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Abstract: The emergence of rice panicle substantially changes the spectral reflectance of rice canopy
and, as a result, decreases the accuracy of leaf area index (LAI) that was derived from vegetation indices
(VIs). From a four-year field experiment with using rice varieties, nitrogen (N) rates, and planting
densities, the spectral reflectance characteristics of panicles and the changes in canopy reflectance
after panicle removal were investigated. A rice “panicle line”—graphical relationship between
red-edge and near-infrared bands was constructed by using the near-infrared and red-edge spectral
reflectance of rice panicles. Subsequently, a panicle-adjusted renormalized difference vegetation
index (PRDVI) that was based on the “panicle line” and the renormalized difference vegetation index
(RDVI) was developed to reduce the effects of rice panicles and background. The results showed
that the effects of rice panicles on canopy reflectance were concentrated in the visible region and the
near-infrared region. The red band (670 nm) was the most affected by panicles, while the red-edge
bands (720–740 nm) were less affected. In addition, a combination of near-infrared and red-edge
bands was for the one that best predicted LAI, and the difference vegetation index (DI) (976, 733)
performed the best, although it had relatively low estimation accuracy (R2 = 0.60, RMSE = 1.41 m2/m2).
From these findings, correcting the near-infrared band in the RDVI by the panicle adjustment factor
(θ) developed the PRDVI, which was obtained while using the “panicle line”, and the less-affected
red-edge band replaced the red band. Verification data from an unmanned aerial vehicle (UAV)
showed that the PRDVI could minimize the panicle and background influence and was more sensitive
to LAI (R2 = 0.77; RMSE = 1.01 m2/m2) than other VIs during the post-heading stage. Moreover, of
all the assessed VIs, the PRDVI yielded the highest R2 (0.71) over the entire growth period, with
an RMSE of 1.31 (m2/m2). These results suggest that the PRDVI is an efficient and suitable LAI
estimation index.

Keywords: panicle adjustment factor; panicle-adjusted renormalized difference vegetation index
vegetation index; leaf area index

1. Introduction

The leaf area index (LAI) is a major biophysical parameter that is used to determine the vegetation
canopy structure and population characteristics [1], and it is a key biophysical variable in vegetation
photosynthesis, transpiration, respiration, and the carbon cycle [2,3]. Similarly, the LAI could
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quantitatively describe leaf area changes, which reflects the growth status of vegetation at the
community level and shifts in net primary productivity [4–6]. Therefore, it is critical to study and
develop methods that can rapidly and accurately determine the LAI.

A vegetation index (VI) is a spectral transformation of two or more bands to identify the
contribution of vegetation properties. It is widely used to estimate the physiological and biochemical
indicators, such as the LAI [7], aboveground biomass (AGB) [8], and leaf nitrogen content (LNC) [9].
Since the 1980s, numerous investigations have employed VIs to study the LAI. VIs can be divided into
two major categories, according to the formula types and application requirements. One group consists
of simple mathematical combinations of bands, such as spectral differences or ratios. Jordan [10] first
proposed the difference vegetation index (DI) and the ratio vegetation index (SR) for the rapid estimation
of LAI. Guo et al. [11] developed DI (800, 750) to monitor the LAI of rice. Li and Wang [12] reported that
DI (920, 1080) could minimize the influence of canopy vertical heterogeneity and accurately estimate
the LAI of beech. Due to the nonlinear relationship between the normalized difference vegetation index
(NDVI) and LAI for dense vegetation canopy [13], Roujean and Breon [14] and Chen [15] proposed the
renormalized difference vegetation index (RDVI) and the modified simple ratio (MSR) to minimize the
saturation effect.

Another type of VI was developed to eliminate the influence of endmembers (e.g., soil background,
atmosphere) at the subpixel scale. The most representative VI in this group is the soil adjusted vegetation
index (SAVI) that was proposed by Huete [16]. Further development of the SAVI concept resulted
in the optimized SAVI (OSAVI) [17]. Kaufman and Tanre [18] proposed the soil and atmospheric
resistance vegetation index (SARVI) to eliminate the influence of background and atmospheric aerosols.
Peddle et al. [19] developed a novel sunlit canopy adjusted vegetation index (SCAVI) to improve the
accuracy of estimations of physiological and biochemical parameters (e.g., LAI) that are influenced by
background and varying lighting conditions while using the principle of spectral mixture analysis at
the subpixel scale. Haboudane et al. [20] proposed the modified triangular vegetation index (MTVI2)
on the basis of the triangular vegetation index (TVI), and the modified index eliminated the effects of
chlorophyll, soil, and atmosphere when estimating LAI. Previous studies have shown that the enhanced
vegetation index (EVI) is less affected by soil background noise and sensitive to LAI values that were
lower than 2 or 3 m2/m2 [21]. When compared with a single vegetation index, simple combinations of
VIs (e.g., OSAVI× EVI2, TCARI/OSAVI, PPR/NDVI) produce higher accuracy estimates of physiological
and biochemical parameters, such as LAI [22–24].

In gramineous crops, such as rice and wheat, the influence of soil background is prominent during
early growth stages, and it decreases as vegetation cover (VC) increases. Numerous studies have
shown that the appearance of panicles can not only change the light distribution in a crop canopy,
but also considerably affect canopy spectral reflectance [25–28]. Inoue et al. [29] and Asilo et al. [30]
also reported that panicles influence the relationship between X-band and LAI in rice. Therefore, the
influence of panicles on canopy structure is a key factor that affects LAI estimation accuracy during
the late growth stages of crops. This is problematic due to the accurate estimation of crop yields
during late growth stages often relies on the accurate estimation of LAI [31]. Although some VIs (e.g.,
SAVI and OSAVI) account for the influence of soil background noise and are well correlated with LAI
during early growth stages, the modification of soil background noise cannot eliminate the influence of
changes in canopy structure that are caused by panicles after the heading stage. Despite its importance,
few studies have examined the effect of panicles on canopy spectra.

Our specific aims are to (1) study the effects of rice panicles on canopy reflectance; (2) evaluate the
influence of rice panicles on the prediction accuracy and stability of VIs that are used to estimate LAI;
and, (3) develop a new panicle- and soil-adjusted vegetation index to improve the estimation accuracy
of rice LAI in the post-heading stage.
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2. Materials and Methods

2.1. Study Area and Experimental Details

Five rice field experiments were conducted in the experimental station of the National Engineering
and Technology Center for Information Agriculture in Rugao City, Jiangsu Province, China (120◦45′E,
32◦16′N). The experiments involved different nitrogen (N) rates, planting densities, and rice cultivars
in different years (Table 1). The experimental details are described below.

Table 1. Detailed information on the field treatments adopted in the present study.

