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Abstract: Understanding the changing relationships between vegetation coverage and
precipitation/temperature (P/T) and then exploring their potential drivers are highly necessary for
ecosystem management under the backdrop of a changing environment. The Jing River Basin (JRB), a
typical eco-environmentally vulnerable region of the Loess Plateau, was chosen to identify abrupt
variations of the relationships between seasonal Normalized Difference Vegetation Index (NDVI) and
P/T through a copula-based method. By considering the climatic/large-scale atmospheric circulation
patterns and human activities, the potential causes of the non-stationarity of the relationship between
NDVI and P/T were revealed. Results indicated that (1) the copula-based framework introduced in
this study is more reasonable and reliable than the traditional double-mass curves method in detecting
change points of vegetation and climate relationships; (2) generally, no significant change points were
identified during 1982-2010 at the 95% confidence level, implying the overall stationary relationship
still exists, while the relationships between spring NDVI and P/T, autumn NDVI and P have slightly
changed; (3) teleconnection factors (including Arctic Oscillation (AO), Pacific Decadal Oscillation
(PDO), Nifio 3.4, and sunspots) have a more significant influence on the relationship between seasonal
NDVI and P/T than local climatic factors (including potential evapotranspiration and soil moisture);
(4) negative human activities (expansion of farmland and urban areas) and positive human activities
(“Grain For Green” program) were also potential factors affecting the relationship between NDVI
and P/T. This study provides a new and reliable insight into detecting the non-stationarity of the
relationship between NDVI and P/T, which will be beneficial for further revealing the connection
between the atmosphere and ecosystems.

Keywords: copula-based method; NDVI and precipitation/temperature; change points; teleconnection
factors; double cumulative curve method

1. Introduction

Terrestrial vegetation is the most important component of an ecosystem due to its critical roles in
energy budget, water, and biogeochemical cycle of the earth ecosystem through photosynthesis and
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transpiration, and it can change the climate system and alter the land surface [1-4]. From another
perspective, the variation of vegetation coverage is a reflection of corresponding climatic conditions such
as precipitation and temperature [5,6]. It is well known that climate changes have been characterized
by an increase of 0.85 °C global surface temperature during 1880-2010, which was documented by the
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report [7]. Accordingly, this
warming trend provides abundant thermal energy to regulate the inner biogeochemical processes of
plants, thus affecting vegetation coverage, vegetation health, and vegetation productivity [8-11].

There is increasing evidence that vegetation growth has a relationship with many physiographic
and climatic attributes such as soil moisture [12,13], leaf area index [14], and regional
evapotranspiration [15,16]. Among the climatic factors, precipitation (P) and temperature (T) have
been proven to be the main factors influencing the distribution and composition of vegetation. Several
studies have investigated the relationship between the Normalized Difference Vegetation Index (NDVI)
and P/T [17-19]. For instance, Wen et al. [20] reported that vegetation was closely related to asymmetric
warming, and it responded to the asymmetric warming with nearly one year delays at a global scale. Ji
and Peters [21] investigated the relationship between vegetation and rainfall in the northern and central
Great Plains of the USA and found the time lag and accumulative effects of rainfall on vegetation.
All the above-mentioned studies have revealed the relationships between NDVI and P/T, and have
confirmed the time lag effects between NDVI and P/T. However, under the background of a changing
environment, the stationarity of the relationship between NDVI and P/T might be altered, and this
could strongly affect the accuracy of the prediction models for vegetation based on its correlation
with climatic factors. Nonetheless, fewer comparative studies have identified the change points in the
relationship between NDVI and P/T. Hence, exploring the non-stationarity of the relationship between
NDVI and climatic factors is the main objective in the present study, which helps to further understand
the mechanisms of vegetation dynamic.

Nevertheless, some statistical methods have been adopted to investigate the change points of
the binary relationship. Among multiple statistical methods, the correlation coefficient method was
commonly employed in previous studies [22-24]. However, the correlation coefficient method which
directly reflects the general trend and the strength of the bivariate relationship assumes that the
relationships of the two time series are monotonous and stationary [25]. Due to the complexity of
ecosystems, the relationship between NDVI and climatic factors is affected by multiple factors and
characterized by nonlinearity which will cause the correlation coefficient method to assume that
stationarity is not applicable here, and fail to capture the change points in the relationship between
variables. Besides, conceptual models were utilized in some previous studies to identify change points.
Lee et al. [26] proposed 12 conceptual model structures for the regionalization of the precipitation-runoff
relationship on 28 UK catchments. In the Birkinshaw and Bathurst [27] study, a spatially distributed
model was used to investigate the variation of relationship between sediment yield and river basin
area. However, those model-based methods require a large amount of input data, and it is difficult to
determine their parameters. Copula functions, which can represent the dependency structure between
variables by constructing the joint distributions of related variables and reflect the linear and nonlinear
relationship between variables, overcome the shortcomings of previous methods. As copula functions
can directly deal with non-stationarity, and are characterized by flexibility and less limitation on the
types of marginal distributions to be connected, they have been widely used in the financial field
and are now increasingly adopted in hydro-meteorology fields to detect the abrupt change of the
relationships between two variables. Gu et al. [28] developed a new regional contagion detection
method based on the vine copula to conduct a study on financial contagion. Huang et al. [29] detected
the possibly changing relationship between precipitation and temperature in the Wei River Basin,
China, by copula functions. However, the copula function has not been used to identify the change
point of the relationship between vegetation and meteorological variables. Therefore, this study seeks
to utilize copula functions to present the relationship between NDVI and P/T and simultaneously
detect the change points of their relationships [30].
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Furthermore, various studies have been conducted to investigate the possible connection between
atmospheric teleconnection factors and vegetation growth and climatic factors [31-33]. For instance,
Li et al. [34] documented that the spatial patterns of NDVI have closer connections to El Nifio over
Eurasia. Cavazos [35] presented that changes in the circulation related to Arctic Oscillation (AO)
strongly controlled the winter extreme precipitation in Balkans. Additionally, Wu and Wang [36]
evaluated the impact of AO and Siberian High on the East Asian winter monsoon, and they concluded
that higher winter air temperature occurs over East Asia during the positive AO phase. Nevertheless,
considerable studies previously have focused on exploring the impacts of climatic and teleconnection
factors on the individual components such as NDVI, P, and T, but the underlying causes for the variations
in the relationship between NDVI and P/T by the climatic and atmospheric teleconnection factors
(e.g., soil moisture (SM), potential evapotranspiration (PET), AO, Pacific Decadal Oscillation (PDO),
El Nifio-Southern Oscillation (ENSO), and sunspots) across seasons still lacks detection. Moreover,
the dominant drivers leading to variations in the relationship between vegetation and climatic factors
have not been revealed. Thereby, a greater understanding of how each teleconnection factor influences
the relationship between NDVI and P/T will be fully explored in this present study.

