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Abstract: Increasingly, LiDAR has more and more applications. However, so far, there are no relevant
publications on using airborne LiDAR for ocean optical profiling in the South China Sea (SCS).
The applicability of airborne LiDAR for optical profiling in the SCS will be presented. A total of four
airborne LiDAR flight experiments were conducted over autumn 2017 and spring 2018 in the SCS.
A hybrid retrieval method will be presented here, which incorporates a Klett method to obtain LiDAR
attenuation coefficient and a perturbation retrieval method for a volume scattering function at 180◦.
The correlation coefficient between the LiDAR-derived results and the traditional measurements
was 0.7. The mean absolute relative error (MAE) and the normalized root mean square deviation
(NRMSD) between the two are both between 10% and 12%. Subsequently, the vertical structure of the
LiDAR-retrieved attenuation and backscattering along airborne LiDAR flight tracks was mapped.
In addition to this, ocean subsurface phytoplankton layers were detected between 10 to 20 m depths
along the flight track in Sanya Bay. Primary results demonstrated that our airborne LiDAR has an
independent ability to survey and characterize ocean optical structure.

Keywords: LiDAR; optical property profiles; attenuation coefficient; backscattering; bio-optical
model; hybrid method

1. Introduction

For decades, satellite ocean color remote sensing has expanded and refined our knowledge of
global phytoplankton ecosystems, the ocean carbon cycle, and the ocean’s role in climate change.
However, passive remote sensing has inherent limitations to resolve water vertical structure [1].
LiDAR remote sensing has the advantage of range-resolved and deeper penetration, hence providing
vertical structure information, which could provide a good supplement to passive remote sensing [2].
Increasingly, LiDAR has more and more applications, including bathymetric survey [3,4] and optical
profiling of water columns [5–8], also for detecting plankton scattering layers [9–11], bubbles [12],
internal waves [13], schools of fish [14,15], and so on. However, there are no publications on using
airborne LiDAR to estimate the optical property profiles in the South China Sea (SCS) so far.

Application of LiDAR technique generally requires an inversion technique to infer two quantities,
attenuation and backscatter, from a single measurement [16]. One method is to separate molecules
and Mie scatter using the High-Spectral-Resolution LiDAR (HSRL) technique. In the ocean,
Brillouin scattered light by molecules is Doppler-shifted away from the central wavelength by about
7.7 GHz because of the speed of sound in seawater [17]. However, HSRL systems are often complex
and expensive. Another approach is to assume that the ratio of LiDAR extinction-to-backscatter is
known [18]. The slope method [19] is often used in homogenous mediums, while the Fernald [20] and
Klett [21] methods have been widely used in inhomogeneous mediums. All these methods need the
LiDAR ratio, which is very difficult to accurately obtain, especially in the sea with such a complex
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environment. Furthermore, the above-mentioned methods were all used for the atmosphere in the
past. A theoretical development suggests that this might be a useful technique for the ocean, but actual
data showed a lot of variability [22].

In this study, the applicability of airborne LiDAR for optical profiling in SCS will be presented.
First, the LiDAR system design is described in Section 2.1, followed by LiDAR flight experiments
and simultaneous shipborne measurements in Section 2.2. A hybrid method developed to obtain the
extinction and backscattering profile is introduced in Section 2.3. A validation method for LiDAR
inversion is described in Section 2.4. The result of each procedure of the hybrid method, applied to a
raw LiDAR signal, is described in Section 3.1, followed by validation results for LiDAR inversion using
ground-truth measurements in Section 3.2. The vertical structure distribution of LiDAR-estimated
optical properties along airborne LiDAR flight tracks is mapped in Section 3.3. Finally, we compared
LiDAR and traditional shipborne observations, and discuss the effects of LiDAR observation geometry
on inversion in Section 4.

2. Materials and Methods

2.1. LiDAR System Design

The airborne LiDAR system (AOL-SIOM) was developed by the Shanghai Institute of Optics
and Fine Mechanics (SIOM). It employs a pulsed Nd:YAG laser with a 1.5 mJ pulse energy and pulse
repetition frequency (PRF) of 1 kHz. The pulse width is 1.5 ns. The receiver uses a 200 mm diameter
telescope with a 6 mrad field of view (FOV). A custom-built trigger generator using a Xilinx (San Jose,
CA, USA) Kintex-7 field-programmable gate array (FPGA) allows a USB-programmable variable
delay to gate the photomultiplier tube (PMT) and trigger the digitizers. The maximum sampling
rate of the digitizer is 1.25 Giga-samples per second (GSPS); hence, the sample-rate limited depth
resolution in water is 8.8 cm. Detailed technical parameters of the system has been described in
previous publications [10,23], and the diagram of the major optoelectronic components and a picture
of the LiDAR are shown in Figure 1.

