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Abstract: Automatic image registration has been wildly used in remote sensing applications.
However, the feature-based registration method is sometimes inaccurate and unstable for images
with large scale difference, grayscale and texture differences. In this manuscript, a coarse-to-fine
registration scheme is proposed, which combines the advantage of feature-based registration
and phase correlation-based registration. The scheme consists of four steps. First, feature-based
registration method is adopted for coarse registration. A geometrical outlier removal method is
applied to improve the accuracy of coarse registration, which uses geometric similarities of inliers.
Then, the sensed image is modified through the coarse registration result under affine deformation
model. After that, the modified sensed image is registered to the reference image by extended
phase correlation. Lastly, the final registration results are calculated by the fusion of the coarse
registration and the fine registration. High universality of feature-based registration and high
accuracy of extended phase correlation-based registration are both preserved in the proposed method.
Experimental results of several different remote sensing images, which come from several published
image registration papers, demonstrate the high robustness and accuracy of the proposed method.
The evaluation contains root mean square error (RMSE), Laplace mean square error (LMSE) and
red–green image registration results.

Keywords: registration; phase correlation; remote sensing; outlier removal; modified sensed image;
parameter fusion

1. Introduction

Image registration is the process of geometrically aligning two or more images with overlapping
scenes taken at different times, from different viewpoints, or by different sensors [1]. It has been
widely applied in many fields, such as biomedical image analysis, remote sensing, computer vision,
and pattern matching [2,3]. It is significant to study image registration in all these disciplines to
develop robust, accurate, and computationally efficient algorithms to overlay the relevant images [4].

Traditionally, there are several kinds of image registration methods based on feature, frequency
domain and so on [5,6]. These image registration techniques can meet the requirement of accuracy for
many remote sensing images. However, there are always problems such as inefficiency, inaccuracy
and instability when it comes to the automatic registration of multi-sensor images [7]. Geometric
and radiometric differences between images can easily decrease the accuracy of image registration.
Therefore, further studies are required to overcome these difficulties and improve the efficiency,
accuracy and robustness.
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The main purpose of this paper is to present a coarse-to-fine image registration method for
large resolution, geometric and radiometric differences. The proposed method is divided into four
steps. In Step-1, we coarsely match the reference image and the sensed image through scale-invariant
feature transform (SIFT) [8] and the outlier removal method (GSM) [9]. In this step, the coarse
registration parameters can be evaluated through classic least-squares method [10]. However, there
are still small registration errors due to large resolution, geometric and radiometric differences in
many remote sensing images. Phase correlation image registration method is effective and robust for
fine registration of small errors [11,12]. In Step-2, we modify the sensed image through the coarse
registration parameters, and the modified sensed image and the reference image will have the same
size and scenes, which is suitable for phase correlation. In Step-3, the phase correlation combined with
Log-polar transforms is used to register the modified sensed image and the reference image. In Step-4,
we process the coarse and fine registration results with a transformation model and obtain the final
registration result. The main contributions of this manuscript are given as follows:

1 Registration accuracy and robustness is improved through the combination of feature-based image
registration method and phase correlation-based image registration method.

2 Modifying the sensed image through coarse registration parameters solves the problem of strict
requirements for size of the reference image and the sensed image registered by phase correlation.

3 The proposed fusion calculation method of the coarse registration parameters and the fine
registration parameters in Step 4 make the final registration results more accurate.

The new method comprehensively utilizes feature-based and phase correlation-based methods
to overcome the problem of inaccuracy or instability of a single method, namely, the proposed
method combines the advantages of the robustness of feature-based method and accuracy of phase
correlation-base method. Experiments on several different remote sensing images, which come from
several published image registration papers [13,14], demonstrate that the proposed coarse to fine
method is highly accurate and robust to remote sensing images with different conditions.