The Jing River Basin (JRB), which belongs to the Loess Plateau, China, is a typical
eco-environmentally vulnerable region in the world. The Loess Plateau is characterized by a highly
erosive loess layer, which leads to serious degradation of the ecological environment in the Loess
Plateau after centuries of unsustainable agricultural production and population explosion. Therefore,
the Chinese government has carried out a series of ecological restoration projects since the 1970s
to solve the serious environmental and ecological problems. Among them, the “Grain for Green’
project implemented since 1999 has received remarkable feedback. The vegetation condition has been
greatly improved, which might influence the relationship between NDVI and P/T. Consequently,, it is
necessary to investigate the relationship between NDVI and P/T in the JRB. Based on the long-term
NDVI data and hydrometeorological observations, we aim (1) to introduce a copula-based framework
for the change points detection and verify the reliability and superiority of this method; (2) to identify
the change points of the relationship between seasonal NDVI and P/T; (3) to examine the impact of
climate change on the variations of the relationships between NDVI and P/T and to determine the
dominant driver of the seasonal variations. Generally, this study provides a new and reliable insight
into detecting the non-stationarity of the relationship between NDVI and P/T, which will be beneficial
for further revealing the connection between the atmosphere and ecosystems.

7

2. Materials and Methods

2.1. Study Area

The JRB (106.2°E-109.1°E, 34.8°N-37.4°N) is a typical arid and semi-arid region which is located
in the southwest of the Loess Plateau (Figure 1). As the second level tributary of the Yellow River Basin
(YRB), the JRB covers a total area of approximately 4.54 x 10* km?. Located in the transitional zone
between the temperate semi-humid and temperate semi-arid regions, the JRB experiences a typical
temperate continental monsoon climate and the mean annual precipitation is 545 mm. The mean
temperature in the coldest month ranges from —3 to —1 °C, whilst that in the hottest month varies from
23 to 26 °C [37]. Overall, the JRB is characterized by abundant precipitation and high temperature in
summer and by rare precipitation and low air temperature in winter. Loessial soil and dark loessial soil
are two typical types of soil which are highly erodible and widely distributed in the study areas [38,39].
Nearly 60% of annual precipitation is concentrated in the flood season (from June to September), which
makes water loss and soil erosion occur frequently in the JRB. Thus, the JRB is widely known as a
sediment-laden basin with 2.6 x 108 t sediment transporting into the YRB on average [40]. Accordingly,
the ecological environment is extremely fragile and the vegetation coverage is sparse in the JRB.
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Figure 1. Location of the Jing River Basin. (a) The basin map of the Jing River Basin; (b) location of the
Jing River Basin in the Yellow River Basin, China.

2.2. Datasets

The NDVI is a vegetation indicator which reflects the vegetation coverage by separating vegetation
from water and soil. In this study, we focused on the vegetation dynamics during 1982-2010. The NDVI
remote sensing data was obtained from the US National Oceanic and Atmospheric Administration’s
(NOAA) Advanced Very High Resolution Radiometer (AVHRR) (https://nex.nasa.gov/nex/projects/
1349/). Due to the poor vegetation coverage in winter on the Loess Plateau [41], we only focused on
spring, summer, and autumn vegetation in the present study. Moreover, in order to avoid data changes
caused by cloud cover and other uncertain factors, we used the maximum value of each season to
represent the seasonal vegetation condition. In the current study, the gridded NDVI data within the
JRB was averaged for use.

Additionally, the point daily meteorological data covering 1982-2010, including daily maximum
and minimum temperature, wind speed, air pressure, sunshine duration, relative humidity, and daily
mean precipitation, were recorded by nine meteorological stations and the dataset were obtained from
the National Climate Center (NCC) of the China Meteorological Administration (CMA). Recommended
by the World’s Food and Agriculture Organization (FAO) in 1998, the Penman—Menteith method was
used to calculate the point PET. Based on the point meteorological data, the regional P and PET in the
JRB were calculated by the Thiessen polygon method which is a widely used technique in deriving
regional P and PET [42].