2.2. LiDAR Flight Experiments

A total of four airborne LiDAR flight experiments were conducted over autumn 2017 and spring
2018 above the SCS to investigate the applicability of airborne LiDAR to obtain water optical property
profiles. The LiDAR flight experiments took place on 23 and 30 September, 2017, and 11 and 12 March,
2018, respectively. The flights were made at an altitude of about 320–350 m above the water surface
and a speed of 126 knots per hour. Simultaneously, shipboard measurements of water absorption and
attenuation coefficients, and chlorophyll-a concentration were carried out using a profile chlorophyll
fluorescent probe (RBR XR-420, RBR Ltd., Ottawa, ON, Canada) and underwater hyper spectral
absorption and attenuation meter (AC-S, Wetlab Ltd., San Diego, CA, USA) along the fight tracks.
AC-S is a hyperspectral instrument, produced by WET Labs in the United States, that can simultaneously
measure the attenuation and absorption coefficient. The instrument provides a spectral resolution of
4 nm and a spectral measurement range of 400–720 nm. The instrument uses a dual-path combination
of two argon-filled incandescent bulbs and a rotating sweep of a linearly variable filter to obtain the
dispersive spectrum. The fluorometer (XR-420) from RBR Canada is a self-contained underwater device
for measuring fluorescence (or chlorophyll) concentrations in water. This product has high precision
and small volume, and can be used for marine environment monitoring, ecological investigation,
port/river and lake water quality investigation and water quality monitoring. Its length is 200 mm and
the diameter is 64 mm. The excited wavelength is 470 nm and the emission wavelength is 685 nm for
a chlorophyll-a measurement with 30 nm full width at half maximum (FWHM). The sampling and
measurement principles and methods used here in this study are mainly based on the Ocean Optics
Protocols for the Satellite Ocean Color Sensor Validation from NASA [24]. Figure 2 shows the four
flight tracks during different cruise times (color lines).
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Figure 2. LiDAR flight experiments in the SCS. The color lines are flight tracks of airborne LiDAR
taken on 23 September (black) and 30 September (blue), 2017, and on 11 March (red) and 12 March
(green), 2018.

2.3. LiDAR Inversion Method

For a backscatter LiDAR system, the quasi-single-scattering LiDAR equation is:

P(z) = K
β(z)

(H + z)2 exp[−2

z∫
0

α(y)dy] (1)

where P(z) is the power received from range z; K is the LiDAR system constant, which means the
multifactor function of instrument parameters, such as the laser energy, the optical efficiency of the
receiver, and the detector electronic gain, among others [1]; β and α are the volume scattering functions,
at the LiDAR scattering angle of 180◦and the LiDAR attenuation coefficient, respectively. H is the
equivalent altitude due to LiDAR tilt angle θ and water refractive index is n.
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H can be calculated by using the LiDAR true flight height and tilt angle [25]:

H = H0n(
cosθw

cosθa
) (2)

where H0 is the true altitude of the airborne LiDAR, and θa is LiDAR tilt angle. The tilt angle in the
water θw can be expressed by using the Snell’s law: sinθa = n× sinθw.

The range corrected LiDAR return is logarithmically transformed:

S(z) = ln[P(z) × (H + z)2] (3)

It can be rewritten in the following differential form:

dS(z)
dz

=
1
β

dβ
dz
− 2α (4)

A solution to this equation requires assuming or knowing the relationship between α and β

whenever dβ
dz , 0. On the other hand, when the water is optically homogeneous, so that dβ

dz = 0, then α

could be simplified and expressed in terms to the attenuation signal slope [21]:

α = −
1
2

dS
dz

(5)

For inhomogeneous water, we can obtain α based on the Klett method as:

dS(z)
dz

=
k
α

dα
dz
− 2α (6)

where k is the exponent according to a power law of the form β = const× αk, which depends on the
LiDAR wavelength and various properties of the water on the interval 0.67 ≤ k ≤ 1.0. In this study, we
assume k = 1.0.