Cultivar
Nitrogen

Fertilization Rate
(kg·ha−1)

Plant Density
(Plants·m−2)

Sampling and Spectral
Measurement Data

(DATa)

Exp.1
(2013)

Wuxiangjing 14
(WXJ14, V1)
Shanyou 63
(SY63, V2)

150 (N2)
300 (N3)

22.22 (D2)
13.33 (D4)

28, 40, 58,
69, 83, 91, 109

Exp.2
(2014)

Wuyunjing 24
(WYJ24, V3)
Eryou 728

(EY728, V4)

150 (N2)
300 (N3)

33.33 (D1)
22.22 (D2)
16.66 (D3)

28, 40, 50, 68,
79, 86, 102, 119

Exp.3
(2015)

Wuyunjing 24
(WYJ24, V3)
Eryou 728

(EY728, V4)

100 (N1)
300 (N3)

22.22 (D2)
16.66 (D3)
13.33 (D4)

37, 43, 50, 58,
71, 86, 95, 96b,

101, 102b, 117, 118b

Exp.4
(2016)

Wuyunjing 24
(WYJ24, V3)
Eryou 728

(EY728, V4)

100 (N1)
300 (N3)

22.22 (D2)
16.66 (D3)
13.33 (D4)

24, 41, 50, 59,
73, 87, 89b, 96,
98b, 113, 114b

Exp.5c

(2015)

Wuyunjing 24
(WYJ24, V3)

Y Liangyou 1
(YL1, V5)

0 (N0)
100 (N1)
300 (N3)

22.22 (D2)
13.33 (D4) 82, 99

a DAT: days after transplanting. b Denotes that canopy reflectance were measured before and after cutting the
panicles. c Spectral data obtained by UAV.

Experiment 1 (Exp.1) was conducted from May to November 2013. One japonica rice cultivar,
Wuxiangjing14 (V1, with erect leaves and panicles), and one indica rice cultivar, Shanyou63 (V2, with
spread leaves and panicles), were seeded on May 15 and then transplanted into the paddy field on
June 15. Two N rates (N1 = 100 kg N ha−1 and N3 = 300 kg N ha−1) were applied with two planting
densities (D2 = 22.22 plants m−2 and D4 = 13.33 plants m−2).

Experiment 2 (Exp.2) was conducted from May to November 2014. One japonica rice cultivar,
Wuyunjing24 (V3, with erect leaves and panicles) and one indica rice cultivar, Eryou728 (V4, with
spread leaves and panicles), were seeded on May 15 and then transplanted into the paddy field on
June 15. Two N rates (N2 = 150 kg N ha−1 and N3 = 300 kg N ha−1) were applied with three planting
densities (D1 = 33.33 plants m−2, D2 = 22.22 plants m−2, and D3 = 16.66 plants m−2).

Experiments 3 (Exp.3) and 4 (Exp.4) were conducted from May to November in 2015 and 2016,
respectively. Two N rates (N1 = 100 kg N ha−1 and N3 = 300 kg N ha−1) were applied with three
planting densities (D2 = 22.22 plants m−2, D3 = 16.66 plants m−2, and D4 = 13.33 plants m−2). The rice
cultivars and the dates of seeding and transplanting were the same as those in Exp.2.

Experiment 5 (Exp.5) was conducted from May to November 2015. One japonica rice cultivar,
Wuyunjing24 (V3, with erect leaves and panicles), and one indica rice cultivar, Y Liangyou 1 (V5, with
spread leaves and panicles), were seeded on May 15 and transplanted into the paddy field on June 15.
Three N rates (N0 = 0 kg N ha−1, N1 = 100 kg N ha−1, and N3 = 300 kg N ha−1) were applied with two
planting densities (D2 = 22.22 plants m−2 and D4 = 13.33 plants m−2).

Each treatment in the five experiments had three replicates. The plot area was 30 m2, with the
dimensions 6 × 5 m. The N fertilizers were applied, as follows: 40% as basal fertilizer before
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transplanting, 20% at tillering stage, 20% at the jointing stage, and 20% at the booting stage.
The initial heading dates of experiments 1 to 5 were 77, 74, 76, 75, and 76 days after transplanting
(DAT), respectively.

2.2. Spectral Measurements

Canopy spectral reflectance was measured with the FieldSpec4 Standard-Res (Analytical Spectral
Device, Boulder, CO, USA). The spectral range of this instrument is 350–2500 nm, and the view
angle is 25◦. All of the spectral measurements were performed 1 m above the rice canopy between
10:00 and 14:00 in cloud-free conditions. Five fixed points (where the tiller number is the same or
similar to the average tiller number of the plot) were selected in each plot for spectral measurements
throughout the growing period, and the spectral reflectance at each point was recorded three times.
The averaged spectrum was calculated and regarded as the value for that plot by using the software
ViewSpecPro (Analytical Spectral Device, Boulder, CO, USA). The reflectance of a white reference
panel was determined before each measurement. This white reference panel reflects a high 99% of
the radiation in the measured wavelengths, and that it is what is used as a reference to calculate the
reflectance of the rice canopy.

In addition to conventional spectral measurements, the spectral reflectance of the rice canopy
before and after the removal of panicles were measured during the post-heading stages in Exp.3 (96, 102,
118 DAT) and Exp.4 (89, 98, 114 DAT). First, the spectral reflectance of the original canopy (Figure 1a) was
measured (Roriginal canopy), all of the panicles in the instrument field of view were cut off, and then the
spectral reflectance of the remaining rice canopy was measured again (Figure 1b) (Rcanopy without panicles).
Finally, the spectral reflectance of the panicles (Rpanicles) was measured (the sensor was 0.1 m above
the panicles), as shown in Figure 2. Figure 3 shows Roriginal canopy, Rcanopy without panicles, Rpanicles, the
relative variation rate (Rv, %), and the difference (D) between Roriginal canopy and Rcanopy without panicles.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 26 
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Figure 3. Influence of panicles on the reflectance of rice canopy. (a) is the variations in the spectral
signature of rice canopies before (Roriginal canopy) and after (Rcanopy without panicles) the removal of
panicles, and (b) is the relative variation rates (%) and the differences between Roriginal canopy and
Rcanopy without panicles for different varieties (V3 = WYJ24, V4 = EY728) and transplanting densities
(D2 = 22.22 plants m−2, D3 = 16.66 plants m−2, D4 = 13.33 plants m−2). The sampling date was
96 days after transplanting (2015). Significant noise in the reflectance (caused by the effects of
atmospheric moisture) was removed in the wavelength ranges 1351–1380, 1781–1970, and 2351–2500 nm.
The color-shaded areas in (a) and (b) represent 720–740 (green), 450–730 (gray), and 730–1350 nm (yellow).