Besides, in order to examine the correlations between climatic/large-scale atmospheric circulations
and relationships between seasonal NDVI and P/T, the PET, SM, AO, PDO, Nifio 3.4, and sunspots
were also employed in this study. The gridded monthly SM data was estimated by the Variable
Infiltration Capacity (VIC) model. In the current study, the gridded SM data within the JRB area
was averaged for use. AO data were collected from the NOAA National Climatic Data Center (http:
/[www.cpc.ncep.noaa.gov/products/precip/CWIlink/daily_ao_index/ao_index.html), and the monthly
PDO index was downloaded from the Tokyo Climate Center (http://ds.data.jma.go.jp/tcc/tcc/products/
elnino/decadal/pdo.html). The monthly Nifio 3.4 index was used to represent ENSO activities which
were acquired from the NOAA Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/data/
correlation/nina34.data). Monthly sunspot indexes were obtained from the National Geophysical Data
Center (NGDC) of the NOAA (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/SUNSPOTY/).

Furthermore, in order to explore the correlations between human activities and the relationship
between NDVI and P/T, the effective irrigated area data of the Shaanxi Province, Gansu Province, and
Ningxia District were collected from the Ministry of Agriculture and Rural Affairs of the People’s
Republic of China (http://zzys.agri.gov.cn/nongqing.aspx). Based on the province data and the area
weight of the JRB in each province, the effective irrigated area data in the JRB was obtained. Moreover,
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land use maps (1:100,000) for six periods (1980, 1990, 1995, 2000, 2005, and 2010) were used in the current
study. They were generated from Landsat Thematic Mapper (TM) images using visual interpretation
and obtained from the Resource and Environment Data Cloud Platform of Chinese academy of
sciences (http://www.resdc.cn/data.aspx?dataid=176) which provides accurate, abundant, reliable,
dynamic geographic information sources by collecting dynamic observations of the earth from the
‘Spot’ satellites. According to the national standard of classification of land use status (GB/t21010-2007),
the land use types were classified into farmland, forestland, grassland, water bodies, construction land,
and unused land.

2.3. Trend Analysis

The original Mann-Kendall (MK) test is a popular non-parametric method for accessing the
trends of hydrometeorological variables [43]. However, the MK method is based on the uncorrelated
data and the results are easy to be affected by the persistence of time series. Therefore, Hamed and
Rao [44] proposed a modified Mann-Kendall (MMK) method by containing the lag-i autocorrelation to
remove the persistence. In this study, we applied the MMK test to explore the variations trends of
vegetation cover and precipitation/temperature, and the significance level was set at 0.05. The detailed
computational processes can be referred to our previous research [45,46].

2.4. A Copula-Based Framework for Identifying the Change Points of the Relationship between NDVI and P/T

To identify the change points of the relationship between seasonal NDVI and P/T, a copula-based
framework is implemented in the current study. This framework contains of such steps as fitting
the most appropriate marginal distributions, selecting the joint distributions, and identifying the
change points.

2.4.1. Marginal Distribution

A marginal distribution is the projection of the joint distribution of a set of random variables
onto a subspace which is defined by a subset of components. Since the seasonal NDVI, P, and T
series utilized in the current study are continuous, some parametric distributions (such as Gamma
distribution, Generalized Extreme Value (GEV) distribution, and lognormal distribution), which are
frequently applied to fit the distribution of hydrometeorological time series, were applicable in this
study [47]. Besides, the parameters of these distributions were evaluated by the Maximum Likelihood
Estimation (MLE) method [48]. Since the errors in marginal distributions can be amplified in the
determination of joint distribution, efforts should be made to fit marginal distributions as accurately
as possible. Based on the research of Wilks [49], the goodness-of-fit of each individual distribution
was evaluated by the Kolmogorov-Smirnov (K-S) test, thus the most suitable distribution for each
individual NDVI and P/T was obtained.

2.4.2. Joint Distribution

The copula function can construct the joint probability distribution of the multivariate hydrologic
series through integrating their corresponding marginal distributions. The formula of the copula is
expressed as follows:

Clu,v) = ¢~ (@), 9(v)), @

where ¢ denotes the convex function; and u# and v represent the two variables.

Generally, the Archimedean copulas are widely used for the frequency analysis of multivariate
hydrologic series due to their easily constructed characteristics and the numerous available copula
families [50]. In order to avoid over-parameterization and easily estimate the parameter, Gumbel,
Frank, and Clayton copulas which were widely known as three simple Archimedean copulas, were
chosen to assess the joint probability distribution of the NDVI and climate factors in the JRB. Acquiring
the generating function from multivariate observation data is the crucial step to determine a copula
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which was shown in detail in the study of Genest and Rivest [51]. In the present study, the minimum
criterion of the Akaike Information Criterion (AIC) and the Root-Mean-Square Error (RMSE) were
adopted to select the most suitable copula from the three Archimedean copulas [52]. The Archimedean
copula with the lower AIC and RMSE values indicated better fit to the joint distributions of seasonal
NDVI and P/T and superior performance.