The remainder of this manuscript is organized as follows. Section 2 introduces the related work
of the proposed method. In Section 3, the proposed method is described in detail. Section 4 illustrates
the experimental images, results and analysis of the proposed method and other popular image
registration methods. In Section 5, experiments are discussed to verify the accuracy and robustness of
the proposed method. Finally, conclusions are presented in Section 6.

2. Related Work

In this section, we introduce the related knowledge of the proposed method. Firstly, scale-invariant
feature transform [8] algorithm is described because this classical algorithm is used as the main part
of the coarse registration. Then, we introduce the recent studies on feature-based methods. Finally,
different kinds of phase correlation-based methods are introduced.

2.1. Scale-Invariant Feature Transform (Sift)

Scale-invariant feature transform (SIFT) was proposed by Lowe [8] in 2004. SIFT can be roughly
divided into two main parts: feature detection and feature description. The purpose of feature detection
is to find feature points which are robust to rotation, scale and illumination change. After finding
the feature points, the descriptor is extracted for every feature point. Matching can be achieved by
calculating the distance between feature points.

Feature detection includes two steps: the extremum extraction in scale space and the accuracy
location of feature points. Firstly, image pyramid is constructed by convolution of different Gaussian
kernels. Then, difference of Gaussian is used to simplify Gaussian scale space. Extreme points are
detected in the DOG as feature points, and unstable extreme points are removed through contrast
and curvature.
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Since feature points are located, descriptors are designed according to the local gradient
distribution of feature points. The main direction is determined by the maximum gradient direction of
the neighborhood around feature points, which can guarantee the rotation invariant of feature points

2.2. Feature-Based Image Registration Methods

Spatial-based image registration methods contain two main categories: intensity-based and
feature-based methods [15]. Intensity-based method directly calculates the image intensity values,
such as normalized cross correlation (NCC) and mutual information (MI) [12]. Chen et al. proposed
a novel similarity metric in combination of rotationally invariant regional mutual information and
SIFT (RIRMI) [16], which considers original gray information and spatial information. Feature-based
method achieves image registration through detecting strong robust features in images and establishing
mapping relationship, combining geometric transformation model. Many feature-based methods have
been proposed, among which scale-invariant feature transform [8] is one popular and efficient method
to register remote sensing images. After scale-invariant feature transform, many feature-based image
registration methods have been proposed by improving the standard SIFT approach. PCA-SIFT was
proposed by Ke et al. to construct a new descriptor through dimension reduction of 128-dimensional
descriptor to 32 or 20 dimensions, using principal component analysis (PCA) [17]. The smaller
dimension of descriptor reduces the computation time, but also reduces the distinction of features.
Gradient location and orientation histogram (GLOH) is also an efficient feature descriptor, extending
scale-invariant feature transform (SIFT) by changing the location grid and using principal component
analysis (PCA) to reduce the size [18]. This method generates high distinction and robustness
descriptor, but increases the computational complexity. Speed-up robust feature (SURF) uses integral
images for convolution, a Hessian matrix-based measure for the detector and a distribution-based
descriptor to achieve faster detection, description and matching [19]. Binary robust invariant
scalable keypoints (BRISK) proposes a novel scale-space fast-based detector, combining the assembly
of a bit-string descriptor from intensity comparisons retrieved by dedicated sampling of each
keypoint neighborhood [20]. Sedaghat et al. proposed uniform robust SIFT (UR-SIFT) and
cross-matching technique to register remote sensing images [13], based on which modified uniform
robust scale-invariant feature transform (URSIFT) was proposed to refine the initial matches through
the bivariate histogram and the random sample consensus [21]. Spatial orientation feature matching
(SOFM) was proposed to extract similarity feature values by relying on the distinct path between
two specific interest points and following the alternation of the signal while traversing the path. This
method is robust to scale, translation, rotation, intensity noise and occlusion because the similarity
values are deformation invariant [22]. Kahaki proposed a new image registration method based on
dissimilarity values to measure the dissimilarity of the features through the path based on Eigenvector
properties, which is efficient and robust to local variation of the image information [23]. Besides,
contour-based methods are also useful feature-based methods. Among them, Mean Projection
Transform (MPT) is a robust corner classifier and detector formed by parabolic fit approximation [24].

