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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role
in various PolSAR image application. And many pixel-wise, region-based classification methods have
been proposed for PolSAR images. However, most of the pixel-wise methods can not model local
spatial relationship of pixels due to negative effects of speckle noise, and most of the region-based
methods fail to figure out the regions with the similar polarimetric features. Considering that color
features can provide good visual expression and perform well for image interpretation, in this work,
based on the PolSAR pseudo-color image over Pauli decomposition, we propose a supervised PolSAR
image classification approach combining learned superpixels and quaternion convolutional neural
network (QCNN). First, the PolSAR RGB pseudo-color image is formed under Pauli decomposition.
Second, we train QCNN with quaternion PolSAR data converted by RGB channels to extract
deep color features and obtain pixel-wise classification map. QCNN treats color channels as a
quaternion matrix excavating the relationship among the color channels effectively and avoiding
information loss. Third, pixel affinity network (PAN) is utilized to generate the learned superpixels
of PolSAR pseudo-color image. The learned superpixels allow the local information exploitation
available in the presence of speckle noise. Finally, we fuse the pixel-wise classification result and
superpixels to acquire the ultimate pixel-wise PolSAR image classification map. Experiments on
three real PolSAR data sets show that the proposed approach can obtain 96.56%, 95.59%, and 92.55%
accuracy for Flevoland, San Francisco and Oberpfaffenhofen data set, respectively. And compared
with state-of-the-art PolSAR image classification methods, the proposed algorithm can obtained
competitive classification results.

Keywords: polarimetric synthetic aperture radar (PolSAR); image classification; deep learning;
superpixels; quaternion convolutional neural network (QCNN)

1. Introduction

1.1. Background

Synthetic aperture radar (SAR) is an important branch of remote sensing application, which
has the imaging capability of all-time, all-weather, and has the ability to penetrate observed objects
to a certain extent. As an advanced type of SAR, polarimetric SAR (PolSAR) is able to record the
complete scattering information of the observed objects. Since the polarization of electromagnetic
waves is very sensitive to the shape, properties and physical structure of the objects, utilizing
polarimetric information is benefit to PolSAR image classification [1]. However, due to the unique
imaging mechanism and the complex imaging environment, PolSAR image classification is still a
challenging task.
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The choice of features is an essential part for PolSAR image classification. The scattering
matrix and the coherence/covariance matrix are taken as the direct features and are often used
in classification. Initially, HH,HV,VV or their combination are utilized as the underlying features to
classify PolSAR images [2–6]. The coherence/covariance matrix which can provide more complex
polarimetric information, such as amplitude, phase, is widely used for PolSAR classification [1,7–9].
However, these features are easily affected by speckle noise. Polarimetric decomposition , such as Pauli
decomposition, Cloude decomposition, and so on [10], describes average backscatter as the sum of
independent components, which can provide better PolSAR image interpretation than other features.
By mapping polarimetric composition components to color channels, a pseudo-color image can be
acquired, which is always as a visual interpretation version of PolSAR data. However, the pseudo-color
image can be employed for PolSAR image classification by excavating color features, which are usually
ignored [11]. Color features are global features that not only provide a good visual effect, but also
describe the surface properties of the observed objects. Besides, they are also with rotation invariance
and translation invariance. Most of the exiting methods choose polarimetric features to classify
PolSAR images. However, for the pixels and regions which has similar polarimetric features, it is
difficult to separate them correctly. Therefore, using color features can avoid the above problem.
Uhlmann et al. [12] investigated the application of color features over the Pauli color-coded images
in PolSAR image classification. They found that color features could provide useful information for
PolSAR data understanding and analyses. Through a large number of experiments, Cheng et al. [13]
found that color features are helpful for improving PolSAR image classification accuracy, especially for
region-based classification methods. In this paper, superpixel generation and classification are based
on PolSAR pseud-color image over Pauli decomposition by means of exploiting color features.

There are several classic PolSAR image classification approaches, such as support vector machine
(SVM) [14,15], Wishart maximum likelihood (Wishart ML) [16], random forest (RF) [17], and so on.
With the rapid development of deep learning and its extensive application in image classification, many
deep networks, such as deep belief networks (DBNs), Auto-encoder, convolutional neural networks
(CNN) are widely used in PolSAR image classification. Zhang et al. [18] introduced the local spatial
information into the stacked sparse auto-encoder (SSAE) to learn the deep spatial sparse feature for
PolSAR image classification. Chen et al. [19]. proposed a PolSAR image classification method based
on multilayer projective dictionary pair learning (MDPL) and sparse auto-encoder (SAE). MDPL is
used to extract features and SAE is used to get the nonlinear relationship between elements of feature
vectors. Hou et al. [20] proposed a semi-supervised DBN PolSAR classification method. They reduce
the dimension of features using multilinear principle component analysis (MPCA), and take these
features as the input of DBN. Convolutional neural networks have become one of the most papular
deep learning models due to their weight sharing, sparse connections. Zhou et al. [21] investigated
the suitability and potential of deep convolutional neural network in PolSAR image classification.
They found that hierarchical polarimetric spatial features can be learned automatically by deep neural
network with two cascaded convolutional layers. Gao et al. [22] improved CNN model and proposed
the dual-branch deep convolution neural network (Dual-CNN). One CNN is used to extract the
polarization features and the other is used to extract the spatial features. To make use of the phase
information of PolSAR image, Zhang et al. [23] proposed a complex-valued CNN (CV-CNN). They
extend all elements of CNN to complex domain, including a complex backpropagation algorithm.
Shang et al. [24] combined CV-CNN with auto-encoder network and proposed a complex-valued
convolutional auto-encoder network (CV-CAE). However, most of the above studies did not adequately
explore the role of color features in the PolSAR image classification.

Furthermore, for traditional CNN, each convolution kernel simply sums up the output features
of each color channel, which causes the interrelationship among the channels to be ignored, and a
greater degree of freedom to overfit [25]. In order to effectively utilize the correlation among the
color channels, Zhu et al. [25] proposed the quaternion convolutional neural network (QCNN). They
redesign the basic modules, such as convolution layer, full connected layer. Experimental results show
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that QCNN can obtain more representative features in color image processing tasks. Yin et al. [26]
improved the QCNN and apply it to optical color image classification and forensics. For PolSAR image
classification, using quaternion neural network (QNN) to extract deep features, some work has been
carried out in Poincare-sphereparameter space [27–29]. Different from QNN, QCNN fully explore the
correlation between color features. As far as we know, there has been no use of QCNN for PolSAR
pseudo-color image classification. In this article, we will explore the application of QCNN to classify
PolSAR pseudo-color image over the Pauli decomposition.