Finally, α can be estimated as the following form:

α(z) =
exp[ S(z)−Sm

k ]

{
1
αm

+ 2
k

∫ zm

z exp[ S(z)−Sm
k ]dz}

(7)

where m means the reference boundary depth, which can be obtained from the slope method.
To obtain β, we used the perturbation retrieval (PR) method [16], which assumes that the optical

parameters can be expressed as the sum of a non-varying part (that does not vary with depth) and a
varying part, so that:

β(z) =
S(z)
S0(z)

β0 (8)

where S0 and β0 are the non-varying parts, which could be calculated by using a linear regression to
the logarithm of the signal S for each profile:

S0(z) = ln(Kβ0) − 2α0z (9)

Generally, we can divide the LiDAR inversion process into six steps, as shown in Figure 3.
Step 1: Multi-pulse average and de-noising pretreatment. This method can improve the

signal-to-noise ratio. Here, we average each every fifty signals and subtract the ambient noise
light, which is calculated by the average of the last 200 samples of the signal.

Step 2: LiDAR geometric range correction to remove the effect of the airplane flying height.
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Step 3: Obtain the initial boundary α value using the slope method (Equation (5)). The beginning
18 bins of the signal were eliminated in order to reduce the effects from the water surface reflection.

Step 4: Compute the LiDAR constant via a bio-optical calibration method [26].
Step 5: Compute the LiDAR-retrieved α and β based on a hybrid method which incorporates

the Klett method and the PR method (Equations (7) and (8)). In addition, we could obtain the
particle backscattering bbp and the other parameters though some bio-optical models, for instance,
bbp = 6.43[β− 2.53× 10−4] [27].

Step 6: Process each profile one by one and draw all the profiles along the flight tracks.
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2.4. Evaluation Method

The accuracy of LiDAR-retrieved α and β may be estimated by two statistical indices: the
systematic error (bias) and the random error. Here, we use the mean absolute relative error (MAE) and
Root Mean Square Deviation (NRMSD) to determine the systematic and random errors, respectively.
These metrics are defined as follows:

x = 100∗|Rlidar −Rm|/Rm (10)

MAE =
1
n

n∑
1

xi (11)

NRMSD =

[
1

n−1
∑

(xi − x)2
] 1

2

xmean
(12)
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where Rlidar and Rm are the LiDAR-retrieved and in-situ optical parameters, respectively. The term x is
the relative error of each matchup pair, and n is the number of matchups. The RMSE is actually the
standard deviation (STD) of the relative error, which represents the uncertainty of the LiDAR-retrieval
in the same units as the MRE [28].

3. Results

3.1. An Example of the LiDAR Processing Results in Each Procedure

Figure 4 shows an example of the LiDAR processing results in each procedure. The LiDAR
data acquired at (109◦48.158′E, 18◦18.309′N) on 30 September, 2017 were used to demonstrate the
performance of the LiDAR processing procedure. A raw LiDAR signal profile as a function of depth is
shown in Figure 4a. It seems that the LiDAR signal amplitude decreased sharply when the LiDAR
pulses just entered the sea water (within 3 m depth). That was due to the water surface reflection and
PMT transient response effect, and little water backscatter could be detected by the receiver. When
the LiDAR pulses travelled deeper in the water column, the backscatter increased due to multiple
scatterings, and the signal amplitude decreased slowly by 1% of the LiDAR amplitude as the depth
increased by one meter, as illustrated in Figure 4a. Figure 4b shows the geometric range corrected
LiDAR return in logarithmical form after background-noise subtraction. Figure 4c represents the
retrieved α by the Klett method. The sharp decrease of α (<3 m) was eliminated to reduce the effects of
the water surface reflection. Figure 4d demonstrates the retrieved β by the PR method. The attenuation
coefficient of the water at this station is within 0.2 m−1. The values of LiDAR-retrieved α and β show
similar levels of variability, and both increased slowly overall along the depth (>5 m).

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 14 

150 200 250 300 350 400 450 500 550

-35

-30

-25

-20

-15

-10

-5

0

6 8 10 12 14 16 18

-30

-25

-20

-15

-10

-5

0

0.05 0.10 0.15 0.20 0.25 0.30 0.35

-20

-15

-10

-5

0

0.0000 0.0005 0.0010 0.0015 0.0020

-20

-15

-10

-5

0

D
ep

th
(m

)

Pz(un.)

(a) raw data profile

Sz(un.)