2.3. UAV, Sensor, Image Acquisition and Processing

The unmanned aerial vehicle (UAV) that was used in this study is a multi-rotor MK-Oktokopter
manufactured by HiSystems GmbH. The maximum payload capacity is 2.5 kg, and the maximum
flight range is 1000 m. The flight duration varies between 8 and 25 min., depending on the battery and
payload. A multispectral camera (Mini-MCA6; Tetracam, Inc., Chatsworth, CA, USA) was mounted
on the UAV to acquire multispectral images. The band that was selected for this study comprises the
center wavelengths of 490, 550, 680, 720, and 800 nm.

The UAV campaign was conducted in clear-sky and low-wind-speed conditions between 10:00
and 14:00 local time. The MK-Tool autopilot was used to set the flight waypoints, and multispectral
images were acquired at an altitude of 100 m. The camera settings were adjusted according to the
lighting conditions and set to a fixed exposure for each flight. The images were continuously acquired
during the flight at 0.5 Hz and saved to memory cards. Note that the UAV only obtained images of
36 plots in Exp.5.

The processing workflow for the multispectral images includes noise correction, vignetting
correction, lens distortion correction, band-to-band registration, band stacking, and radiometric
calibration. All processing was performed while using the IDL script within the ENVI software
package (EXELIS; Boulder, CO, USA). One hundred dark offset sample images were generated for
each of the Mini-MCA channels at multiple exposure levels. The per-pixel average was calculated for
each combination of sensor and exposure levels and stored as a noise correction file. Lens vignetting
correction was based on spatially dependent correction factors. The correction factors for each sensor
at multiple exposure levels were generated from the average of 100 flat field sample images with the
uniform source system (CSTM-USS-1200C; Labsphere, Inc., New England, USA). A Brown–Conrady
distortion model was adopted for lens distortion. Since the Mini-MCA6 has a significant band
mis-registration effect, GCPs were used for band-to-band registration. For radiometric calibration,
seven calibration targets (1.2 m × 1.2 m) with nominal reflectance of 3%, 6%, 12%, 22%, 48%, 64%, and
80% were placed within the UAV flight path and then captured in the mini-MCA imagery. The target’s
actual digital number (DN) values were extracted from the airborne image and the reflectance measured
with a FieldSpec4 Standard-Res Spectroradiometer (Analytical Spectral Devices; Boulder, CO USA).
The DNs in the raw images were then transformed into the ground measured reflectance data by
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applying an empirical linear correction method. Zhou et al. provided more detailed information on
the UAV and the image processing [32].

2.4. Determination of LAI

After each canopy spectral reflectance measurement, three plants from each plot were randomly
selected to determine leaf area. The green leaves were separated from the stems, and leaf area was
measured using a leaf area meter (LI-3100C, LI-COR Inc., NE, USA), and then LAI was calculated in
each plot from the planting densities. The spatial and temporal variation in rice LAI (Figure 4) showed
that LAI increased and then decreased during the entire growth stage, and it increased with increased
planting densities and N rates. The maximum LAI of japonica rice (V1, V3) was less than that of indica
rice (V2, V4).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 26 
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2.5. Development of the Panicle-Adjusted Renormalized Difference Vegetation Index

2.5.1. Selection of Vegetation Index Form

As a row crop, rice has a high planting density and complex background conditions, especially
during its later growth stage (Figure 5). Therefore, a vegetation index that minimizes the effects of
background and canopy structure is a prerequisite for the accurate estimation of LAI. Some of the VIs
(such as NDVI) that are easily saturated under high LAI conditions are not suitable for estimating
LAI during the late growth stage of rice [33]. Although the DI is not easily saturated under high LAI
conditions, it is markedly affected by the spectral and directional canopy properties [14]. The RDVI,
which combines the advantages of the DI and NDVI, is suitable for estimating LAI under complex
background and high LAI conditions [14,20].
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V4D2, respectively.

2.5.2. Development of the Panicle-Adjusted Renormalized Difference Vegetation Index (PRDVI)

The combination of near-infrared band and red-edge bands has performed well in the prediction
of LAI [34–37]. The key difference between panicles and leaves is their internal structures and
components (such as chlorophyll), and it caused large differences in canopy reflectance in the visible
and near-infrared regions, before and after panicle removal (detailed in Section 3.1.). However, the
red-edge band was stable (Figure 3). Therefore, the red-edge band was selected to replace the red band
in the RDVI.

A clear linear relationship was observed between the near-infrared band reflectance of panicles
and the red-edge band among rice varieties with different panicle types. The maximum values of the
red-edge and the near-infrared reflectance of panicles were much larger than those of the canopy with
the panicles that were removed (Figure 6a). Therefore, a “rice panicle line” was constructed to obtain
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the panicle adjustment factor (θ) by using the near-infrared and red-edge spectral reflectance of rice
panicles (Figure 6b).

ρ(nir) = aρ(red edge) + b (1)

where a and b are the slope and intercept of the rice panicle line, respectively, and they are mainly
affected by the panicle type and maturity. The panicle adjustment factor (θ = b/a) was used to modify
the near-infrared band in the RDVI. Then, the PRDVI was defined, as follows:

PRDVI =
((1 + θ)NIR−RE)√

(NIR + RE)
(2)

where NIR and RE are the average reflectance of the near-infrared band (841–876 nm) and the red-edge
band (720–740 nm); θ is the panicle adjustment factor, which is the ratio between the intercept and the
slope of the rice panicle line. In the pre-heading stage, θ is 0, and the PRDVI is equivalent to the RDVI,
with its red band being replaced by the red-edge band.
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and near-infrared reflectance of the panicle-removed canopy.

2.6. Data Analysis and Application

Data from the five experiments were divided into 12 different data set combinations that were
based on different growth stages (pre-heading stages: data set 1 and 9; post-heading stages: data
set 2 and 10; All stages: data set 3 and 11), different remote sensing platforms (FieldSpec4: data set
1–11; UAV: data set 12), and the rice canopy with (data set 5) or without panicles (data set 6) (Table 2).
Each data set included two types of rice (japonica and indica). Data sets 1–3 were used to evaluate
the performance of different VIs in LAI estimation at different growth stages. Data set 4 was used
to construct the rice panicle line. Data sets 5–8 were used to evaluate the effect of panicles on LAI
estimation accuracy, and data sets 9–12 were used to test and evaluate the newly developed vegetation
index. In the present study, VI performance in LAI estimation was evaluated while using the coefficient
of determination (R2), root-mean-square error (RMSE), and relative root-mean-square error (rRMSE).
The formulae are as follows:

R2 = 1−

∑n
i=1(Pi −Oi)

2∑n
i=1(Pi −Oi)

2 (3)

RMSE =

√∑n
i=1(Pi −Oi)

2

n
(4)

rRMSE =

√∑n
i=1(Pi −Oi)

2

n
×

100

Oi
(5)
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where Oi and Pi are the observed value and predicted value, n is the number of samples, and Oi is the
average of Oi.