Otherwise, the classification methods for PolSAR images can be roughly divided into two
categories: pixel-wise methods and region-based methods [11]. Pixel-wise approaches only consider
the polarimetric features or other features of a single pixel, which makes the classification process
easy and fast. And they also have the ability to preserve terrain details and edges, which are
important in PolSAR image classification. Due to speckle noise, filters [30,31] are often adopted
to preprocess the PolSAR images for pixel-wise methods. However, the speckle noise is not able to
filtered out completely, and some distortion of shapes and texture happens [13]. For region-based
methods, the spatial correlation between pixels in the local region can be effectively considered, which
helps to improve PolSAR image classification results. One of the most widely used region-based
approaches are superpixel-based approach. Superpixels are a number of non-overlapping regions
satisfying homogeneity and uniqueness. The commonly used superpixel generation techniques
are Normalized-Cuts(N-cut) [32], Meanshift [33], Turbopixel [34], simple linear iteration clustering
(SLIC) [35]. Feng et al. [36] combined sparse representation-based classifier (SRCs) with superpixels
to classify PolSAR images using polarimetric and contextual information. Hou et al. [37] generated
superpixels based on Pauli decomposition and predicted class distributions of each pixel using
multilayer autoencoders network. Wang et al. [38] constructed a 27-dimension polarimetric feature
space, and classified PolSAR images using Laplacian Eigenmap (LE) and superpixels in this space.
Zhang et al. [39] divided the PolSAR image into superpixels using a fast superpixel generation method,
and classified the image by consensus similarity network fusion (CSNF). Ge et al. [40] combined
improved SLIC and DBN to classify PolSAR images, which taked advantages of both pixel-wise and
region-based methods. Gu et al. [41] generated superpixels for PolSAR images by SLIC and classified
superpixels using deep CNN by constructing the input pyramid.

However, the superpixel generation methods in the above literatures are mostly based on statistical
properties. It is difficult to separate the targets without strong boundary information. And the serious
error of superpixel segmentation will lead to the decrease in classification accuracy. Tu et al. [42]
realized that pixel affinities measure the likelihood of two neighboring pixels belonging to the same
object. They also performed a lot of experiments to find that affinities derived from pre-trained deep
features or deep edges are not sensitive to segmentation errors. So they proposed a pixel affinity net
(PAN) to learn segmentation-aware affinities for graph-based superpixel segmentation. Abundant
experiments in [42] indicated that the PAN by taking deep features and segmentation into account
could generated better boundary-preserving superpixels compared to traditional techniques. PAN
considers color images as input to learn deep features in color space. In this paper, we investigate
superpixel generation of PolSAR pseudo-color images by PAN. Then, on the basis of superpixels, we
perform PolSAR image classification with QCNN.

1.2. Contributions and Structure

In this paper, a supervised PolSAR image classification algorithm combining learned superpixels
and QCNN is proposed. Three main steps are included: (1) pseudo-color image construction over the
Pauli decomposition for PolSAR data; (2) superpixel generation of PolSAR pseudo-color image using
PAN; (3) pseudo-color image classification by QCNN combined with superpixels. The framework of
the proposed approach is shown in Figure 1. For the PolSAR pseudo-color image classification, QCNN
is applied to exploit deep color features that considers the correlation among color channels. Besides,
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PAN is employed to learn superpixels and obtain reliable superpixel segmentation maps, which is
benefit to improve the PolSAR pseudo-color image classification results.

A

Figure 1. The pipline of the proposed approach. The idea of nearest neighbor (NN) is used to fuse the
superpixel map and pixel-wise classification result, which will be described in Section 2.3.2 in detail.

The contributions of this work are as follows:

• Based on the PolSAR pseudo-color image, QCNN is utilized to extract deep color features and to
classify the image. Different from traditional CNN processing each color channel independently,
QCNN excavates deep color features based on a quaternion matrix constructed by the color
channels. Therefore, the interaction among the channels can be fully considered, and the
classification result is more reliable.

• A supervised superpixel generation technique of PolSAR pseudo-color images based on deep
convolution network is implemented via segmentation-aware pixel affinity measurement.
The method utilizes the auto-learned deep semantic features in color space to obtain better
segmentation map than traditional techniques avoiding hand-craft features.

• Combining the pixel-wise classification map by QCNN and the superpixel generation map by
PAN, a high-precision PolSAR classification map is obtained based on color features.

The remainder of this paper is organized as follows: In Section 2, we introduce the proposed
approach in detail. In Section 3, the proposed approach is validated on three real PolSAR image data
sets, and the experimental results are represented. In Sections 4 and 5, the discussion and conclusions
are reported, respectively.

2. Methodology

2.1. Polarimetric Decomposition of PolSAR Data

The scattering matrix is a simple way to represent the scattering characteristics of PolSAR data.
It contains all the polarimetric information, which reflects the relationship between the incident field
vector and the scattered field vector sufficiently. A 2× 2 scattering matrix of PolSAR data can be
represented as:

S =

[
Shh Shv
Svh Svv

]
(1)

where Sij, ij ∈ {hh, hv, vh, vv} is the complex scattering coefficient. The diagonal ones of S are
co-polarization terms and the non-diagonal ones are cross-polarization terms. Under the condition
that the transmitting antenna and the receiving antenna are interchangeable, and the electromagnetic
wave propagates in a homogeneous medium, Shv = Svh.
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The scattering matrix S can be decomposed into the weighted sums of Pauli bases by the Pauli
decomposition, as shown in Equation (2), where each Pauli base matrix corresponds to a basic
scattering mechanism.

S =
a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
0 1
1 0

]
+

d√
2

[
0 −j
j 0

]
(2)

where
a =

Shh + Svv√
2

, b =
Shh − Svv√

2
, c =

Shv + Svh√
2

, d = j
Shv − Svh√

2
(3)

When Shv = Svh, d = 0. The PolSAR pseudo-color image can be constructed over the Pauli
decomposition: |b|2, |c|2, |a|2 are assigned to red, green and blue component, respectively [43].