2.4.3. Identify Change Points

The Copula-based Likelihood-ratio method (CLR) was utilized to identify the change points of
the relationship between seasonal NDVI and P/T. For a time series of (x1 1), , (xn,yx), if only one
change point of the relationship between seasonal NDVI and P/T series exists, the null hypothesis (Hp)
and alternative hypothesis (H;) are expressed as follows:

Ho: Ay=Ag = =Ap Hy: Ay == A # Aposg =+ = Ay, )

If the null hypothesis is rejected, k* is the corresponding time of the change point. When k* = k
is known, the logarithmic likelihood ratio statistics of copula based on the maximum likelihood
estimation method can be formed as:

n

k

—2log A = 2[ X log Cia(Ai; F(xi), G(yi)) + X log Cia(Ae; F(xi), G(vi))

i=1 ; i=k+1 (3)

- -21 log C12(An; F(xi), G(1))]
i=
where F(x) and G(y) are the probability distribution function of seasonal NDVI and P/T series,
respectively. Ci, represents the joint distribution function of seasonal NDVI and P/T series. Ay, Ay,
and A, denote the parameter A of the joint distribution of the seasonal NDVI and P/T series which is
estimated by the maximum likelihood method. Considering the fitting effects of the relevant marginal
and joint distributions, the range of k is confined as 6 and n-5.
If k* is unknown, then

Zy = —2log Ag). 4
= odpax (2log ) Y

When the statistic Z,;, which follows the chi square distribution, is large enough to reject the null
hypothesis, a change point of the relationship between seasonal NDVI and P/T on the basis of
Archimedean Copula was determined. Introduced in da Costa Dias [53], the threshold of the statistic
Zy is approximately 8.8. The time of the change point can be assessed as follows:

k= arg6sri1§1x_5(—210g Ak)- (5)

2.5. Correlation Analysis

Pearson correlation coefficients were computed to access the relationship between climate change
and the relationships between seasonal NDVI and P/T (denoted by Z, series). The correlation
coefficients can be written as:

P v 75 B )
Xy —
VEIL [l = 71 X [y - 7]

where Ry, is the correlation coefficient, x and y represent the seasonal values of two variables, and x
and vy are the average of the two variables. 1 is the length of the time period.

The overall methodology adopted in the current study is presented in Figure 2. First, the temporal
trend is assessed by the MMK method. Then, the change point was identified by the copula-based

’ (6)
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framework and the double-mass curve method. Additionally, the Pearson correlation coefficient
analysis was used for the attribution analysis.

Regional NDVI

Averaged value of
gridded data

Thiessen polygon method
Regional P, T

SM

PET

(0}

— Data preparation H

Nifo 3.4

Sunspots

Land use

A e Change points identification DRl
framework curve

—>| Select marginal distribution H Kolmogorov-Smirnov test
Select copula function Akaike Information Criterion
puz Root-Mean-Square Error

—>| Identify change points }_. Copula-based Likelihood-ratio
method

1

Correlation analysis Anthropogenic factors

Climatic and
teleconnection factors

| Pearson correlation coiefficient |

Figure 2. Flowchart of the framework for the change point identification.

3. Results

3.1. Temporal Change of Seasonal NDV]1, Precipitation, and Temperature

The seasonal NDVI series covering 1982-2010 in the JRB is plotted in Figure 3. It can be roughly
observed that NDVI in three seasons exhibited a noticeably increasing trend with fluctuation, and the
maximum increase rate was found in autumn (0.0023/year). The MMK statistics of NDVI in spring,
summer, and autumn are 0.8, 1.4, and 4.1, respectively (Table 1), which means the autumn NDVI
had a statistically significant upward trend at the 99% confident level, whereas spring NDVI and
summer NDVI had a non-significant increasing trend. It has been documented that vegetation growth
exhibited time-lag responses to climate variations [54,55]. Thereby, the correlation coefficients between
the NDVI and P/T were computed by considering the time-lag effects. The results revealed that spring
NDVI had the greatest correlation with the previous 1-2 months accumulative precipitation and
average temperature, and the coefficients were 0.49 and 0.38, respectively. Summer NDVI exhibited a
one month lag with precipitation and no lag with temperature. In autumn, the time-lag of NDVI to
precipitation and temperature was previous 0-1 month and 0-3 months, respectively (0 represented
the current month). Consequently, the long-term precipitation and temperature series mentioned
in this study were the corresponding series with time-lag effects taken into account. As shown in
Table 1, precipitation in the three seasons showed a non-significant trend, while temperature had a
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remarkable upward trend at the 95% confident level in autumn and at the 99% confident level in spring
and summer. Generally, seasonal vegetation coverage and temperature in the JRB have obviously
increasing trends, while precipitation has a non-significant trend.

—s—spring —+—summer —e—autumn

- - -Linear Fit of spring NDVI - - -Linear Fit of summer NDVI - - -Linear Fit of autumn NDVI

0.6

y =0.0013x - 2.1313

[ W S 20,0025 24,0773
Ros+ IR\ . o JA AKX TSR
z e VA Nvoein LAV AN D A\ SRV Y
¥ =0.0005x - 0.6162
04 | : : : :
1980 1985 1990 1995 2000 2005 2010

year

Figure 3. The seasonal Normalized Difference Vegetation Index (NDVI) and precipitation/temperature
(P/T) series covering 1982-2010 in the Jing River Basin (JRB).