Table 2. Summary description of the datasets.

Dataset Year Description
Number of Samples

Japonica Indica Total

1

2015–2016

Pre-heading stages 159 162 321
2 Post-heading stages 120 120 240
3 All stages 279 282 561
4 Panicles 36 36 72
5 Original canopy 36 36 72
6 Canopy without panicles 36 36 72
7 Pre-heading + Canopy without panicles 195 198 393
8 Post-heading + Original canopy 156 156 312

9
2013–2016

Pre-heading stages 279 282 561
10 Post-heading stages 210 210 420
11 All stages 489 492 981

12 2015 UAV data 36 36 72

The names, formulae, and references for the VIs that were used in this study are presented in
Table 3. The mean reflectance values of the 841–876, 720–740, 620–670, 550–570, and 459–479 nm ranges
were used as the reflectance in the near-infrared, red-edge, red, green, and blue bands, respectively.

Table 3. Spectral vegetation indices used in this study. The coefficient of determination of leaf area
index for different spectral indices was calculated using the spectral data of the entire canopy and the
canopy without panicles.

Vegetation Index Formula a

Coefficient of Determination

ReferenceEntire
Canopy

Canopy without
Panicles

DI λ1 − λ2
b 0.66 0.76 [10]

SR Rnir/Rred 0.38 0.31 [10]

NDVI (Rnir −Rred)/(Rnir + Rred) 0.37 0.29 [38]

GNDVI
(
Rnir −Rgreen

)
/
(
Rnir + Rgreen

)
0.49 0.36 [39]

RDVI (R800 −R670)/
√
(R800 + R670) 0.43 0.58 [14]

MSR
(

R800
R670
− 1

)
/
√(

R800
R670

+ 1
)

0.33 0.28 [15]

Green WDRVI 1−α
1+α +

α×Rnir−Rgreen
α×Rnir+Rgreen

c 0.51 0.39 [40,41]

Red Edge WDRVI 1−α
1+α +

α×Rnir−Rred edge

α×Rnir+Rred edge
c 0.60 0.43 [40,41]

SAVI (1 + L)(R800 −R670)/(R800 + R670 + L) d 0.44 0.57 [16]

OSAVI (1 + Y)(R800 −R670)/(R800 + R670 + Y) e 0.40 0.53 [17]

TVI 0.5[120(R750 −R550) − 200(R670 −R550)] 0.28 0.37 [42]

MTVI2
1.5[1.2(R800−R550)−2.5(R670−R550)]√
(2R800+1)2

−(6R800−5
√

R670)−0.5
0.38 0.52 [20]

EVI 2.5(Rnir−Rred)
(Rnir+6Rred−7.5Rblue+1) 0.51 0.61 [43]

CIred edge
(
Rnir/Rred edge

)
− 1 0.60 0.43 [44]

CIgreen
(
Rnir/Rgreen

)
− 1 0.50 0.39 [44]

NDRE
(
Rnir −Rred edge

)
/
(
Rnir + Rred edge

)
0.41 0.35 [45]

a In all formulae, R is the reflectance, and the subscripts “nir”, “red edge”, “red”, “green”, and “blue”, as well as
different three-digit numbers, indicate the spectral bands. The mean reflectance values of the 841–876, 720–740,
620–670, 550–570, and 459–479 nm ranges were used as the reflectance of the NIR, red-edge, red, green, and blue
bands, respectively. b In this study, λ1 = Rnir, λ2 = Rred edge. c In the two variants of the wide dynamic range
vegetation index (WDRVI), α was 0.1. d L is a soil adjustment factor; here, L = 0.5, according to Huete [16]. e Y is a
soil adjustment factor; here, Y = 0.16, according to Rondeaux et al. [17].
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3. Results

3.1. Influence of Panicles on the Reflectance of Rice Canopy

Figure 3 shows that rice canopy reflectance markedly changed after the removal of the panicle
layer. The relative variation rates (%) between Roriginal canopy and Rcanopy without panicles was from
−65% to 75% for different bands and different treatments. In general, Rcanopy without panicles of V3 was
influenced more by different planting densities, and the effect of the N rate varied with the rice varieties
and bands. In the 450–730 nm range, Rcanopy without panicles was lower than Roriginal canopy in all the
treatments. In addition, the decrease in V4 was less than that in V3. The attenuation range of the two
varieties (V3, V4) decreased with the decrease in planting density for the same N level, and it decreased
with the increase in N fertilization for similar planting densities. Although the difference between
Rcanopy without panicles and Roriginal canopy in the 450–730 nm range was lower than that in other band
ranges, the relative variation rate of this band range was higher, especially in the red band at 670 nm.

In the 730–1350 nm range, Rcanopy without panicles was lower than Roriginal canopy in all V3 treatments
and in the low N treatment of V4, but Rcanopy without panicles was higher than Roriginal canopy in the high
N treatment of V4. The difference between Rcanopy without panicles and Roriginal canopy in this band range
still decreased with decreasing planting density. In this band range, although the relative variation
rate of the reflectance was smaller than that in the other bands, there is a big difference between before
and after panicle removal due to of the higher reflectance of the short-wave near-infrared band.

The red-edge position in the rice canopy spectra before and after panicle removal did not change,
except in the maturing stage (117 DAT) (Table 4).

Table 4. The red edge position of Roriginal canopy and Rcanopy without panicles for different treatments and
growth stages. Data were collected in 2015.

Treatments

96 DAT 102 DAT 117 DAT

Original
Canopy

Canopy
without
Panicles

Original
Canopy

Canopy
without
Panicles

Original
Canopy

Canopy
without
Panicles

V3

D2
N1 725 nm 725 nm 715 nm 715 nm 697 nm 725 nm
N3 727 nm 727 nm 727 nm 727 nm 723 nm 727 nm

D3
N1 718 nm 718 nm 716 nm 716 nm 697 nm 718 nm
N3 727 nm 727 nm 723 nm 723 nm 722 nm 727 nm

D4
N1 723 nm 723 nm 723 nm 723 nm 697 nm 723 nm
N3 727 nm 727 nm 723 nm 723 nm 698 nm 727 nm

V4

D2
N1 725 nm 725 nm 716 nm 716 nm 694 nm 725 nm
N3 726 nm 726 nm 723 nm 723 nm 697 nm 727 nm

D3
N1 718 nm 718 nm 723 nm 723 nm 692 nm 725 nm
N3 729 nm 729 nm 723 nm 723 nm 697 nm 725 nm