(b) after LiDAR geometric range correction

D
ep

th
(m

)

α(1/m)

(c) LiDAR retrieved α

β(1/(m.sr))

(d) LiDAR retrieved β

 
Figure 4. An example of processing the LiDAR data acquired on 30 September, 2017. (a) The profile 
from the raw LiDAR data, (b) the geometric range corrected LiDAR return in logarithmical form after 
background-noise subtraction, (c) the profile from the retrieved α, and (d) the profile from the 
retrieved β. 
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Figure 4. An example of processing the LiDAR data acquired on 30 September, 2017. (a) The profile
from the raw LiDAR data, (b) the geometric range corrected LiDAR return in logarithmical form after
background-noise subtraction, (c) the profile from the retrieved α, and (d) the profile from the retrieved β.
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3.2. Validation of the LiDAR Inversion Method

Figure 5 compares LiDAR-retrieved α by using the hybrid method with in-situ measurements at
Station S1 (Figure 5a,c) and Station S2 (Figure 5b,d) in the SCS. Each in-situ measurement (red line)
matches up to a total of 10 inversion profiles (black curves). We can see that the profiles of
LiDAR-retrieved α and shipborne-measured water attenuation coefficients have similar levels of
variability over much of the depth range (Figure 5a,b). The Pearson correlation coefficients between
LiDAR-derived results and traditional measurements at S1 and S2 are 0.67 and 0.70, respectively
(Figure 5c,d). The MREs at S1 and S2 are both are within 10%, at 7.1% and 9.7%, respectively. In addition,
the NRMSD between the two kinds of data at S1 and S2 are both are within 12%, at 8.54% and 11.55%,
respectively (Table 1). This provides some evidence that the hybrid inversion method is feasible and
effective due to the relative accuracy as both are within 30%.
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Figure 5. Comparison of airborne LiDAR-derived results with traditional measurements. (a,c) are the
comparison results for S1; (b,d) are the comparison results for S2.

Table 1. The curve-fitting statistics between LiDAR inversion and in-situ measurements.

Station Number Min Max R MAE RMSE NRMSD

1 260 0.128 0.143 0.67 7.1% 0.012 8.54%

2 130 0.156 0.166 0.70 9.7% 0.018 11.55%

3.3. LiDAR Inversion Profile Distribution along LiDAR Flight Tracks

Figure 6 shows LiDAR-retrieved attenuation and backscattering profiles mapped as a function
of depth and distance along the airborne LiDAR flight tracks with the color table at the bottom.
Every 50 pulse amplitude were averaged, and the data were averaged to 112.5-m horizontal resolution
and 0.11-m vertical resolution. Figure 6a,b show the LiDAR-retrieved α and β profiles, respectively.
We can see a variety of water types and structures that were observed along the flight track.
The LiDAR-derived α ranges from purple (=0.0 m−1) to red (=0.6 m−1). The LiDAR-derived β

ranges from purple (=0.0001 (m.sr)−1) to red (=0.005 (m.sr)−1). The black parts are the areas when
LiDAR data were not available due to the SNR being low or the LiDAR light reaching the sea floor.
These data also clearly show larger values near the bottom of the depth range, which may be due to
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sediment movement or sea grass above the sea bottom. It indicates that we could also obtain coarse
bathymetry information of shallow water along the tracks. Figure 7 shows the LiDAR-retrieved bbp in
Sanya Bay water based on the bio-optical model bbp = 6.43[β − 2.53 × 10−4]. It shows a subsurface
phytoplankton layer between 10 to 20 m depths along the flight track in Sanya Bay. Primary results
demonstrated our airborne LiDAR has an ability to survey and characterize an ocean optical structure.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 14 

 
(a) 

 
(b) 

Figure 6. LiDAR-retrieved attenuation and backscattering vertical structure distribution. α ranges 
from purple (=0.0 m−1) to red (=0.6 m−1). β ranges from purple (=0.0001 (m.sr)−1) to red (=0.005 (m.sr)−1). 