Table 1. The results of the modified Mann—Kendall (MMK) trend test.

Season NDVI P T
Spring 0.8 -1.0 2.6 **
Summer 14 0.3 3.6 **
Autumn 4.1 ** 0.8 2.2%

Note: “*” and “**” represent significant at 95% and 99% confidence level, respectively.

3.2. The Selection of the Appropriate Marginal Distribution

In this study, Gamma distribution, GEV distribution, and lognormal distribution were chosen to fit
the seasonal NDVI and P/T series, and then the most appropriate marginal distributions were obtained.
The goodness-of-fit values of the three probability distributions were calculated by the K-S method
and are shown in Table 2. Apparently, the H values of all the selected distributions are 0, indicating
that all three distributions passed the K-S test in fitting seasonal NDVI and P/T series. In general,
the results demonstrated that the p-values of the GEV distribution were the largest among the three
distributions in fitting the seasonal NDVI and P/T, except in fitting spring temperature and autumn
NDVL. Therefore, the lognormal distribution which was shown to have the maximum p-value in fitting
spring temperature and autumn NDVI was selected as the most appropriate marginal distribution for
spring temperature and autumn NDVI, while the GEV distribution was chosen as the most appropriate
marginal distribution for the other time series.

Table 2. The goodness-of-fit values of the three probability distributions in fitting the distribution of
individual seasonal NDVI and P/T series.

. Gamma Distribution GEV Distribution Lognormal Distribution
Seasons Series
H P H P H p
NDVI 0 0.56 0 0.84 0 0.58
Spring P 0 0.92 0 0.96 0 0.70
T 0 0.92 0 0.79 0 0.93
NDVI 0 0.97 0 0.99 0 0.98
Summer p 0 0.50 0 0.68 0 0.66
T 0 0.79 0 0.95 0 0.81
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Table 2. Cont.

. Gamma Distribution GEV Distribution Lognormal Distribution
Seasons Series
H P H P H P
NDVI 0 0.82 0 0.52 0 0.83
Autumn P 0 0.93 0 0.98 0 0.75
T 0 0.62 0 0.94 0 0.64

Note: H represents the hypothesis test result, returned as a logical value, if H = 0, indicating a failure to reject the
null hypothesis at 95% confident level, if H = 1, indicating the rejecting of the null hypothesis at 95% confident level;
P denotes the p-value of the test, returned as a scalar value in the range (0, 1), small values of P cast doubt on the
validity of the null hypothesis. The bold letters represent the most appropriate marginal distributions.

3.3. The Selection of the Appropriate Copula Function

When the most appropriate marginal distribution was determined, the RMSE and AIC method
were utilized to select the most appropriate copula from the Archimedean copulas (including Clayton,
Frank, and Gumbel copulas) which were chosen to fit the joint distributions of seasonal NDVI and
P/T in the current study. The values of the RMSE and AIC are presented in Table 3. According to the
minimum criterion of AIC and RMSE, the Clayton copula is the most appropriate copula in fitting the
joint distribution of spring NDVI and temperature series, and the joint distribution of autumn NDVI
and precipitation series. Whereas, the RMSE and AIC values of the Frank copula in fitting other NDVI
and climatic series are the lowest, indicating that Frank copula is the most appropriate copula for other
joint distribution of NDVI and temperature/precipitation in the JRB (Table 3).

Table 3. The Root-Mean-Square Error (RMSE) and Akaike Information Criterion (AIC) value of Clayton,
Frank, and Gumbel copulas in fitting the joint distribution of seasonal NDVI and P/T.

. Clayton Frank Gumbel
Seasons Series
RMSE AIC RMSE AIC RMSE AIC

Sorin NDVI-P 0.029 —203.27 0.024 -215.21 0.032 ~198.52

pring NDVI-T 0.021  —22040 0022  -219.07  0.025 ~212.54
5 NDVI-P 0.030 —202.32 0.021 —-222.29 0.023 -217.82
ummer NDVI-T 0.032 -197.77 0.024 -214.24 0.032 -197.77
Aut NDVI-P 0.017 ~233.95 0.022 -218.85 0.032 -197.71
utumn NDVI-T 0.033 ~196.74 0.030 —201.06 0.040 ~185.00

Note: The bold letters represent the most appropriate copula which was chosen to fit the joint distributions of
seasonal NDVI and P/T in the current study.

3.4. The Identification of Change Points in the Relationship between NDVI and P/T

The copula-based method was adopted to detect the change points of the relationship between
seasonal NDVI and P/T in the JRB, and the statistics of the copula-based method are shown in Figure 4.
It was found that the statistic (Z values) of the NDVI-P in the three seasons in the 1982-2010 range
from 0.1 to 2.1, 0 to 2.8 and 0.5 to 5.2, respectively, and the largest Z values in spring, summer, and
autumn were 2.1 (2002), 2.8 (1998), and 5.2 (1988), respectively. Evidently, the largest statistics were all
less than the threshold of rejecting null hypothesis (approximately 8.8), thus, no change point was
detected between seasonal NDVI and P in the JRB during 1982-2010. For the relationship between
NDVI and T in the JRB, the largest Z values in spring, summer and autumn were 5.2 (1992), 1.9 (1994),
and 3.3 (1990), respectively. Similarly, no statistic was larger than the threshold of rejecting the null
hypothesis. Therefore, the relationships between seasonal NDVI and P/T are still stationary under the
backdrop of the changing environment. Although there were no change points between autumn NDVI
and P and spring NDVI and T, their relationships might have experienced slight variations due to the
relatively large Zmax value which was 5.2 for both autumn NDVI-P and spring NDVI-T. Generally,
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the relationships between seasonal NDVI and P/T in the JRB fluctuated with no remarkable changing
point during 1982-2010.
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Figure 4. The statistics of copula-based method in detecting the change points of the relationship
between seasonal NDVI and P/T during 1982-2010 in the JRB.