D4
N1 725 nm 725 nm 716 nm 716 nm 695 nm 725 nm
N3 729 nm 729 nm 728 nm 728 nm 700 nm 729 nm

3.2. Influence of Panicles on LAI Estimation Accuracy

3.2.1. Relationship between LAI and the Reflectance of Rice Canopy before and after the Removal
of Panicles

VIs that are commonly used to estimate LAI were calculated while using Rcanopy without panicles and
Roriginal canopy, and the correlations between the VIs and LAI were analyzed (Table 3). Figure 7 shows
the relative variation rate of the estimation accuracy. The results show that LAI estimation accuracy
in some VIs (DI, SAVI, RDVI, MTVI2, TVI, EVI, OSAVI) improved when using Rcanopy without panicles,
within marked improvements in SAVI, RDVI, MTVI2, and TVI. However, there was a decline in LAI
estimation accuracy with the use of Rcanopy without panicles for the chlorophyll index red edge (CIred edge),
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chlorophyll index green (CIgreen), green wide dynamic range vegetation index (WDRVIgreen), red-edge
wide-range vegetation index (WDRVIred edge), NDVI, normalized difference red edge (NDRE), green
normalized difference vegetation index (GNDVI), SR, and MSR. The decreased accuracy was particularly
pronounced for the CIred edge, CIgreen, WDRVIgreen, WDRVIred edge, and GNDVI.
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R2) before (data set 5) and after panicle removal (data set 6). A positive Rv value indicates that R2

increased after panicle removal, whereas a negative value indicates a decrease.

Different vegetation indices exhibited different responses to panicle removal in different
experimental treatments (Figure 8). The VIs (DI, SAVI, RDVI, MTVI2, TVI, EVI, and OSAVI), whose
estimation accuracy increased after the removal of panicles changed slightly before and after the
removal of panicles. On the contrary, the VIs (CIred edge, CIgreen, WDRVIgreen, WDRVIred edge, NDVI,
NDRE, GNDVI, MSR, and SR) whose estimation accuracy decreased after the removal of panicles
varied greatly between the two conditions (i.e., with and without panicles). Variations in the VIs of V3
were significantly larger than those of V4.

Five representative two-band VIs (DI, SAVI, RDVI, CI, WDRVI) were selected to conduct full-band
(350–2500 nm) sensitivity analyses of LAI while using Rcanopy without panicles and Roriginal canopy (Figure 9).
The results show that the LAI sensitivity ranges of VIs calculated by Rcanopy without panicles and
Roriginal canopy were different. For the DI, SAVI, and RDVI, LAI sensitivity in the 750–1350, 1450–1780,
1970–2350 (λ1), and 550–680 nm (λ2) combination significantly increased. For the CI and WDRVI, the
range of sensitive bands significantly shifted toward the long-wave spectrum. There was an increase
in LAI sensitivity in the 1450–1780, 1970–2350 (λ1), and 550–680 nm (λ2) combination. However, the
sensitivity decreased in the 750–1350 (λ1) and 550–680 nm (λ2) combination.

Table 5 shows that the optimal band combination (OBC) for different vegetation indices that were
used to estimate LAI was relatively uniform and was the near-infrared and red-edge band combination.
Before the removal of panicles, RDVI (951, 733), RDVI (897, 745), and RDVI (1157, 724) had the best
performance in LAI estimation for V3, V4, and V3+V4, respectively. After the removal of panicles,
RDVI (958, 732), RDVI (931, 739), and RDVI (996, 732) performed the best. In japonica rice (V3), the
near-infrared band of the OBC significantly shifted toward the long-wave spectrum after the removal
of panicles. Conversely, it shifted toward the short-wave spectrum in indica rice (V4).
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Figure 8. Relative variation rates (Rv, %) of different vegetation indices in response to the removal of panicles from rice canopies with different treatments. Rv is
the percentage of the vegetation index after panicle removal minus the vegetation index of the original canopy over the absolute value of the vegetation index
of the original canopy. A positive Rv value indicates an increase in the vegetation index after panicle removal, whereas a negative value indicates a decrease.
Erect treatment = erect-type variety (V3), 16.66 plants m−2, 300 kg N ha−1; Spread treatment = spread-type variety (V4), 16.66 plants m−2, 300 kg N ha−1; Low N
treatment = spread-type variety (V4), 22.22 plants m−2, 100 kg N ha-1; High N treatment = spread-type variety (V4), 22.22 plants m−2, 300 kg N ha−1; High plant
density = erect-type variety (V3), 22.22 plants m−2, 300 kg N ha−1; Low plant density = erect-type variety (V3), 13.33 plants m−2, 300 kg N ha−1.
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Figure 9. Correlations between DI, SAVI, RDVI, CI, and WDRVI, and rice canopy LAI that were
calculated using Roriginal canopy (data set 5) and Rcanopy without panicles (data set 6).

3.2.2. Relationship between LAI and VIs during the Pre-Heading Stage, Post-Heading Stage, and
Whole Growth Stage

Figure 10 shows that the sensitive band range of LAI markedly decreased after the heading stage,
and the accuracy of LAI estimation decreased for all VIs. In the pre-heading stage, RDVI (855, 749)
performed best when the two varieties were simultaneously considered, with R2, RMSE, and rRMSE
values of 0.76, 1.23 (m2/m2), and 27.39%. In the post-heading stage, the near-infrared band of the OBC
significantly shifted in the short-wave direction in japonica rice (V1, V3). Conversely, it shifted in
the long-wave direction in indica rice (V2, V4). DI (976, 733) performed best when the two varieties
were simultaneously considered, with R2, RMSE, and rRMSE were 0.60, 1.41 (m2/m2), and 28.24%.
A comparison of the calculated results using data sets 7–8 and data sets 1–2 (Table 5) reveals that the
OBC and R2 of the five VIs did not significantly change.
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Table 5. The determination coefficient (R2), optimal band combination (OBC), root-mean-square error (RMSE) and relative root mean squared error (rRMSE) for LAI
estimations while using five vegetation indices and different data sets.