Figure 6. LiDAR-retrieved attenuation and backscattering vertical structure distribution. α ranges from
purple (=0.0 m−1) to red (=0.6 m−1). β ranges from purple (=0.0001 (m.sr)−1) to red (=0.005 (m.sr)−1).
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4. Discussion

We found that our airborne LiDAR can be successfully employed for obtaining upper water
attenuation coefficients and backscattering profile information. Indeed, LiDAR has several advantages
of rapid data acquisition, large area coverage over traditional shipborne observations. For instance,
given the same area with 100 square kilometers, it needs more than three days for shipborne
measurements (about 25 stations with 2 km between stations), while it takes less than one hour by
an airborne LiDAR. Both shipborne and airborne LiDAR could provide continuous coverage survey
compared with traditional discrete station observations. In addition, there is no external disturbance
for phytoplankton layers when detecting them, due to the fact that the keeping thrusters on a large
ship are powerful enough to disturb and mix the upper water column. Airborne LiDAR techniques
can avoid the above-mentioned problem.

The LiDAR attenuation coefficient α in the LiDAR equation is an “effective” attenuation coefficient,
which accounts for the effects of multiple scatterings in the water. It is not equal to the water attenuation
coefficient c. Note that one needs to establish the relation between LiDAR attenuation coefficient α
and water attenuation coefficient c or water diffuse attenuation coefficient Kd during different LiDAR
parameters’ setup, especially for different LiDAR FOV. Previous studies showed that LiDAR-retrieved
α closely approximates the c with a narrow FOV and Kd with a large FOV [23,29,30]. However,
for a certain shipborne or airborne LiDAR with middle FOV, we need to build the relationship
through simulation methods or comparisons between LiDAR-retrieved α and in-situ measurements of
water attenuation.

The multiple scattering effect on α can also be expressed as follows, according to [31]:

α = Kd + (c−Kd)e
−0.85cD (13)
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where D is the spot diameter of LiDAR on the water surface, which equals the result of LiDAR altitude
H multiplying FOV. It suggests that α will closely approximate Kd for cD greater than 2 or 3 and close
to c for cD smaller than 0.2 [31].

In our study, because the FOV of our LiDAR system was narrow with 6 mrad, so D ≈ 300× 0.006 =

1.8 m on the water surface and c is about 0.1 m−1 in the study area; thus, cD ≈ 0.18. Therefore, α can be
assumed as the beam attenuation coefficient c in this study. In many practical devices, it is better to
choose small FOV (less than 5 mrad) to obtain c and large FOV (more than 100 mrad) to obtain Kd.
Multi-FOV LiDARs are the future development trend. For a satellite LiDAR, because the spot diameter
of LiDAR on the water surface is often dozens of meters [32], we can assume the LiDAR attenuation
coefficient α is close to Kd. Therefore, the quasi-single scattering approximation (Equation (1)) can be
an efficient method to model the performance of satellite LiDAR systems.

In this study, the LiDAR-retrieved bbp in Figure 7 is based on the bio-optical model between
the bbp and volume scattering function β expressed as bbp = 6.43[β− 2.53× 10−4]. The uncertainty of
this bio-optical model depends on various water types. Further investigation is needed to confirm
this model in various sea areas to improve and validate the model. There is a more frequently used
relationship can be expressed as [33,34]:

bbp = 2πχ(θ)βp (14)

where βp is the particulate β at 180◦and χ(θ) is a conversion factor. There is also an uncertainty
for this model in χ (180◦). Some previous studies on LiDAR at 532 nm reports χ (180◦) was about
1.43 [35], while others report χ (180◦) = 0.5 [33,34,36]. A new instrument for phase scattering function
measurements is required, since most of the current methods cannot be extended to 180◦ [37].

5. Conclusions

Our results indicated that the airborne LiDAR technique is feasible and effective for ocean
optical profiling in the SCS. Primary results demonstrated that the AOL-SIOMairborne LiDAR has
an independent ability to survey and characterize ocean optical structure. The maximum penetrated
depth can reach 30 m by the AOL-SIOM, and subsurface phytoplankton layer could be detected,
both shipborne and airborne LiDAR could provide a continuous coverage survey compared with
traditional discrete station observations, which will help us to understand the upper ocean better.
There are a few issues to be aware of, such as an accurate estimation of water column optical properties.
The limitation of the PR technique in our hybrid method assumed that α slowly varyied with depth.
One useful solution is to employ the HSRL technique which measures attenuation and scattering
coefficient independently. A multi-polarization technique is also a future growth priority. Another issue
is the uncertainty in LiDAR-system calibration. Our current method employed in-situ measurements
into the LiDAR equation, to obtain LiDAR system constant. Improving the calibration is an ongoing
effort. Further investigation is needed to confirm airborne LiDAR experiments in various water types
to enhance and validate our method.
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