2.2. Pixel-Wise Classification via Quaternion Convolutional Neural Network

Compared with CNN, QCNN considers the internal relationship among color channels and
abstract more representative deep features. QCNN was proposed in [25] and has been successfully
used to classify color images. The framework of QCNN in this paper is shown in Figure 2. A quaternion
matrix constructed by the color channels is as the input of QCNN, and the probability distribution
obtained by softmax is as the output. The QCNN model consists of two quaternion convolution layers,
a quaternion fully connected layer and a real-value fully connected layer. The size of the former and
the latter quaternion convolution kernel is 3× 3 with 32 channels and 3× 3 with 64 channels. One max
pooling layer with size 2× 2 is followed by each of the quaternion convolution layer. The quaternion
fully connected layer is used to convert channels into 512. After that, the real-value fully connected
layer with number of channels same as the number of categories is used to convert the output of the
previous layer to a real value, which will be fed into softmax to make predictions.

Convolution Block 1 Convolution Block 2

Softmax

Quaternion 
Conv

Quaternion 
Conv

Max 
Pooling

Max 
Pooling

Fully quaternion 
Connection

Fully
 Connection

Quaternion 
Matix

Figure 2. The framework of the QCNN.

2.2.1. Quaternion Matrix

The PolSAR pseudo-color image including three real-value color channels is constructed in
Section 2.1. For a pixel, it corresponds to three color values (r, g, b), which can be converted
into a quaternion value q̂ = q0 + ri + gj + bk, where i, j, k are the imaginary unit and
i2 = j2 = k2 = ijk = −1. For a PolSAR pseudo-color image, converting the three color values
at each pixel to a quaternion value, a quaternion matrix is obtained: Q̂ = [q̂mn′ ] ∈ HM×N

Q̂ = Q0 + Ri + Gj + Bk (4)

where, H is the quaternion domain. M× N is the size of quaternion matrix. For a RGB image, Q0 = 0.
and R, G, B is the red, green, blue channel, respectively.

In order to understand quaternion convolution layer and quaternion fully connected layer better,
some basic operations of the quaternion are briefly introduced. Define two quaternion q̂ = q0 + q1i +
q2 j + q3k and p̂ = p0 + p1i + p2 j + p3k,
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• Addition: q̂ + p̂ = (q0 + p0) + (q1 + p1)i + (q2 + p2)j + (q3 + p3)k
• Scalar multiplication: λq̂ = λq0 + λq1i + λq2 j + λq3k
• Element multiplication: q̂ p̂ = (q0 p0 − q1 p1 − q2 p2 − q2 p3) + (q0 p1 + q1 p0 + q2 p3 − q3 p2)i +

(q0 p2 − q1 p3 + q2 p0 + q3 p1)j + (q0 p3 + q1 p2 − q2 p1 + q3 p0)k
• Rotation: if q̂ need to be rotated, and the rotation angle is θ, rotary axis is w = [w1 w2 w3]

T and w2
1 +

w2
2 + w2

3 = 1. Then the rotated quaternion p̂ = ŵq̂ŵ∗, where ŵ = cos θ
2 + sin θ

2 (w1i+w2 j+w3k).

2.2.2. Quaternion Convolution Layers

Assume that the quaternion convolution operation is denoted as ‘~’, and the quaternion
convolution kernel is expressed as Ŵ = [ŵll′ ] ∈ HL×L, of which the element is set as:

ŵll′ = rll′(cos
θll′

2
+ β sin

θll′

2
) (5)

where, θll′ ∈ [−π,+π] is the rotation angle and β =
√

3
3 (i + j + k) is the rotary axis. rll′ ∈ R.

According to rotation operation, the quaternion convolution is defined as:

Q̂ ~ Ŵ = F̂ =
[̂
fkk′

]
∈ H(M−L+1)(N−L+1) (6)

where,

f̂kk′ = ∑L
l=1∑L

l′=1
1

rll′
ŵll′ q̂(k+l)(k′+l′)ŵ

∗
ll′ (7)

‘∗’ is the conjugation of quaternion. For example, the conjugation of q̂ = q0 + q1i + q2 j + q3k is written
as q̂∗ = q0 − q1i− q2 j− q3k.

From Equation (7), the convolution operation can be seen as a series of rotations and scaling of a
quaternion, which helps the QCNN to find the best representation of color features.

2.2.3. Quaternion Fully-Connected Layers

Assume that the input of the quaternion fully connected layer is â = [ân] ∈ HN , n = 1, 2, 3, . . . , N,
and the kernel is V̂m = [v̂m

n ] ∈ HM, m = 1, 2, 3, . . . , M. Then the output of the quaternion fully
connected layer can be expressed as

Ô =
N

∑
n=1

1
sn

v̂m
n ânv̂m∗

n (8)

where, sn is the magnitude of v̂m
n .

2.3. Superpixel Generation Utilizing the Pixel Affinity Network

Many superpixel generation methods have been proposed for PolSAR images, but these
methods mainly explore the statistical characteristics of PolSAR data based on the complex Gaussian
distribution [44,45] or the non-Gaussian distributions [46–48]. And they are unsupervised methods.
In this paper, a supervised deep learning method is adopted to generate superpixels for PolSAR
pseudo-color image. PAN is used to learn superpixels with deep features. The framework of the PAN
is shown in Figure 3.
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Figure 3. The framework of the PAN. The PAN is utilized to predict horizontal and vertical affinities at
every pixel. The gray area in the upper right corner shows the standard structure of a ResBlock [49].

2.3.1. Pixel Affinity Network

Pixel affinities are used to measure the similarity between two adjacent pixels. A better pixel
affinity map helps algorithm to generate a better superpixel map. For pixel (x, y), PAN predicts
horizontal and vertical affinities. For example, there is a boundary-like change between pixel (x, y) and
pixel (x + 1, y), PAN will predict a smaller horizontal affinity value at pixel (x, y), otherwise, a larger
horizontal affinity value is predicted. The vertical affinities are predicted in the same way.

As shown in Figure 3, a PolSAR pseudo-color image is feed into the PAN, and two affinity maps
are output. One is the horizontal affinity map, and the other is the vertical affinity map. In the first
layer, 1× 7 convolution kernels (128 channels) are used to capture horizontal changes in the PolSAR
pseudo-color image. To capture vertical changes, we only need to rotate the input image along the
vertical axis. Three residual blocks (ResBlock) with 128 channels follow the first layer to make the net
easier to optimize [49]. An intermediate affinity map predicted by a convolution kernel (1 channel)
with size 1× 1 is concatenated with an edge map calculated by the Canny detection operator. Canny
detector is a powerful edge detector, that is widely used in computer vision. Here, we apply the Canny
detector to obtain an accurate edge map. Then we concatenate the edge map with intermediate affinity
map to provide an extra, more robust edge feature map into PAN. Experimental result proves that the
edge map has been proven helpful for locating the boundaries [42]. Inspired by [50], feature-based
method, such as corner detection, can be used to replace the Canny detector. Corner points are
important features for feature extraction. The corner detection in an image is to find the points on the
contour at which two straight edges meet at a particular angle or the location at which the direction of
the contour changes significantly. As edge detection, corner detection can also provides a good feature
map which contains the shape information with fewer points. The concatenated map is then passed
onto two cascaded 1× 1 convolution kernels (8 channels and 1 channel, respectively). Behind the two
1× 1 convolution layers whose channel is 1, the sigmoid activations are used to restrict the affinity
values in 0− 1. And ReLU activations are used behind each convolution layers.