The detectors of feature-based methods are constructed in multi-scale Gaussian space, which is
robust to scale transformation. The direction of descriptors are decided by the maximum gradient
direction of the neighborhood around feature points, so feature-based feature descriptor is efficient to
rotation transformation.

2.3. Phase Correlation-Based Image Registration Methods

Frequency-based method matches images based on translation model or similarity model using
the information and operation in frequency domain [25]. This method is highly efficient and robust
to the frequency-dependent noise and intensity contrast [11,12]. Phase correlation is one famous
representation of frequency-based method, proposed by Kuglin [26] first to estimate the translation
between images. Then, Chen et al. [27] improved the initial phase correlation by Fourier–Mellin
transforms, which can evaluate the rotation and translation of two images. In addition, the log-polar
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coordinate transformation was introduced by Reddy and Chatterji [28] to evaluate the scale, rotation
and translation of two images. Because the log-polar coordinate transformation of phase correlation is
bound to bring additional noise and reduce the robustness, many studies have been done to avoid the
log-polar coordinate transformation and the effects of noise, aiming to high accuracy and robustness of
translation. Hoge [29] proposed the subspace identification extension to the phase correlation method,
combining the singular value decomposition (SVD) [30] with the initial phase correlation to filter noise.
The SVD method is based on complex matrix operation, which is robust to large magnitude of shift
between images but is sometimes slow. Then, the robust 2D fitting method [31] offers a simpler and
fast solution through least square fitting. Tong et al. [32] integrated the advantages of Hoge’s method
and the random sample consensus (RANSAC) algorithm, improving the robustness to aliasing and
noise, as well as performance in the case of practical remote sensing images. Dong et al. [33] used
low-rank matrix factorization with mixture of Gaussian to filter noise of the normalized cross-relation
matrix Q, leading to high accuracy and robustness to aliasing, noise and gray difference. Above all,
the phase correlation image registration is highly accurate to translation of images, but does not work
for large scale and rotation.

3. Materials and Methods

In this section, the proposed method is introduced exhaustively. Firstly, the registration
deformation model in the proposed method is given with expressions. In addition, it is essential to
fuse the coarse registration result and the fine registration result. After that, every step of the entire
algorithm flow is described in details.

3.1. Algorithm Description

The proposed coarse-to-fine image registration method aims to improve the accuracy and
robustness of image registration. As previously mentioned, the proposed method consists of four
steps: the coarse registration, modifying the sensed image, the fine registration and fusion of the
two registration results, as depicted in Figure 1.

1 In the coarse registration step, feature points of the reference image and the sensed image are
detected and described by scale-invariant feature transform (SIFT) algorithm. Mismatching is
bound to decrease the accuracy of the registration result, thus we adopt the novel outlier removal
method to remove many outliers, improving the accuracy of the coarse registration.

2 Due to strict requirements for size of the reference image and the sensed image registered by phase
correlation, the fine registration cannot work directly. In this case, it is essential to modify the
sensed image. From Step (1), we obtain the coarse registration result. Therefore, we can modify
the sensed image through the coarse transformation parameters.

3 The border of image is regarded as sharp discontinuities because of the periodicity of Fourier
transformation, resulting in high frequencies in frequency domain [29]. Flat-top function is used to
weaken the interference of the border, which is a 2D improved window function [34]. Frequency
masking is also used as a small trick to filter out the frequencies contaminated by aliasing [35].
Then, the transformation parameters are calculated by the phase correlation introduced previously.

4 The final transformation parameter is evaluated in combination with the coarse registration and
the fine registration results, using Equation (5)
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Figure 1. Overall workflow of the proposed method.

