906  <0.0001 9.19 0.185 7.36 0.167 50 50.6 38.1
1day 13 Phyt'oplankton MERIS Retrieved 3.4 0.00633 0.656 <0.001 . B ) B ) B )
biomass Chl-a
3 day 23 Phytoplankton MERIS Retrieved 3.88 000588 0736  <0.0001 - - - - - - -
biomass Chl-a
7 day 29 Phytoplankton MERIS Retrieved 222 000587  0.682  <0.0001 - - - - - - -
biomass Chl-a
app MERIS Retrieved
@ 7day 29 Measured a,,(665) 1(665) 0.0663 2.06 083  <0.0001 0.228 0.444 0197 0.430 178 175 90.6
Aph MERIS Retrieved
oy 7day 29 Measured a,,(620) oo ne (620) 0.0758 312 0834  <0.0001 0279 0.645 0242 0.635 346 332 123
by () 7day 29 Measured by, (650) MERIS Retrieved 0.0938 00603 000434  0.734 - . - . - . -

by(778.75)
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Table A5. Least squares linear regression results (y = mx+b) for Chl-a and PC retrieval using Gons05 and Simis05 algorithms, respectively, validated with integrated
samples only (BLI, 2007-2011).

Match-up n X y b m R? P RMSE RMSE Bias Biasjo,g MAPE MdJAPE SMAPE
Interval mg m—3 mg m—3 log mg m—3 % % %
PC 1day 8 Measured PC MERIS Retrieved PC 6.94 0664 0910  <0.001 121 0.301 -2.86 0.100 86.4 33.1 454
3 day 8 Measured PC MERIS Retrieved PC 6.94 0664 0910  <0.001 121 0.301 -2.86 0.100 86.4 33.1 454
7 day 12 Measured PC MERIS Retrieved PC 9.55 0379 0580 <001 295 0.324 ~134 0026 717 33.1 50.7
1 day 19 Cyanobacteria MERIS Retrieved PC 11.2 0.00421 0405  <0.01 - - - - - - -
biomass
3 day 19 Cyanobacteria MERIS Retrieved PC 11.2 0.00421 0405  <0.01 - - - - - - -
biomass
7 day 36 Cyanobacteria MERIS Retrieved PC 10.1 0.00430 0474  <0.0001 - - - - - - -
biomass
Chl-a  1day 18 Measured Chl-a MERISéﬁle_;“eVEd 8.26 1.03 0810  <0.0001 9.73 0331 8.60 0271 109 70.6 57.5
3 day 20 Measured Chl-a MERISCEe_;“e"Ed 8.81 1.02 0798 <0.0001 102 0.337 9.09 0.281 112 76.5 59.9
7 day 52 Measured Chl-a MERISCEE_ZHGVECI 9.12 0950 0723  <0.0001 10.7 0334 833 0.249 107 615 55.7
1day 15 Phytoplankton MERIS Retrieved 827 000438  0.692  <0.001 - - - - - - -
biomass Chl-a
3 day 17 Phytoplankton MERIS Retrieved 9.82 000417  0.660  <0.0001 - - - - - - -
biomass Chl-a
7 day 37 Phytoplankton MERIS Retrieved 10.3 000432  0.640  <0.0001 - - - - - - -
biomass Chl-a
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Table A6. Least squares linear regression results (y=mx+b) for Chl-a retrieval using the Gons05 algorithm, validated with KdKVI surface samples only (2007-2011).

Match-up n X y b m R? P RMSE RMSE Bias Biasjo;, MAPE MAJAPE SMAPE
Interval mg m~3 mg m~3 log mg m~3 % % %
Chl-a  1day 105 Measured Chl-a MERISCﬁl‘*_Zrieved 9.52 1.09 0784  <0.0001 122 0.421 106 0.355 169 101 733
3 day 113 Measured Chl-a MERIiﬁl‘fieve‘i 9.27 1.09 0786  <0.0001 12.0 0416 104 0.352 165 101 72.7
7 day 113 Measured Chl-a MERISCﬁe_;rieved 9.27 1.09 0786  <0.0001 12.0 0416 104 0.352 165 101 72.7

Table A7. Least squares linear regression results (y=mx+b) for Chl-a retrieval using the Gons05 algorithm, validated with stations from all datasets used for PC
validation only (2010-2011).

Match-up n X y b m R? P RMSE RMSE Bias Biasj,; MAPE MJAPE SMAPE
Interval mg m—3 mg m—3 log mg m—3 % % %
Chl-a  1lday 22 Measured Chl-a MERISCEi;rleVEd 6.67 115 0910  <0.0001 104 0.241 9.33 0216 70.0 51.9 480
3 day 30 Measured Chl-a MERlscﬁﬁ;rleVEd 5.40 118 0909  <0.0001 9.58 0222 839 0.199 62.7 50.9 443
MERIS Retrieved

7 day 40 Measured Chl-a Chl-a 522 1.10 0.866 <0.0001 8.47 0.211 6.84 0.174 55.9 50.1 39.2
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Figure A1. Validation plots of MERIS retrieved app(A) from the Mishral3 (a,d), Li15 (b,e) and Simis05
(c,f) models for matchups within 1 day of satellite overpass.
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Validation plots of MERIS retrieved by(A) from the Mishral3 (a,c,e) and Lil5 (b,d,f)

bio-optical models, and the Simis05 semi-analytical model (g) for matchups within 1 day of satellite
overpass (n = 16). Note that negative retrieved values are not shown in log scale.
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