A modified ERS is utilized to accept the horizontal and vertical affinity maps and generate
superpixel map. The PAN is trained combining affinity maps, superpixel map with ground-truth
segmentation map, the detail can be seen in [42]. The PAN is trained by optical color images. Hence, it
is convictive to fine tune the pre-trained PAN with PolSAR data sets. However, the adopted PolSAR
data in this work is the PolSAR pseudo-color images, the superpixel segmentation utilizes the color
space information. That is to say, we regard the PolSAR pseudo-color images as the color images.
Therefore, it is also reliable to generate superpixels of PolSAR pseudo-color images by the pre-trained
PAN. In subsequent experiments, we compared the superpixel generation results by the pre-trained
PAN and the fine-tuned PAN. The details are described in Section 3.

2.3.2. Pixel-Wise Classification Fusion Superpixels

In this work, we proposed a supervised PolSAR pseudo-color image classification approach
fusion pixel-wise and region-based methods. QCNN is applied to obtain the pixel-wise classification
map, and PAN is utilized to obtain region-based map, superpixels. By fusing the above maps, the final
pixel-wise classification result is obtained. The pixel-wise approaches can learn the features of each
pixel independently to preserve terrain details and edges. But They ignore the spacial relations among
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pixels, and is vulnerable to speckle noise. The region-based approach, such as superpixel, considers the
spatial relations and restrains the influence of noise to a certain extent. Therefore, the approach fusion
pixel-wise and region-based methods can reduce classification error and restrains noise. In this paper,
QCNN is utilized as the pixel-wise approach and PAN is utilized to learn spacial relations among
pixels. In principle, the correct class of the pixels in one superpixel should be the same. In other words,
the label of a superpixel should be the label of class with the largest numbers or the second-largest
numbers in this superpixel [37]. According to this theory, the classification result should be improved
via fusing the superpixels generated by PAN and the pixel-wise classification map produced by QCNN.
The fusion steps are as follows:

Step 1: For a PolSAR pseudo-color image, 10% reference pixels are selected for each class to calculate
the mean intensity of each color channel Mean(I, L) where I is the intensity of one of the
three color channels, and L ∈ labels.

Step 2: For each superpixel, the total number of pixels T in this superpixel is counted. The number
of pixels belonging to each category in this superpixel is also counted and arranged in
descending order: Num_1, Num_2, . . . , Num_c, c is the number of classes in this superpixel.

Step 3: Find the maximum number Num_1 and the second largest number Num_2, and and record
their corresponding classes labelNum_1, labelNum_2.

Step 4: Set the threshold D, According to experimental experience, it is satisfactory to set D as 1/3.
If Num_1 ≥ T × D, the label of the superpixel is labelNum_1. Otherwise, the following steps
are performed.

Step 5: The intensity of each color channel for the superpixel Mean_(I) is calculated and compared
with corresponding intensity of class labelNum_1, labelNum_2,respectively:

M(l) = ∑
I
|Mean(I, l)−Mean_(I)| (9)

where, l ∈ {labelNum_1, labelNum_2}. If M(labelNum_1) ≥ M(labelNum_2), the label of the
superpixel is labelNum_2. Otherwise, the label of the superpixel is labelNum_1.

3. Experiment and Results

3.1. Description of the Experimental Datasets

The first data set is the four-look L-band PolSAR image with a resolution of 12m× 6m, Flevoland,
which can be downloaded from https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
The size of this data set is 750× 1024 pixels. It contains 15 categories: stem beans, peas, forest, Lucerne,
wheat, beet, potatoes, bare soil, grass, rapeseed, barley, wheat2, wheat3, water, buildings [22]. The Pauli
color code image and its ground truth are given in Figure 4.

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
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Figure 4. (a) The Pauli color-code image of Flevoland data set. (b) The corresponding ground truth.
(c) The legend of the ground truth.

The second data set named San Francisco is the four-look L-band PolSAR image with size
900× 1024 pixels, which can be downloaded from https://earth.esa.int/web/polsarpro/data-sources/
sample-datasets. It includes 4 categories: sea, mountains, grass and buildings [51]. The Pauli color
code image and its ground truth are shown in Figure 5.

(a) (b)

Sea
Mountains

Grass

Buildings

1
2

3

4

(c)

Figure 5. (a) The Pauli color-code image of San Francisco data set. (b) The corresponding ground
truth. (c) The legend of the ground truth.

The third dataset, Oberpfaffenhofen, is the L-band PolSAR image with size 1300× 1200 pixels.
which can be downloaded from https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
It consists of 3 classes: buildings, wood lands, open areas [22]. The Pauli-decomposed pseudo-color
image and its ground truth are offered in Figure 6.

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
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(a) (b)

1 Buildings

2 Wood lands

3 Open ereas

(c)

Figure 6. (a) The Pauli color-code image of Oberpfaffenhofen data set. (b) The corresponding ground
truth. (c) The legend of the ground truth.

3.2. Superpixel Generation Results

In the experiments in this section, boundary recall (BR) shown in Equation (10) [52] and achievable
segmentation accuracy (ASA) shown in Equation (11) [52] are utilized to evaluate the performances of
the superpixel generation algorithms. A higher BR score indicates that superpixels maintains more
real boundaries. And a higher ASA score indicates superpixels coincide better with real targets .

BR =
∑p∈δG Fc(minq∈δS ‖p− q‖ < ε)

|δG| (10)

where, δS and δG represent the collection of pixels on the superpixel boundaries and real target
boundaries, respectively. p is the p-th pixel in δG, and q is the q-th pixel in δS. Fc is the indication
function utilized to check if the nearest neighbor pixels is within ε = 2 pixels of the distance,
the standard form of Fc is logical function. Equation (10) denotes the probability of finding pixels on
the superpixel boundaries within ε pixels of real target boundaries.