Cultivar Data
DI SAVI RDVI CI WDRVI

R2 OBC RMSE rRMSE
(%) R2 OBC RMSE rRMSE

(%) R2 OBC RMSE rRMSE
(%) R2 OBC RMSE rRMSE

(%) R2 OBC RMSE rRMSE
(%)

All
(V1+V2+V4+V4)

1 0.73 851, 756 1.15 27.88 0.76 854, 752 1.09 26.42 0.75 851, 753 1.09 26.43 0.72 854, 751 1.17 28.24 0.72 854, 751 1.17 28.27
2 0.59 774, 744 1.24 29.68 0.60 934, 723 1.23 29.39 0.60 934, 724 1.23 29.27 0.49 955, 724 1.39 33.21 0.50 955, 724 1.38 33.06
3 0.63 785, 753 1.28 30.76 0.65 897, 738 1.25 30.03 0.65 851, 742 1.25 29.94 0.58 853, 742 1.36 32.66 0.59 897, 739 1.35 32.52
5 0.66 958, 732 0.88 22.30 0.68 958, 732 0.87 22.14 0.69 951, 733 0.85 21.74 0.55 958, 734 1.06 27.06 0.55 958, 734 1.06 27.06
6 0.70 934, 731 0.93 23.62 0.70 974, 733 0.90 23.01 0.71 958, 732 0.89 22.63 0.53 974, 737 1.08 27.58 0.54 974, 737 1.08 27.56
7 0.69 851, 750 1.17 28.57 0.72 867, 748 1.11 27.07 0.73 855, 749 1.11 26.98 0.67 854, 748 1.20 29.36 0.67 854, 748 1.21 29.39
8 0.59 774, 744 1.19 28.94 0.60 934, 724 1.92 46.61 0.61 934, 725 1.17 28.28 0.50 960, 727 1.33 32.25 0.50 960, 727 1.33 32.17
9 0.76 851, 753 1.24 27.58 0.74 779, 749 1.27 28.45 0.76 855, 749 1.23 27.39 0.70 779, 749 1.37 30.65 0.70 779, 749 1.37 30.69

10 0.60 976, 733 1.41 28.24 0.53 1490, 708 1.53 30.46 0.60 961, 729 1.42 28.39 0.56 1490, 708 1.49 29.67 0.57 1490, 708 1.48 29.61
11 0.66 849, 746 1.40 29.76 0.64 897, 741 1.44 30.59 0.65 896, 742 1.42 30.15 0.57 930, 740 1.59 33.79 0.57 930, 740 1.59 33.78

Japonica rice
(V1+V3)

1 0.70 786, 758 0.77 25.41 0.77 801, 758 0.94 31.11 0.77 801, 758 0.67 22.26 0.80 802, 757 0.62 20.64 0.80 802, 757 0.62 20.65
2 0.49 507, 476 0.90 26.15 0.58 776, 746 0.82 23.72 0.57 775, 745 0.83 24.00 0.63 777, 747 0.77 22.23 0.63 777, 747 0.77 22.23
3 0.58 786, 753 0.88 27.47 0.67 788, 754 0.78 24.34 0.66 787, 754 0.79 24.61 0.70 789, 755 0.74 22.99 0.70 789, 755 0.74 22.99
5 0.57 929, 741 0.69 20.33 0.63 865, 748 0.67 19.70 0.63 897, 745 0.66 19.55 0.54 822, 752 0.77 22.75 0.54 822, 752 0.77 22.74
6 0.63 933, 737 0.74 21.89 0.65 931, 739 0.69 20.31 0.66 931, 739 0.69 20.23 0.51 930, 740 0.80 23.49 0.51 930, 740 0.79 23.45
7 0.66 796, 758 0.78 25.39 0.73 802, 757 0.70 22.68 0.73 802, 757 0.71 22.83 0.75 810, 757 0.68 22.13 0.75 810, 757 0.68 22.14
8 0.46 776, 746 0.91 26.44 0.55 777, 747 0.83 24.19 0.54 777, 747 0.84 24.30 0.56 788, 747 0.82 23.87 0.56 788, 748 0.82 23.88
9 0.74 786, 755 0.82 25.17 0.78 789, 755 0.75 22.83 0.78 789, 754 0.75 23.03 0.79 789, 755 0.74 22.53 0.79 789, 755 0.74 22.54

10 0.49 510, 480 1.04 25.50 0.54 934, 733 0.99 24.24 0.54 934, 732 0.99 24.30 0.60 934, 731 0.92 22.52 0.60 934, 731 0.92 22.50
11 0.61 787, 756 1.00 27.50 0.69 788, 756 0.89 24.45 0.69 788, 756 0.90 24.75 0.72 823, 749 0.85 23.39 0.72 823, 749 0.85 23.38

Indica rice
(V2+V4)

1 0.74 813, 763 1.19 22.65 0.79 851, 755 1.07 20.34 0.78 851, 756 1.09 20.85 0.80 849, 753 1.03 19.64 0.80 849, 753 1.03 19.64
2 0.62 1575, 719 1.37 27.79 0.67 955, 727 1.28 25.96 0.66 955, 727 1.28 26.10 0.66 965, 728 1.29 26.11 0.67 965, 728 1.28 26.06
3 0.60 786, 756 1.44 28.25 0.67 785, 755 1.31 25.64 0.66 785, 755 1.32 25.90 0.67 786, 753 1.32 25.83 0.67 784, 754 1.32 25.81
5 0.71 1207, 725 0.86 19.25 0.73 1157, 724 0.84 18.83 0.74 1157, 724 0.83 18.62 0.73 1342, 720 0.93 20.90 0.72 1341, 720 0.94 20.98
6 0.77 773, 743 1.07 23.90 0.78 996, 733 0.93 20.83 0.78 996, 732 0.91 20.37 0.66 1211, 732 1.05 23.48 0.65 1211, 732 1.04 23.45
7 0.67 795, 758 1.30 25.48 0.74 851, 749 1.14 22.43 0.73 794, 758 1.16 22.81 0.75 851, 748 1.13 22.12 0.75 851, 748 1.13 22.13
8 0.63 776, 746 1.31 27.12 0.68 955, 728 1.20 24.95 0.68 955, 728 1.20 25.02 0.66 963, 729 1.24 25.70 0.67 966, 729 1.23 25.63
9 0.78 813, 763 1.19 21.16 0.79 796, 766 1.23 21.62 0.79 796, 766 1.23 21.61 0.79 795, 758 1.22 21.54 0.79 795, 758 1.22 21.55

10 0.63 991, 733 1.53 25.75 0.65 992, 731 1.48 24.94 0.66 992, 731 1.47 24.83 0.58 1193, 727 1.64 27.59 0.63 1193, 727 1.61 27.23
11 0.64 795, 758 1.55 26.84 0.67 848, 749 1.50 25.91 0.67 847, 749 1.50 25.89 0.64 848, 749 1.55 26.80 0.64 848, 749 1.55 26.78
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For the entire growth period, the VIs established by combining near-infrared and red-edge bands
still performed well in LAI estimation. WDRVI (823, 749), RDVI (847, 749), and DI (849, 746) performed
the best for japonica rice, indica rice, and combinations of the two varieties.