3.2. The Adopted Deformation Model

The affine deformation model is used to evaluate the relationship of the reference image and the
sensed image. The formula of the model is shown as follows.[

xre f
yre f

]
=

[
a cos θ,−a sin θ

a sin θ, a cos θ

]
∗
[

xsen

ysen

]
+

[
tx

ty

]
(1)

where (xre f , yre f ) represents the coordinates extracted by scale-invariant feature transform (SIFT) and
outlier removal in the reference image. (xsen, ysen) represents the corresponding coordinates in the
sensed image. a and θ are the scale factor and rotation angle, respectively. tx and ty represent the
translation in horizontal and vertical directions.

3.3. Outlier Removal

The reliability of feature matching is significant to the accuracy of image registration. Lots of
outlier removal methods have been proposed utilizing different properties of feature points [9,36–38].
Above these methods, the novel geometrical outlier removal method is robust to scale transformation
because of the scale factor introduced in this paper (GSM) [9]. While we get the scale transformation
accurately in the coarse registration, phase correlation can calculate the remaining deformation easily.
The specific process of the novel outlier removal method is as follows:

Suppose Sre f = {sire f }N
k=1 = {(xire f , yire f )}N

k=1 is the initial point set in the reference image,
and Ssen = {sisen}N

k=1 = {(xisen, yisen)}N
k=1 is the corresponding point set in the sensed image, where

(i, j) ∈ {k, k = 1, 2, ..., N}. N is the number of the initial matching feature points. Then, D is defined as
the distance of two points.
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D(sire f , sjre f ) =
∥∥∥sire f − sjre f

∥∥∥ =
√
(xire f − xjre f )

2 + (yire f − yjre f )
2 (2)

Combining the Equations (1) and (2) [9], we can obtain:

D(sire f , sjre f ) = a ∗
∥∥sisen − sjsen

∥∥ = a ∗ D(sisen, sjsen) (3)

Therefore, the scale factor is the ratio of D(sire f , sjre f ) and D(sisen, sjsen). As is known, the scale
factor of a pair of remote sensing images is fixed, based on which we can construct an objective function
to select inlier from the initial points.

S∗in = arg min
Sin

F(Sin; I, λ) (4)

The objective function F is defined as

F(Sin; I, λ) = ∑
i∈Sin

∑
j∈Sin

∑
k∈Sin

∣∣∣∣∣D(sire f , sjre f )

D(sisen, sjsen)
−

D(sire f , skre f )

D(sisen, sksen)

∣∣∣∣∣+ λ(N − |Sin|) (5)

In the objective function, Sin represents the unknown inlier set, and I represents the initial
matching feature point set. λ is the parameter that controls the tradeoff between the inlier set and the
outlier set.

Suppose Sin =
N
∑

i=1
pi because the inlier set is unknown. If the point belongs to the inlier set,

the value of pi is 1, else the value of pi is 0. Then, we can modify the Equation (5) [9]:

F(Sin; I, λ) =
N

∑
i=1

pi(
N

∑
j=1

N

∑
k=1

∣∣∣∣∣D(sire f , sjre f )

D(sisen, sjsen)
−

D(sire f , skre f )

D(sisen, sksen)

∣∣∣∣∣) + λ(N −
N

∑
i=1

pi) (6)

F(Sin; I, λ) =
N

∑
i=1

pi( fi − λ) + λN (7)

fi =
N

∑
j=1

N

∑
k=1

∣∣∣∣∣D(sire f , sjre f )

D(sisen, sjsen)
−

D(sire f , skre f )

D(sisen, sksen)

∣∣∣∣∣ (8)

To minimize the objective function, we put the point whose cost value fi is smaller than λ into
the inlier set. Then, the optimal solution of the objective function in Equation (5) is determined by the
criteria as follows. λ = N/100 according to the work in [9].