ASA =
∑Z′ maxZ′ |SZ′ ∩ GZ|

∑Z GZ
(11)

where, SZ′ is the Z′-th superpixel and GZ is the Z-th real target covering SZ′ most. This equation
computes the accuracy by labeling each superpixel with the label of ground truth segmentation that
has the biggest overlap area.

Local regions of the above-mentioned three data sets are randomly selected for superpixel
generation experiments. The selected region with 512× 375 pixels of Flevoland is shown in Figure 7a.
Figure 7c gives the selected region with 520× 600 pixels of San Francisco data set. For Oberpfaffenhofen
data set, a region with 500× 500 pixels shown in Figure 7e is chosen.
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(a) (b) (c)

(d) (e) (f)

Figure 7. (a) The selected local region of Flevoland data set. (b) The selected local region of San
Francisco data set. (c) The selected local region of Oberpfaffenhofen data set. (d) The ground truth of
(a). (e) The ground truth of (b). (f) The ground truth of (c).

In this part, two means are adopted for PolSAR pseudo-color image superpixel generation to
investigate which one is more suitable. One is to adopt the fine-tuned PAN with PolSAR pseudo-color
images. This is no doubt the most reasonable method. The pre-trained PAN provided by [42] was
trained with optical color images, but in this work, it is used for superpixel generation of PolSAR
pseudo-color images. Because of the different characteristics of optical images and PolSAR data, it
is more appropriate to adopt transfer learning when PAN is applied for PolSAR image superpixel
generation. The other is to utilize the pre-trained PAN directly. In Section 2.1, PolSAR data is converted
into pseudo-color image, superpixel generation of PolSAR is actually based on color features. From this
point of view, it is analogous to superpixel generation of optical images. Hence, it is also reasonable to
adopt pre-trained PAN for superpixel generation of PolSAR pseudo-color images without fine-tuning.
Firstly, we perform superpixel generation by fine-tuned PAN. Since it is difficult and expensive to
obtain large scale PolSAR data sets with ground truth, we adopt a 481× 321 window to randomly
sample a 1772× 1100 PolSAR data, and manually screen and remove these data with higher similarity.
By data augmentation, we obtained 500 pairs of PolSAR pseudo-color segmentation data sets for
fine-tuning and validation. Figure 8 gives the sampled PolSAR image and its segmentation ground
truth, which can be downloaded from https://earth.esa.int/web/polsarpro/data-sources/sample-
datasets. 90% of them are randomly selected as the training data set, and the rest is the verification
data set. During fine-tuning, the learning rate (LR) is set as 1 × 10

−7
. And other parameters are equal

to those as in [42]. For test, the data shown in Figure 7a is put to use. To investigate the effect of
fine-tuning on the performance of PANs, we test the performances of the networks with different
iterations. The ASA scores and the BR scores are shown in Figure 9a,b. From which, it can be illustrated
that the performances of the fine-tuned PAN are hardly improved with the increase of iterations.
Furthermore, the ASA scores and BR scores of the pre-trained PAN are always higher than those of
fine-tuned PANs. That is to say, the best superpixel segmentation result is acquired by pre-trained PAN
rather than by fine-tuned PANs. The reasons for this phenomenon will be analyzed and discussed

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets.
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in Section 4. Based on the above description, in the subsequent experiments, we only adopt the
pre-trained PAN provided by [42] for superpixel generation of PolSAR pseudo-color images.

(a) (b)

Figure 8. (a) The color image of Foulum data set which is used to get sampled data sets. (b) The
corresponding segmentation ground truth.
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Figure 9. (a) The achievable segmentation accuracy under different iterations on Flevoland data set.
(b) The boundary recall under different iterations on Flevoland data set. The subscript of FN_PAN
represents epoches.

To illustrate the superiority of deep learning in superpixel generation of PolSAR pseudo-color
images, we compare the performances of the pre-trained PAN with SLIC and SEEDs. The visual
superpixel generation maps are shown in Figure 10. From the magnified view of the region in box,
we can see that the pre-trained PAN shows better boundary-preserving ability than SLIC and SEEDs
for superpixel generation of PolSAR pseudo-color images, especially for some narrow, or smaller
objectives. Figure 11 shows the ASA scores and the BR scores. For all the data sets, as the number
of superpixels increases, the performance of each algorithm is gradually improved. However,the
pre-trained PAN possesses the highest ASA scores and BR scores. For Flevoland data set, the BR
score of our method improves to 94.8% at 4000 superpixels, which is about 17% and 15% higher
than that of SEEDs and SLIC, respectively. For San Francisco data set, our method has the BR score,
94.76% at 4000 superpixels, which increases of 17% and 16% compared to SLIC and SEEDs. But for
oberpfaffenhofen data set, due to simple terrain types, the ASA scores and BR scores of the three
methods are very close to each other.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. The visual superpixel generation maps. (a) The superpixel generation map and partial
enlarged details obtained by SLIC on Flevoland data set. (b) The superpixel generation map and
partial enlarged details obtained by SEEDs on Flevoland data set. (c) The superpixel generation map
and partial enlarged details obtained by PAN on Flevoland data set. (d) The superpixel generation
map and partial enlarged details obtained by SLIC on San Francisco data set. (e) The superpixel
generation map and partial enlarged details obtained by SEEDs on San Francisco data set. (f) The
superpixel generation map and partial enlarged details obtained by PAN on San Francisco data set.
(g) The superpixel generation map and partial enlarged details obtained by SLIC on Oberpfaffenhofen
data set. (h) The superpixel generation map and partial enlarged details obtained by SEEDs on
Oberpfaffenhofen data set. (i) The superpixel generation map and partial enlarged details obtained by
PAN on Oberpfaffenhofen data set.
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Figure 11. The curve of achievable segmentation accuracy and boundary recall. (a) The achievable
segmentation accuracy on Flevoland data set. (b) The boundary recall on Flevoland data set. (c) The
achievable segmentation accuracy on San Francisco data set. (d) The boundary recall on San Francisco
data set. (e) The achievable segmentation accuracy on Oberpfaffenhofen data set. (f) The boundary
recall on Oberpfaffenhofen data set.
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3.3. Classification Result

In this section, we first compare the classification performance of QCNN and CNN for PolSAR
pseudo-color images. And we adopt the overall accuracy (OA) to evaluate the performance of the
classification algorithms, and for each calss, precision and recall explained in Equation (12) are also
calculated [53].

precision =
TP

TP + FP
, recall =

TP
TP + FN

(12)

where, TP is the true positive or the number of correctly detected class points, FP is the false positive
or the number of incorrectly detected class points, and FN is the false negative.