3.3. Relationship between the PRDVI and LAI

Figure 11 shows that the new vegetation index (PRDVI) could effectively eliminate the influence
of panicles and background, and had a close relationship with LAI. The coefficients of determination
(R2) were 0.68 (V3), 0.81 (V4), and 0.77 (V3 + V4). When compared with the optimal narrow-band VIs,
including CI (777, 747), RDVI (955, 727), and RDVI (934, 724), the accuracy of LAI estimation using the
PRDVI improved by 7.94%, 22.73%, and 28.33%, respectively.
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The applicability of the PRDVI for different years, different varieties, and different growth stages
was further tested while using data sets 9–11 (Figure 12). The results show that the PRDVI estimated
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LAI with good accuracy in the post-heading stage and the entire growth stage, with R2 values of 0.72
and 0.71, respectively. When compared with the optimal narrow-band VIs in the corresponding period,
the LAI estimation accuracy using the PRDVI increased by 20.00% and 7.58%, respectively. Therefore,
the PRDVI was able to estimate LAI in the post-heading stage and it improved the accuracy of LAI
estimation for the whole growth period of rice.
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Figure 12. Relationships between LAI and different vegetation indices (using data sets 10 and 11).
The panicle adjustment coefficient (θ) for the PRDVI was 0.13.

To verify the applicability of the PRDVI while using different remote sensing platforms, we used
multispectral camera data (data set 12) that were obtained by a UAV to compare the LAI estimation
performance of the PRDVI with that of other VIs in the post-heading stage (Table 6). The results show
that the PRDVI had the highest R2 (0.77) and the lowest RMSE (1.01 m2/m2) as compared with the
other VIs. Therefore, in the post-heading stage, the PRDVI performed better in LAI estimation than
other VIs while using the UAV platform.

Table 6. Comparison of LAI estimation performance between the PRDVI and other indices using
UAV data.

Vegetation Index Bands (nm) R2 RMSE rRMSE (%) Equation

PRDVI 800, 720 0.77 1.01 19.91 y = 0.7247e5.0572x

DI 800, 720 0.70 1.32 25.87 y = 1.2232e6.9031x

SR 800, 680 0.21 1.97 43.52 y = 2.8269e0.0087x

NDVI 800, 680 0.32 1.99 39.12 y = 0.0577e4.6542x

GNDVI 800, 550 0.44 1.81 35.50 y = 0.1675e4.1117x

RDVI 800, 680 0.53 1.65 32.42 y = 0.4082e4.7314x

MSR 800, 680 0.38 1.84 37.30 y = 0.3966x + 2.249
Green WDRVI 800, 550 0.47 1.80 35.29 y = 1.1515e1.6901x

Red-Edge WDRVI 800, 720 0.73 1.38 27.07 y = 1.1867e4.8563x

SAVI 800, 680 0.54 1.65 32.40 y = 0.5715e3.9851x

OSAVI 800, 680 0.51 1.66 32.54 y = 0.2662e4.0489x

TVI 720, 680, 550 0.00 2.38 46.74 y = −0.1088x + 5.7682
MTVI2 800, 680, 550 0.51 1.62 32.97 y = 8.7745x − 0.8143

EVI 800, 680, 490 0.57 1.59 31.32 y = 0.6818e3.4347x

CIred edge 800, 720 0.72 1.26 24.77 y = 2.6279x − 0.1794
CIgreen 800, 550 0.43 1.80 35.30 y = 0.3486x + 1.7115
NDRE 800, 720 0.73 1.27 24.92 y = 0.5498e4.3685x

Note: The UAV data were obtained in 2015 (data set 12), and the panicle adjustment coefficient (θ) for the PRDVI
was 0.13.
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4. Discussion

Vegetation index, which is widely used in inversion of agronomic parameters at various scales, has
been continuously improved and developed to obtain higher accuracy of target inversion. Xu et al. [46]
devised normalized difference canopy shadow index (NDCSI) to accurately calculate the fractional
cover of illuminated/shaded vegetation. Tanaka et al. [47] developed a simple index (DSIR760–R739)
for the timely and nondestructive monitoring of LAI. Hallik et al. [48] proposed R751/R736 for leaf
chlorophyll content estimation, which also performed well at the canopy level. However, previous
studies seldom considered the influence of panicles in the late growth stages of rice. The accuracy of VIs
is largely influenced by pure vegetation canopy reflectance. However, canopy reflectance is affected by
canopy structure and the physiological and biochemical characteristics of the vegetation [49]. In later
growth periods of rice, especially after the heading stage, the appearance of panicles has a great effect
on canopy structure. As a result, canopy reflectance also changes.

4.1. Influence of Panicle in Reflectance of Rice Canopy

Different cultivars with different physiological and structural characteristics caused differences
in the morphological characteristics of panicles. Different N treatments applied during the growing
periods led to a difference in the number of rice panicles per unit area. These differences determined the
extent of the influence of panicles on rice canopy spectra. The results of this study show that rice canopy
reflectance considerably changed after the removal of the panicle layer, which is similar to the findings
of Li et al. [26]. Canopy reflectance after the removal of the panicle layer was significantly different
from the original reflectance in the 450–1350, 1450–1780, and 1970–2350 nm ranges. The difference
before and after panicle removal gradually decreased with decreasing planting density, which led to
an increase in the effect of soil and water background, a decrease in the number of rice panicles, and a
decrease in the influence of rice panicles on canopy reflectance spectra. Consequently, at the lowest
density (D4) that was used in this study, canopy reflectance spectra after panicle layer removal were
almost equal to that of the original canopy. At a similar planting density, high N application resulted
in greater reflectance after the removal of the panicle layer when compared with low N application,
which may be the result of more panicles appearing with high N application [50]. Therefore, more
panicles had a greater impact on canopy reflectance.

Tian et al. [51] showed that rice canopy reflectance increased with increasing VC. Therefore, the
increase in N fertilization increased the VC as well as the canopy reflectance. V3 in this study is a
japonica rice variety with erect leaves and panicles. The leaves are sparse and they may not completely
close with low N treatment, even after the plants reach maturity (similar N levels and higher planting
density result in lower average N content per plant). The removal of the panicle layer decreased the
VC value, which resulted in an increase in the effect of water and soil background. However, the effect
of panicle removal on VC was lower with high N treatment (similar N levels and higher planting
density result in lower average N content per plant) because of the dense leaves. Therefore, in the V3
variety, the difference in reflectance in 350–1350 nm after the removal of panicles gradually decreased
with decreasing planting density, and an increase in the N rate could intensify the reduction. V4 is an
indica rice variety with spread leaves and panicles, and its leaves close after heading. Therefore, the
variation in planting density had fewer effects on V4 as compared with V3. Different morphological
structures of rice panicles had different effects on canopy structure and thus different effects on canopy
reflectance [25]. The morphology, color, and reflectance of panicles greatly changed with their maturity,
and the difference in reflectance between the panicles and leaves was further magnified. Therefore,
there was a change in the red-edge position in the rice canopy spectra before and after panicle removal
at the maturing stage (117 DAT).
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4.2. Influence of Panicles on LAI Estimation Accuracy