pi =

{
1, fi ≤ λ

0, fi > λ
i = 1, 2, ..., N (9)

The optimal inlier set Sin is:

Sin = {i |pi = 1, i = 1, 2, ..., N } (10)

3.4. Phase Correlation with Log-Polar Coordinate Transformation

There still exist small scale and rotation transformation between the coarse-correction image
and the reference image. Therefore, phase correlation with log-polar coordinate transformation
is more suitable for fine registration because it is robust to scale and rotation transformation [28].
The principle of phase correlation with phase correlation with log-polar coordinate transformation is
briefly introduced as follows.
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Firstly, the initial phase correlation only for translation is described. Suppose f1 and f1 are the
two image differ only by a shift (x0, y0) i.e.,

f2(x, y) = f1(x + x0, y + y0) (11)

According to the Fourier shift property, the corresponding Fourier transforms F1 and F2 can be
expressed as:

F2(u, v) = F1(u, v) exp{−i(ux0 + vy0)} (12)

Then, we can obtain the normalized cross-power spectrum by:

Q(u, v) =
F2(u, v)F1(u, v)∗

|F2(u, v)F1(u, v)| = exp{−i(ux0 + vy0)} (13)

where ∗ represents complex conjugate. The magnitude of Q(u, v) is normalized for all frequencies so
that the phase correlation-base method is robust to gray variation [39].

Calculating the inverse Fourier-transform (FT) to Equation (13) [28], we can derive the
following expression:

F−1(Q(u, v)) = F−1(exp{−i(ux0 + vy0)}) = δ(x + x0, y + y0) (14)

where F−1 denotes the inverse Fourier-transform (FT). Then, we can evaluate the pixel translation from
the peak coordinates of Equation (13). Additionally, we also can evaluate the sub-pixel translation by
fitting the neighborhood around the peak coordinates.

If there exists scale and rotation transformation, we can express the relationship of the sensed
image and the reference image as follows.

f2(x, y) = f1(a−1(x cos θ0 + y sin θ0) + x0, a−1(−x sin θ0 + y cos θ0) + y0) (15)

where a represents scale factor, θ represents rotation angle, and (x0, y0) is the translations. By applying
the inverse FT to Equation (15) [28], the following expression can be derived:

F2(u, v) = F1(a−1(u cos θ0 + v sin θ0), a−1(−u sin θ0 + v cos θ0)) exp{−i(ux0 + vy0)} (16)

To separate and evaluate a and θ, it is a wise idea to consider M1 and M2 as the magnitudes of F1

and F2 from Equation (16).Then, we can obtain:

M2(u, v) = M1(a−1(u cos θ0 + v sin θ0), a−1(−u sin θ0 + v cos θ0)) (17)

Transferring Equation (17) [28] into log-polar coordinates, the scale factor and rotation angle can
be separated as follows.

M2(ρ, θ) = M1(log ρ− log ρ0, θ − θ0) (18)

In this way, we can evaluate a and θ as the same method as the translation.

3.5. Fusion of Two Registration Results

According to the position of feature points, we can evaluate the affine transformation parameters
of the coarse registration. From phase correlation with log-polar coordinate transformation, the scale
factor, rotation angle and translation between modified sensed image and reference image can be
evaluated. Then, we can derive the final affine transformation parameters as follows.

Supposing that the (xre f , yre f ) are the coordinates in the reference image, and (x1
sen, y1

sen) are the
corresponding coordinates in the sensed image. The relationship of reference image and sensed image
can be represented as:
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[
xre f
yre f