4. Discussion

4.1. Methodology

Climate change (P and T) has proven to be the primary driving force inducing the vegetation
variation. For a long-term period, if there is no disturbance, the relationship between climate change
and vegetation variation will remain in a steady-state. However, it is evidenced that temperature
and precipitation are fluctuating unsteadily under a changing environment [7-11]. Therefore, the
steady-state of the relationship between climate change and vegetation tends to be unstable. Most
previous studies have focused on the statistical methods to identify the relationships without considering
their non-linearity and non-stationary [22-24]. In the current study, a copula-based method was
proposed to determine whether the relationship between climate change and vegetation has changed.
Moreover, previous studies have adopted this copula-based method to the identification of the change
points of the relationship between annual runoff and sediment series, annual rainfall and runoff [56].

In order to further verify the reliability of the results obtained by the copula-based method,
the double mass curve, which is known as a relatively simple and practical method to investigate
the consistency and tendency of the hydrometeorological series [56], was employed in the present
study to further check the variations of the relationships between seasonal NDVI and P/T (Figure 5).
It was obvious that the double-mass curve for the spring NDVI and P experienced a larger slope
during 2003-2010 than during 1982-2002, which indicated that the relationship between spring NDVI
and P in 1982-2002 was different from that in 1988-2010. This finding further verified that the time
corresponding to the maximum Z value was the year when the relationship between spring NDVI
and P began to change. Similarly, it can be observed in Figure 5 that the slope of the double mass
curve for spring NDVI and T in 1992-2010 was smaller than that in 1982-1991. Thus, the relationship
between spring NDVI and T began to vary in 1992, which was highly consistent with the year when Z
value peaked (5.2). For the relationship between autumn NDVI and P, it can be also observed that the
relationship for 1988-2010 was different from that for 1982-1987 as the slopes of the double mass curve
in the two periods were different, and 1988 happened to be the year when the Z value peaked (5.2).
Conversely, the slopes of the double mass curves of summer NDVI and P/T, autumn NDVI and T did
not exhibit any variations during 1982-2010, indicating that the relationships of them were stationarity
from 1982 to 2010. Meanwhile, the Z values of the relationships between summer NDVI and P/T and
autumn NDVI and T were found to be relatively small compared to other relationships analyzed above.
Therefore, the results obtained by the double-mass curve were consistent with that obtained by the
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copula-based method. Consequently, according to the double mass curve, the reliability and accuracy
of the copula-based method applied in this study was further verified.
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Figure 5. The double mass curves of seasonal NDVI and P/T covering 1982-2010 in the JRB. (a) and (b)
represent the double-mass curve of spring NDVI-P/T; (c¢,d) represent the double-mass curve of summer
NDVI-P/T; (e,f) represent the double-mass curve of autumn NDVI-P/T.

4.2. The Climatic Drivers for the Variations of the Relationship between NDVI and P/T

It has been proven that the large-scale atmospheric circulation anomaly and sunspots exhibited
strong associations with P and T at regional and global scales [57,58]. Besides, SM and PET play
important roles in vegetation dynamics [59,60]. Thereby, both the climatic and teleconnection factors
might disturb the relationship between NDVI and P/T. To further identify the potential drivers at
seasonal scale, two climatic variables (including SM and PET) and four teleconnection factors (including
AO, PDO, Nif03.4, and sunspots) were selected and the Pearson correlation analysis was performed to
investigate the detailed linkages between climatic/teleconnection factors and the relationship between
NDVI and P/T (represented by the Z values which were obtained in Section 3.4). Specifically, the
interaction between teleconnection factors and Z value series varied over time scales. Therefore,
teleconnection factors at different time scales had different impacts on the Z value series due to their
specifically strongly periodic fluctuations. Based on the above, the continuous wavelet transform
analysis was utilized to detect the periodicity of long-term AO, PDO, Nifi03.4, and sunspots series [61].
Results indicated that AO, PDO, Nifio3.4, and sunspots series had 14a, 7a, 18a, and 11a periodicity,
respectively. In order to eliminate the possible influence of the periodicity of the teleconnection factors
on the results, we thereby took 14a, 7a, 18a, and 11a as the corresponding length of the moving
windows to generate new stationary series of AO, PDO, Nifi03.4, and sunspots which synchronized
with the Z value series coving 1987-2005. Accordingly, the Pearson correlation coefficients between the
climatic/teleconnection factors and Z value series were calculated to trace the sensitivity of the Z value
to different climate variations, and the results are presented in Table 4.