For both QCNN and CNN, a sliding window with size m×m is used to sample training data
and validation data, which meets such requirement that the labels of the pixels within n× n region
around the center pixel are the same as the label of the center pixel. To search the optimal m and n
for each data set, we experiment in range m ∈ {4, 6, 8, 10, 12, 14} and n ∈ {1, 2, . . . , m}. According
to the experimental results, it can be concluded that the sliding window can not contain enough
neighborhood information when m is small, which results in poor classification results. Besides, as m
increases too much, OA increases slowly, but training time of the network increases rapidly. Balancing
OA and training time, we choose relatively appropriate m and n for each data set considering their
data characteristics. For all the three data set, m is set as 10. Flevoland contains 15 classes and
each class is disperse, so n is set as 2. San Francisco and Oberpfaffenhofen has 4 or 3 classes and
the distribution of each class is concentrated, n is set as 4. Besides, we also analyze the effect of
sampling rate on classification results. For Flevoland, the number of pixels in each class varies
greatly, for example, buildings has 476 pixels in total, while other classes have at least 3000 pixels.
If the sampling rate is small, there is no guarantee that adequate training data is sampled for each
category. But, if the sampling rate is too large, the training time will increase rapidly. Experiments
show that it is appropriate to set the sampling rate as 10% for Flevoland data set, which can ensure
to obtain enough training samples and reasonable training time. For San Francisco, the number of
pixels in each class is large and the difference is also small. So it is enough to set as sampling rate
as 5%. For Oberpfaffenhofen, the number of pixels in each class is huge, so it is sufficient to set the
sampling rate as 1%. For each data set, 9% of the sampled data is randomly selected as training data,
the remaining is validation data.

In this work, the compared CNN is structured by two convolutional layers, each of which is
followed by a max pooling layer. And two fully connected layers are placed at the end of the network.
The size and strides of the kernel, the number of neurons in each layer are the same as those of QCNN.
During training, the loss functions of both nets are the cross entropy loss. For optimization algorithm,
Root Mean Square Prop(RMSProp)is applied by QCNN, and the LR is set as 0.001, the weight decay
(WD) is set as 10

−6
. Moreover, Momentum optimizer is applied by CNN, and the LR is set as 0.001,

the WD is set as 10
−6

.
For Flevoland data set, CNN is trained with 31000 epochs, while QCNN is trained with 35 epochs.

After training, a training accuracy, 99.78% and a validation accuracy, 99.53% are achieved for CNN.
However, its test OA is only 76.77%. For QCNN, a training accuracy, 99.34% and a validation accuracy,
99.18% are acquired. And its test OA reaches 87.26%, which is 10.49% higher than that of CNN.
The visual classification results of CNN and QCNN are shown in Figure 12. From Figure 13, which
gives the classification accuracies for each class and the OA, we can see that the classification accuracies
for each class of QCNN are higher than those of CNN. Especially for grass, the classification accuracy is
53.45%, which is 39.29% higher than that obtained by CNN. Figures 12 and 13 statistically demonstrate
that QCNN is much better than CNN on Flevoland data set.
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(a) (b)

(c) (d)

Figure 12. The visual classification results by CNN and QCNN on Flevoland data set. (a) The
classification result obtained by CNN. (b) The result map (a) overlaid with the ground truth map.
(c) The classification result obtained by QCNN. (d) The result map (c) overlaid with the ground
truth map.
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Figure 13. The classification accuracies by CNN and QCNN on Flevoland data set.

For San Francisco data set, we train QCNN with 35 epochs and CNN with 93000 epochs. Finally,
a training accuracy, 99.29% and a validation accuracy, 99.05% are achieved for CNN, while the test
OA is 85.44%. For QCNN, the training accuracy and the validation accuracy are 99.62% and 99.27%,
respectively. And its test OA is 88.51%. The visual classification results of the two methods are
shown in Figure 14. And the classification accuracies of the results are shown in Figure 15. From the
figure, it can be seen that the classification accuracies of each class by QCNN is higher than those
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by CNN, except buildings. On the whole, the OA score of QCNN is 3.07% higher than that of CNN.
This illustrates that QCNN has better performance.

(a) (b)

Figure 14. The visual classification results by CNN and QCNN on San Francisco data set. (a) The
classification results by CNN. (b) The classification result by QCNN.
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Figure 15. The classification accuracies by CNN and QCNN on San Francisco data set.

For Oberpfaffenhofen data set, QCNN and CNN are trained with 40 epochs and 93000 epochs,
respectively. For CNN, the training accuracy and the validation accuracy are 99.38% and 99.66%,
respectively. And its test OA is 90.06%. For QCNN, the training accuracy and the validation accuracy
are 99.04% and 99.17%, respectively, while its OA is 92.58%. Figure 16 gives the visual classification
results by the two methods. And Figure 17 shows the classification accuracies for each class and OA.
With regard to the classification accuracies, the performances of QCNN in each class are better than
CNN. Moreover, the total accuracy of QCNN is 2.52% higher than that of CNN. This also indicates
that QCNN presents better classification results than CNN.
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(a) (b)

(c) (d)

Figure 16. The visual classification results by CNN and QCNN on Oberpfaffenhofen data set. (a) The
classification result obtained by CNN. (b) The result map (a) overlaids with the ground truth map.
(c) The classification result obtained by QCNN. (d) The result map (c) overlaids with the ground
truth map.
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Figure 17. The classification accuracies by CNN and QCNN on Oberpfaffenhofen data set.
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The foregoing experiments only represent the classification results by CNN or QCNN, but do
not exploit the spatial neighborhood information among pixels. In order to take advantage of the
spatial relationship among pixels in color space, the pixel-wise classification approach combined with
superpixels is investigated in this part. The above experimental results show that the classification
performance of QCNN is superior to CNN, so the subsequent experiments adopt QCNN as classifier.

As shown in [37], different superpixel numbers lead to different superpixel generation maps,
which will impact the classification results. Therefore, we first investigate the impact of different
superpixel numbers on the classification results. The OA scores of each data set with different
superpixel numbers are shown in Figure 18. The optimal OA score, 96.56% is obtained at
1000 superpixels on Flevoland data set. Due to its simple category construction, San Francisco
data set reaches a satisfactory OA score, 92.99% at 600 superpixels. Oberpfaffenhofen data set is a
relatively large data with simple category construction, a considerable OA scores can be received at
800 superpixels.
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Figure 18. Accuracy curve of Flevoland, San Francisco and Oberpafaffenhofen data sets under different
numbers of superpixels.