]
=

[
a1 cos θ1,−a1 sin θ1

a1 sin θ1, a1 cos θ1

]
∗
[

x1
sen

y1
sen

]
+

[
t1
x

t1
y

]
+

[
error1

x
error1

y

]
(19)

where (a1, θ1, t1
x, t1

y) are the affine transformation parameters evaluated by the coarse registration.
(error1

x, error1
y) are the coarse registration error. Supposing that (x2

sen, y2
sen) represent the coordinates in

the modified sensed image, we can express the relationship among the sensed image, the modified
sensed image and the reference image:[

x2
sen

y2
sen

]
=

[
a1 cos θ1,−a1 sin θ1

a1 sin θ1, a1 cos θ1

]
∗
[

x1
sen

y1
sen

]
+

[
t1
x

t1
y

]
(20)

[
xre f
yre f

]
=

[
a2 cos θ2,−a2 sin θ2

a2 sin θ2, a2 cos θ2

]
∗
[

x2
sen

y2
sen

]
+

[
t2
x

t2
y

]
+

[
error2

x
error2

y

]
(21)

where (a2, θ2, t2
x, t2

y) are the the affine transformation parameters evaluated by the fine registration.
(error2

x, error2
y) are the fine registration error. Combining Equations (20) and (21), we can fuse these

two registration results:[
xre f
yre f

]
= a1a2

[
cos θ1 cos θ2 − sin θ1 sin θ2,− sin θ1 cos θ2 − cos θ1 sin θ2

sin θ1 cos θ2 + cos θ1 sin θ2, cos θ1 cos θ2 − sin θ1 sin θ2

]
∗
[

x2
sen

y2
sen

]

+

[
a2 cos θ2t1

x − a2 sin θ2t1
y + t2

x
a2 sin θ2t1

x + a2 cos θ2t1
y + t2

y

]
+

[
error2

x
error2

y

] (22)

As is introduced previously, the advantage of phase correlation-based method is high accuracy.
That is to say, (error2

x, error2
y) are much smaller than (error1

x, error1
y). From Equations (19) and (22), it is

easy to find the registration accuracy is improved by the fine registration.

4. Experimental Results and Analyses

In this section, experiments on several different remote sensing images are described to evaluate
the precision and robustness of the proposed method. A computer with 2-GHz CPU and 8-GB RAM
(Intel Core 5) was used. To evaluate the performance of the proposed method, we compared the
proposed method with four powerful registration methods: SIFT [8] with RANSAC (SIFT-RANSAC),
SIFT with GSM outlier removal strategy [9] (SIFT-GSM), RIRMI [16] and the combination of SIFT,
RANSAC and PC [28] (SIFT-RANSAC-PC). GSM stands for the novel outlier removal method [9]
introduced in Section 3.3. PC stands for the extended phase correlation introduced in Section 3.4.
RIRMI is a novel similarity metric in combination of rotationally invariant regional mutual information
and SIFT (RIRMI) [16], which considers both original gray information and spatial information. Firstly,
the dataset and evaluation criterion are introduced. Then, the experimental results (comparison of the
proposed method with different methods) are presented. Finally, we present the analyses of the results
of the different methods.

4.1. Dataset

We selected six pairs of remote sensing images considering difference of grayscale, resolution
and scene, with a pair of simulated remote sensing images and four pairs of real remote sensing
images. These images are displayed in Figure 2, which come from several published image registration
papers [13,14]. Image Pair 1 includes two simulated hyper-spectral remote sensing images with 20◦

rotation and four times scaling, which covers a city area located in Colombia-Cali and corresponds
to Figure 2a,b. Image Pair 2 has a significant grayscale difference between the sensed image (band
3 from Landsat TM) and the reference image (band 1 from SPOT 4), mainly covering mountain area
in Hangzhou, which corresponds to Figure 2d,c. Image Pair 3 has a significant spatial resolution
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difference (about 1.875 times) between the sensed image (band 55 from EO-1) and the reference image
(from Google Earth) covering a plain area in Suzhou, which corresponds to Figure 2f,e. Image Pair 4
has a significant spatial resolution difference (about three times) and texture difference between the
sensed image (band 3 from Landsat ETM+) and the reference image (band 1 from SPOT 5 ), covering
a plain area in Halifax, which corresponds to Figure 2h,g. Image Pair 5 has a significant noise and
scale difference between the sensed image (SPOT 4) and the reference image (IRS-1C), covering a
farmland area in Iran-Tehran, which corresponds to Figure 2j,i. Image Pair 6 has a significant spatial
resolution difference (about 2 times) and grayscale difference between the sensed image (IRS-1C) and
the reference image (SPOT 4), covering a field and town area at Iran-Tehran, which corresponds to
Figure 2h,g. Table 1 lists the details of the four typical image pairs.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Cont.
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(g) (h)