Obviously, the spring Znpy.p series had statistically significant correlations (p < 0.01) with AQ,
PDO, Nifi03.4, as well as sunspots, while the spring Znpyr.T series was significantly correlated with
AO and PDO indices (p < 0.01). Similarly, there were certain correlations between the autumn Zypyy.p
series and all these teleconnection factors (p < 0.01), and the correlations were characterized by negative
values for PDO and positive values for AO, Nifio3.4, and sunspots. Moreover, for the autumn Zxpyr-T
series, AO, PDO, and Nifio3.4 showed remarkable correlations with it (p < 0.01). These findings
indicated that relationships between NDVI and P/T were closely associated with teleconnection factors
in the JRB. Nevertheless, summer Zypyy.p series was not only significantly related to PDO (p < 0.01),
but also significantly correlated with PET (p < 0.05). Additionally, the relationships between summer



Remote Sens. 2019, 11, 1628 12 of 18

Znpvr-p series and PDO/PET were positive. This implied that climatic factors such as PET could
promote the variation of the relationship between NDVI and P in summer. It was notable that all the
six selected factors had no significant correlation with the summer Zypy;.t series. This finding directly
demonstrated that variation of the relationship between summer NDVI and T had no significant
correlations with climatic and teleconnection factors. That is, other factors might affect the variation of
the relationship between NDVI and P/T during 1982-2010 due to their complexity and uncertainty
which deserves further study in the future.

Table 4. The correlations between climatic/teleconnection factors and Z value series in the JRB.

Climatic and Spring Summer Autumn

Teleconnection Factors  zypyyp ZNDVI-T ZNDVI-P ZNDVI-T ZNDVI-P ZNDVI-T

SM -0.28 -0.14 -0.32 0.31 -0.22 0.17
PET 0.20 -0.24 0.46 * 0.24 -0.09 -0.10
AO —0.65 ** 0.72 ** -0.43 0.38 0.71 ** 0.58 **
PDO 0.61 ** —0.71 ** 0.51* -0.14 —0.78 ** —0.65 **
Nifio3.4 —0.71 ** 0.15 0.04 0.19 0.78 ** 0.48 *
Sunspots —0.72 ** 0.41 -0.31 0.39 0.74 ** 0.43
EIA 0.26 0.09 0.61 ** 0.39 0.41 0.84 **

Note: “*” and “**” represent significant at 95% and 99% confidence level, respectively. The bold numbers represent
the significant correlations between climatic/teleconnection factors and Z value series.

According to this research, relationships between seasonal NDVI and P/T were sensitive to the
teleconnection factors over the past three decades, especially in spring and autumn. This result is
consistent with those of related studies, which have shown clearly the essential roles that teleconnection
factors played on vegetation variations in spring/autumn vegetation and climate variations. Anyamba
and Eastman [62] found that strong spatial and temporal teleconnection patterns exist between
ENSO related climate anomalies and patterns of variation in NDVI. Cho et al. [58] revealed that 17%
of the spring vegetation variance was explained by the previous winter’s AO variations over the
total northern high latitudes, emphasizing the importantly predictive role that winter AO on the
vegetation greenness or dynamics in subsequent spring. Moreover, global climate anomalies (such as
displacements in the rainfall patterns) were proven to be teleconnected with the anomalous warming
of oceanic waters and changes in the Walker circulation [62]. Therefore, the large-scale atmospheric
circulation anomaly which coupled the ocean-atmosphere system has a significant influence on climate
change. Gong and Shi [63] have addressed that large-scale climate systems such as ENSO and AO can
significantly influence the inter-annual variations of regional temperature, especially the temperature
in spring. Previous studies have demonstrated that temperature change could result in noticeably
biological consequences, including lengthened growing season, promoted vegetation activity, and
greater biomass productivity [64,65]. Therefore, by changing the regional temperature, the large-scale
climate fluctuations affect the vegetation coverage. Consequently, the direct impacts of teleconnection
factors on climate change and indirect impacts of teleconnection factors on vegetation coverage jointly
affect the relationship between NDVI and P/T.

Observations during 1982-2010 have shown a rising trend in seasonal temperature in the JRB,
especially in summer. The increase in summer temperature could accelerate evapotranspiration
and decrease soil moisture, resulting in drought and inhibition of vegetation growth. Additionally,
the JRB is widely known as a water-limited region and the vegetation in water-limited region is
sensitive to precipitation [7,66]. However, the precipitation in summer covering 1982-2010 in the
JRB has a non-significant trend. Therefore, in the context of poor precipitation and high temperature
in summer, the relationship between NDVI and P/T in summer is more sensitive to high intensity
evapotranspiration and soil moisture loss than in other seasons.
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Briefly, considering the important role climatic and teleconnection factors play on vegetation and
P/T variations, the deep exploration of their relationships helps better reveal and understand their
evolutionary characteristics, thus contribute to more robust predictions of future climate and ecosystem.

4.3. The Anthropogenic Drivers for the Variations of the Relationship between NDVI and P/T

Although climatic factors have remarkable impacts on the variations of the relationship between
NDVI and P/T, the important role of human activity on vegetation dynamics cannot be overlooked
which tend to influence the relationship between NDVI and P/T.