To further illustrate the effectiveness of the proposed approach, QCNN combined with pre-trained
PAN (QPAN), QCNN combined with SLIC (QSLIC) and QCNN combined with SEEDs (QSEEDs) are
compared. Refer to the experimental results described in last part, the number of superpixels are set as
1000, 600 and 800 for Flevoland, San Francisco and Oberpfaffenhofen, respectively. The classification
maps are shown in Figures 19–21. And Tables 1–3 give the class-specific accuracy, overall accuracy,
precision and recall.

From classification results of Flevoland data set in Table 1, QSLIC performs poorly with OA
score, 89.83%. And it also gets the worst class-specific accuracy for each class. A better OA score,
93.98% is received by QSEEDs. Besides, the best class-specific accuracies of peas, Lucerne, wheat,
grass and rapeseed are also obtained by QSEEDs. However, the best OA score, 95.56% is achieved by
QPAN, which is 6.73% and 2.58% higher than that of QSLIC and QSEEDs, respectively. For most of
the classes on Flevoland data set, QPAN can classify them correctly with a high accuracy. Especially
for water, QPAN improves the classification accuracy to 89.25%. Besides, for each class, the proposed
method can get better precision and recall. In summary, our approach performs better on complex
terrain classification.
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(a) (b) (c)

(d) (e) (f)

Figure 19. The visual classification results on Flevoland data set. (a) The classification map by QSLIC.
(b) The classification map by QSEEDs. (c) The classification map by QPAN. (d) The classification map
(a) overlaid with the ground truth map. (e) The classification map (b) overlaid with the ground truth
map. (f) The classification map (c) overlaid with the ground truth map.

(a) (b) (c)

Figure 20. The visual classification results on San Francisco data set. (a) The classification map by
QSLIC. (b) The classification map by QSEEDs. (c) The classification map by QPAN.

Table 1. The accuracy, precision and recall for Flevoland data set.

Class QSLIC QSEEDs The Proposed Method

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Stem Beans 0.9561 0.8996 0.9848 0.9843 0.9618 0.9956 0.9969 0.9515 0.9969
Peas 0.8499 0.7894 0.9015 0.9777 0.9705 0.9904 0.9661 1.0000 0.9661

Forest 0.9770 0.9978 0.9997 0.9757 0.9976 0.9998 0.9803 1.0000 0.9997
Lucerne 0.9024 0.8694 0.8077 0.9935 0.9995 0.9842 0.9407 0.9998 0.9465
Wheat 0.9123 0.9334 0.8874 0.9997 0.9998 0.9785 0.9897 0.9577 0.9897
Beet 0.8072 0.7648 0.8682 0.8943 0.8590 0.9788 0.9552 0.9902 0.9552

Potatoes 0.9442 0.9606 0.9228 0.9782 0.9867 0.9372 0.9784 0.9955 0.9784
Bare Soil 1.00 1.0000 0.8461 1.00 1.0000 0.8187 1.00 1.0000 1.0000

Grass 0.7996 0.6626 0.9784 0.8813 0.6886 0.9993 0.8695 0.9143 0.8695
Rapeseed 0.9631 0.9479 0.7133 0.9870 0.9832 0.9401 0.9426 0.9420 0.9426

Barley 0.9908 0.9972 0.9081 0.9874 0.9929 0.8506 0.9927 0.9989 1.0000
Wheat2 0.8290 0.8322 0.9516 0.9893 0.9900 0.9997 1.00 1.0000 1.0000
Wheat3 0.9411 0.9781 0.7936 0.9915 0.9990 0.8961 0.9934 0.9573 0.9996
Water 0.7206 0.9483 0.9981 0.6725 0.9303 1.0000 0.8925 1.0000 1.0000

Buildings 0.6450 0.0562 1.0000 0.8298 0.2442 1.0000 0.831 1.0000 0.8319

accuracy 0.8983 0.9398 0.9656
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(a) (b) (c)

(d) (e) (f)

Figure 21. he visual classification results on Oberpfaffenhofen data set. (a) The classification map by
QSLIC. (b) The classification map by QSEEDs. (c) The classification map by QPAN. (d) The classification
map (a) overlaid with the ground truth map. (e) The classification map (b) overlaid with the ground
truth map. (f) The classification map (c) overlaid with the ground truth map.

From classification results of San Francisco data set in Table 2, QSLIC still performs worst with
lowest and class-specific accuracy. The OA score, 91.35% of QSEEDs is slightly worse than that of
QPAN, 92.99%. However, QPAN can classify most of the classes correctly with acceptable classification
accuracies, while other methods cannot. Comparing the precision and recall, the proposed method
performs better.

Table 2. The accuracy, precision and recall for San Francisco data set.

Class QSLIC QSEEDs The Proposed Method

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Sea 0.9701 0.9925 0.9330 0.9705 0.9923 0.9559 0.9768 0.9967 0.9761
Mountains 0.9346 0.7557 0.9903 0.9333 0.7821 0.9922 0.9702 0.9072 0.9922

Grass 0.7898 0.5903 0.8939 0.8664 0.7302 0.8913 0.9060 0.8183 0.9025
Buildings 0.8876 0.9659 0.8361 0.8963 0.9721 0.8959 0.886 0.9680 0.9370

accuracy 0.9092 0.9135 0.9299

Table 3 gives the classification results of Oberpfaffenhofen data set. It shows that acceptable
OA scores can be obtained by both QSLIC and QSEEDs. However, the best OA score, 95.59% is still
achieved by the proposed method, which is 2.13% and 1.24% higher than those acquired by QSLIC
and SEEDs, respectively. Besides, the optimal classification accuracies of each class are still received by
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QPAN. Due to simple terrain, the precision and recall obtained by our algorithm is not significantly
higher than the other two methods.

Table 3. The accuracy, precision and recall for Oberpfaffenhofen data set.