In the present study, the partial VIs that were calculated using canopy reflectance after panicle
removal improved LAI estimation accuracy. This indicates that the emergence of panicles is a factor
that influences LAI estimation accuracy when using vegetation indices during the late growth stages
of rice. The spectral reflectance of pure panicles is typical of vegetation while the spectral reflectance
of soil differs from that of vegetation. Therefore, soil background is still the predominant factor
affecting canopy reflectance when its effect is large, although the panicles also have an effect on canopy
reflectance [49,52,53]. Partial VIs (DI, RDVI, SAVI, OSAVI, TVI, MTVI2, and EVI) exhibited better
performance in LAI estimation when using canopy reflectance after panicle removal (data set 6) as
compared with using the original canopy reflectance, which suggested that the influence of water and
soil background persists in the late growth stage of rice, even in the absence of the effects of the panicle
layer. Therefore, the influence of soil and water background should also be considered in the late
growth stages of rice.

However, the performance of other VIs (WDRVIgreen, WDRVIred edge, NDVI, GNDVI, SR, MSR,
CIred edge, CIgreen, and NDRE) in LAI estimation was worse when using canopy reflectance after panicle
removal than when using the original canopy reflectance. This may be because the WDRVIgreen,
WDRVIred edge, NDVI, and NDRE are normalized VIs, which are prone to saturation in high coverage
conditions when the LAI value is greater than 3 m2/m2 [33]. After panicle removal, the leaf area
information was dominated by canopy spectra, which exacerbated the saturation effect of the VIs.

CIred edge and CIgreen, which are based on the relationship between chlorophyll and LAI, performed
well in the estimation of LAI in the early growth stage of rice [54,55]. However, LAI has also been
reported to be well correlated with biomass [34,56]. During the late growth stage of rice, a decrease
in chlorophyll is usually accompanied by an increase in aboveground biomass and the senescence
information of the middle and lower leaf layers is difficult to obtain while using canopy reflectance,
which is measured by sensors that are perpendicular to the canopy [26]. Therefore, LAI estimation
accuracy decreased when using such chlorophyll-sensitive VIs.

The appearance and growth of fruiting organs such as rice panicles increased the variation rate
of reflectance spectra in the near-infrared region as compared with that in the red band because of
the high reflectance of the short-wave near-infrared band [4]. The maximum LAI value was attained
around the heading stage, and it then gradually decreased [57]. In addition, the visible band that is
represented by the red band (670 nm) was greatly affected by rice panicles in the post-heading stage
(Figure 3b). Therefore, during the reproductive growth stage, the performance and accuracy of LAI
estimation for some VIs (GNDVI, SR, and MSR) were not as adequate as those in the vegetative growth
stage, which is supported by previous studies [4,58].

4.3. Elimination of the Impact of Panicle and Background

Previous studies have focused more on the effects of aging and panicles on the canopy structure
during the late growth stages of a crop [25,26]; however, this approach ignores background factors, such
as soil and water. In the process of developing the PRDVI, we considered various canopy background
factors, and the influence of background and panicles on LAI estimation accuracy was weakened in
terms of the vegetation index form and spectral band, respectively.

Firstly, the RDVI, which combines the advantages of the NDVI and DI, has been applied to LAI
monitoring in different vegetation coverage conditions [14]. Secondly, the red-edge band (720–740 nm),
which is one of the most recognizable signs of vegetation spectra, has been increasingly used to
replace the red band and construct novel vegetation indices; thus, the red-edge band has been
frequently applied to extract LAI from the ground hyperspectral, airborne hyperspectral, and satellite
images [34–37,59]. The results of the present study also show that combinations of near-infrared and
red-edge bands in any forms of vegetation indices had higher accuracy in estimating LAI than other
band combinations, whether in the pre-heading stage or the post-heading stage (Table 5). Moreover,
the stable red-edge position of the rice canopy spectra before and after panicle removal (Table 4) also
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indicates that the red-edge band was less affected by rice panicles than the other bands: it was only
affected in the ripening stage (117 days after transplanting, the color, shape, and maturity of panicles
underwent extensive changes). Similar to our study, some previous studies have reported that VIs
using red-edge wavelengths are closely related to the LAI of wheat [47,60] and pasture biomass [61].
Therefore, we replaced the red band in the RDVI with the red-edge band to strengthen the sensitivity to
LAI and weaken the influence of panicles. Finally, the rice panicle adjustment factor (θ) was obtained
from the “rice panicle line” to adjust the near-infrared band, which is greatly affected by panicles and
coverage; therefore, the effects of background and panicle were further weakened.

Although the PRDVI uses the an average of a wide spectral range, which may result in the loss
of key information being available in a particular narrow band, it avoids errors that are caused by a
difference of the OBCs of narrow-band VIs with different data sets, and the results of the present study
show that LAI estimation accuracies of narrow-band VIs were not higher than those of the broad-band
vegetation index PRDVI. Similar results were obtained in previous studies [31,42].

There were some differences in the panicle adjustment factor (θ) for different panicle types, and the
PRDVI could better estimate LAI when θ was equal to 0.13. Combining two rice varieties to construct
the “rice panicle line” could not completely eliminate the effects of different panicle types (due to
different rice types and varieties), especially for high LAI conditions, in which the influence of the
panicle layer on canopy reflectance was noticeable, and the effects of different varieties on rice panicle
morphology and their distribution in the canopy became more apparent. Therefore, in future studies,
we will obtain rice panicle spectra from more rice varieties and use multi-angle spectral information
from rice panicles to test and improve the PRDVI.

5. Conclusions

In the present study, we investigated the spectral reflectance of panicles and the changes in canopy
reflectance after panicle removal. The performance of multiple VIs in LAI estimation was evaluated in
both the pre-heading and post-heading stages. We also determined the major factors that influence LAI
estimation spectral indices during the post-heading stage. The results demonstrate that rice panicles
significantly changed the canopy structure and affected the visible band of canopy spectral reflectance,
especially in the red band (670 nm). However, some red-edge bands (720–740 nm) were less affected
by the panicles. Multiple VI band combinations for LAI estimation reveal that the near-infrared and
red-edge band combination was optimal. A “panicle line” was constructed to obtain the panicle
adjustment factor by using the near-infrared and red-edge bands. We replaced the red band in the
RDVI with the red-edge band, which is less affected by rice panicles, and then introduced the panicle
adjustment factor to construct a new type of vegetation index—the PRDVI. The PRDVI significantly
minimized the influence of panicles and background on canopy spectra and improved the accuracy of
LAI estimation during the post-heading stage. These results fill a gap in the literature and provide a
more accurate method for estimating LAI during the post-heading stage.
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