Based on the land use data and map illustrated in Table 5 and Figure 6, it was easily found that
farmland, forestland, and grassland were three main land types in the JRB which together accounted
for more than 95% of the total area during 1980-2010. However, their respective areas have experienced
fluctuated variations between 1980 and 2010. It has been reported that the population in the JRB
increased rapidly during 1990-1995 [67], resulting in the inevitably increased demand for farmland
and the accelerated urban expansion [68]. Therefore, the grassland and water area were converted
to farmland to meet the food demand in the context of population explosion. It can be obviously
seen from Table 5 that grassland and water area decreased during 1990-1995, while farmland and
construction land increased significantly. On the other hand, the rapid growth of population and urban
expansion could also lead to overgrazing and excessive wood cutting, and thus reducing the forestland
area during 1990-1995. Consequently, human activities mainly played a destructive role in vegetation,
resulting in vegetation degradation in the JRB during 1990-1995.

Table 5. Characteristics of inter-annual variations of land-cover in the JRB.

Farmland Forestland Grassland Water Bodies Construction Unused Land

Year Land

Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio

km? % km? % km? % km? % km? % km? %
1980 19,901 44.41 4179 9.33 19,829  44.25 215 0.48 690 1.54 1 0
1990 19,960  44.54 4239 9.46 19,738  44.04 205 0.46 670 1.49 3 0.01
1995 20,172  45.01 4023 8.98 19,645  43.84 192 0.43 721 1.61 62 0.14
2000 19,865  44.33 4026 8.98 19,946 4451 213 0.47 765 1.71 0 0
2005 19,499 43,51 4439 9.9 19,815  44.22 212 0.47 847 1.89 3 0.01
2010 19426  43.35 4470 9.97 19,847  44.29 209 047 860 1.92 3 0.01
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Figure 6. Land use map in different periods of the Jing River Basin.
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It is well known that the JRB has experienced intensive soil erosion, with an average of nearly
2.6 x 108 t of sediment transported into the JRB per year, accounting for 14% of the annual sediment
load in the YRB [37]. Hence, a series of water and soil conservation measures have been implemented
on the Loess Plateau which contains the JRB to reduce the soil erosion rate, especially the “Grain
for Green” program (GGP) launched by the Chinese government in 1999 [69]. The improvement
of vegetation coverage and the alteration of land cover patterns jointly affected the land surface
hydrological processes through intercepting precipitation and promoting the infiltration rate [70]. The
current study confirmed that the farmland area exhibited a decreasing trend during 1995-2005, while
the forestland and grassland area increased during 1995-2005 (Table 5). This is in accordance with the
previous research on the Loess Plateau [71,72]. Xiao [71] found a significant GGP-induced increase in
the leaf area index and tree coverage on the Loess Plateau. Tang et al. [72] noted a significant decrease in
the farmland areas and a significant increase in the forest areas on the Loess Plateau. Therefore, human
activities such as the GGP could have obviously promoted the vegetation coverage during 1995-2005.

In conclusion, both the negative and positive human disturbances affect vegetation growth, and
their impacts on vegetation were more direct and efficient than climatic factors. Besides, human
activities indirectly regulate the climate of a basin by affecting vegetation growth. Therefore, the
variations of relationship between NDVI and P/T during 1982-2010 were closely associated with human
activities in the JRB. Furthermore, based on the effective irrigated area data (EIA), the correlation
coefficients between seasonal Z value series and EIA were calculated and the results are presented in
Table 4. Obviously, the EIA was significantly positively correlated with the summer Zypyy.p series
and autumn Zypyy.t series (p < 0.01), indicating that human activities such as EIA could promote
the relationship changes between NDVI and P/T in summer and autumn. Consequently, considering
anthropogenic disturbances will be helpful for deeper investigating the possible non-stationarity of
the relationship between vegetation growth and climate change under a changing environment, thus
revealing the detailed attributions.

5. Conclusions

Climate disturbance played a crucial role in vegetation dynamics under the background of a
changing environment. Therefore, understanding the variation of their relationships and identifying
the change points of the relationships was an important basis to evaluate the potential influence of
climate change on ecosystems which will support regional land planning and management.

In this study, temporal variations of NDVI, P, and T were investigated in the JRB which is widely
known as a typical arid and semi-arid region in China. According to the MMK test, the seasonal T
and autumn NDVI exhibited a significant increasing trend, whilst P showed an insignificant trend
during 1982-2010 in the JRB. Besides, a copulas-based method was introduced in present study to
detect the possible change points between NDVI and P/T. Simultaneously, the double-mass curves
method was adopted to verify the reliability of the results acquired by the copula-based method. The
two methods consistently showed that the relationships between spring NDVI and P/T and autumn
NDVI and P basin have slightly changed, while the relationships of summer NDVI-P/T and autumn
NDVI-P have not strikingly changed in the JRB. Generally, no significant change point was identified
from the relationship between seasonal NDVI and P/T. We further revealed the dominant drivers of the
fluctuations of the relationships between NDVI and P/T at seasonal scales by considering the large-scale
atmospheric circulation systems. On average, teleconnection factors have significant impacts on the
relationship between seasonal NDVI and P/T. Additionally, the human-induced vegetation degradation
and vegetation greenness showed a remarkable influence on the variations of the relationship between
NDVI and P/T.

In conclusion, a new framework was proposed in the present study to explore the non-stationarity
of the relationship between seasonal NDVI and P/T, which could help effectively and reliably investigate
the sensitivity of vegetation dynamics to climate change, thus conducting ecological restoration on
vegetation cover at regional scales.
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