Class QSLIC QSEEDs The Proposed Method

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Buildings 0.9158 0.9241 0.9075 0.9312 0.9290 0.9318 0.9400 0.447 0.9335
Wood Lands 0.9235 0.9109 0.9940 0.9352 0.9139 0.9963 0.9339 0.9287 0.9969
Open Areas 0.9592 0.9858 0.9658 0.9561 0.9888 0.609 0.970 0.9910 0.9721

accuracy 0.9346 0.9435 0.9559

Except for the above experiments, we also compare the proposed method with several
state-of-the-art methods. Not all the compared methods used every data set utilized in our work, thus,
the compared methods are not exactly the same for each data set. The compared approaches include
classical algorithms, such as SVM [15], Wishart [16] and Mean shift [54], pixel-wised algorithms [21,51]
and region-based algorithms [37,55,56]. Method in [21] applied two cascaded convolutional layers
to learn hierarchical polarimetric spatial features for PolSAR image classification. Method in [37]
combined SRCs with superpixels to classify PolSAR images. Method proposed in [51] adopted the
nearest neighbor and SVM classifiers to classify PolSAR images based on the features extracted by
tensor local discriminant embedding method. Method in [55] utilized Fuzzy superpixels to assist
PolSAR image classification. Method employed in [56] classified PolSAR images with a deep neural
network restrained by superpixels. The comparison results are shown in {Table 4. No matter which
method is compared with, our method can always acquire the best OA. Therefore, the proposed
method is a robust and competitive approach for PolSAR image classification.

Table 4. The comparison of the proposed method with several state-of-the-art methods.

Method Flevoland San Francisco Oberpfaffenhofen

SVM [15] 0.8587 0.5608 0.8729
Wishart [16] 0.6177 0.6743 0.8050

Method in [21] 0.9246 0.9056 —
Method in [37] — — 0.9311
Method in [51] — 0.8582 —
Method in [55] 0.8935 — 0.7725
Method in [56] 0.9267 — 0.9138
Method in [54] — 0.8998 —

the proposed method 0.9656 0.9299 0.9559

4. Discussion

According to the forementioned experimental results, the proposed approach shows great
advantages in PolSAR pseudo-color image classification. This mainly owes to two aspects. On the one
hand, pre-trained PAN is adopted to extract the spatial relationship among pixels in color space. On the
other hand, the interaction among color channels are fully considered by QCNN, which provides more
representative color features. The following points in the experimental results are worth discussing.

• The comparison of fine-tuned PAN and Pre-trained PAN. Figure 9 show that the fine-tuned
PAN with PolSAR segmentation data sets can not generate satisfactory superpixels. There are
two main reasons for this phenomenon. One is that available PolSAR segmentation data sets are
relatively inadequate to acquire a powerful fine-tuned network. So it is easy to over fit during fine
tuning. The other is that the pre-trained PAN has been in a superior state to generate superpixels
for color images. Therefore, the deep features extracted by pre-trained PAN in color space can be
directly utilized to generate superpixels for PolSAR pseudo-color images.
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• The superiority of Segmentation-aware deep features. The frequently-used superpixel
generation techniques for PolSAR images use the statistical characteristics. However, the method
adopted in this work utilize deep network to learn segmentation-aware deep features. Figures 10
and 11 indicate that the superpixels generated by our technique are better than those by SLIC
and SEEDs. Especially for some narrow and small objects. That is to say, the segmentation-aware
deep features extracted by pre-trained PAN is more effective for superpixel generation of PolSAR
pseudo-color images.

• The validity of interaction among color channels. At the beginning of classification, the color
channels of the PolSAR pseudo-color image are converted into a quaternion matrix, which
will be fed into QCNN. Figures 12–17 show that QCNN can make full use of the interaction
among color channels to find more expressive color features, which are more helpful for PolSAR
pseudo-color image classification compared with the color features extracted by traditional CNN.
On computation cost, the quaternion matrix operations are calculated during training QCNN,
so it spends more time than CNN for one epoch. However, in our computer configuration
environment, QCNN is trained with 30-40 epochs, which will be enough for each PolSAR data
set. While CNN needs to be trained 8000-9000 epochs. Overall, QCNN takes less time than
CNN. In conclusion, QCNN can extract more representative deep features considering interaction
among color channels, which performs better in PolSAR classification than CNN.

• Superpixels aided QCNN classification. The experimental results indicate that the classification
results by superpixels aided QCNN are better than those by QCNN. From Figure 18, OA increases
faster when the number of superpixels is smaller than 6000, but as the number of superpixels
is larger than 800, the OA increases slowly. There are some reasons for this phenomena. First,
when the number of superpixels is small, there are a large number of pixels in each superpixel.
In this condition, there is no guarantee that each superpixel completely belongs to one objective.
Second, when the number of superpixels increases to 600–800, each superpixel must belong to
only one objective. In other words, each target can be divided into several superpixels. Therefore,
increasing the number of superpixels does not improve classification performance. For Flevoland
dataset, there are 15 classes and each class occupies several small areas, so a relative large number
of superpixels is needed to ensure the classification performance. Actually, the best OA is achieved
at 1000 superpixels for Flevoland data set. For San Francisco and Oberpfaffenhofen data sets,
there are only 4 or 3 classes and each class occupies a large area. Thus, a relative small number
(600-800) superpixels can segment these two data sets greatly. Compared with other superpixel
generation methods shown in Figures 19–21, the classification results based QPAN are the best.
It is worth noting that, for San Francisco and Oberpfaffenhofen data sets, the OA based on the
proposed method is around 2% higher than QSLIC and SEEDs. But for Flevoland, it is about 6%
and 3% higher than QSLIC and QSEEDs, respectively. The reasons for such phenomenon are as
follows. San Francisco and Oberpfaffenhofen include fewer classes with a lot of pixels. The OA
has less fluctuation even if the number of misclassified pixels of each class is large. However,
Flevoland includes 15 classes in total with around 3000 pixels of each class. When the number of
incorrectly classified pixels increases, the OA has a large fluctuation. In this sense, the classification
of Flevoland data set is more difficult, more complex, and also closer to reality. This shows the
superiority of the proposed method in the complex classification task. Besides, it can be seen
from the classification maps that the proposed method can correctly classify narrow and long
terrains, while other methods can not. This attributes to the correct superpixel segmentation by
PAN. In general, the method proposed in this paper has a greater advantage in PolSAR image
classification in pixel level.

5. Conclusions

In this paper, a supervised classification method combining learned superpixels and QCNN
is proposed for PolSAR pseudo-color images. Compared with several state-of-the-art methods,
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the proposed method is a very competitive method. Firstly, the deep texture and color features
are extracted by PAN to generate reasonable superpixels, which well track the boundaries of object.
Secondly, the interaction among the three color channels of the PolarSAR pseudo-color image are
coded by QCNN, so the more representative color features are extracted which is helpful for PolSAR
pseudo-color image classification. Finally, the final classification result is obtained by combining
QCNN and superpixels. The proposed classification approach integrates both the color patterns and
the spatial relationship of the pixels.
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