(i) (j)

(k) (l)

Figure 2. Six pairs of original images: (a,b) Image Pair 1; (c,d) Image Pair 2; (e,f) Image Pair 3; (g,h)
Image Pair 4; (i,j) Image Pair 5; and (k,l) Image Pair 6.
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Table 1. Specifications of image data for experiments

Data Type No. Satellite Spectral Mode Image Size Pix Size (m/Pixel) Bits per Pixel Acquisition Data

Simulated image 1 Hyperspectral-Band: 45 500 × 325 5 32 2005
Hyperspectral-Band: 45 2324 × 1906 20 32 2005

Real image

2 SPOT4 Multispectral-Band: 1 611 × 1235 30 8 2001
Landsat TM Multispectral-Band: 3 648 × 1230 30 8 2004

3 EO-1 Hyperspectral-Band: 55 239 × 256 7.5 16 2014
Google 543 × 508 4 16 2017

4 SPOT-5 Panchromatic 1311 × 1215 10 8 2006
Landsat ETM+ Multispectral-Band: 3 440 × 410 30 8 1999

5 IRS-1C Panchromatic 1346 × 1135 5 8 1998
SPOT 4 Panchromatic 700 × 590 10 8 1996

6 IRS-1C Panchromatic 1122 × 1032 5 6 1998
SPOT 4 Panchromatic 568 × 522 10 8 1999

4.2. Evaluation Criteria

To evaluate the accuracy and efficiency of the proposed method, we compared the image
registration results of our method with SIFT [8] with RANSAC, SIFT with GSM outlier removal
strategy [9], RIRMI [16] and the combination of SIFT and PC [28] without GSM in terms of root
mean square error (RMSE) and Laplace mean square error (LMSE) [40]. The coarse registrations were
evaluated by SIFT with dradio = 0.8 for the remote sensing images. The threshold used for RANSAC to
select the inliers was 1 pixel, which is the most reasonable value through many experiments.

The reliable reference geometric transformation parameters were calculated by manually selecting
tie-points via ENVI and manual registration. Correct matches are feature points with a spatial distance
less than 1 pixel between the reference image and the sensed image after correction with the manual
registration results. Here, RMSE and LMSE were used as the measurement of the position error of
image registration. The calculation formulas are as follow:

RMSE =

√√√√ 1
N

N

∑
i=1

((x1
i − x2

i )
2
+ (y1

i − y2
i )

2
) (23)

LMSE =
∑m

i=1 ∑n
j=1

∣∣∣ω(xi,j)−ω(x∗i,j)
∣∣∣

∑m
i=1 ∑n

j=1 ω(xi,j)
2 (24)

ω(xi,j) = xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xi,j (25)

In Equation (23), N points (x,y) are taken in the reference image, and then points (x1, y1) are
obtained through the affine transformation model using the image registration parameter calculated
by the algorithm. (x2, y2) are obtained through the real affine transformation model as calculated by
manual selection. In Equations (24) and (25), xi,j is the grayscale value of the point (i, j) in the reference
image, and x∗i,j is the point in the registered image.

4.3. Experimental Results and Analysis

Due to strict requirements of the phase correlation method, the sensed image must be modified by
the coarse registration. The modified sensed images are shown in Figure 3. Comparing these images
with the reference image shown in Figure 2, we can easily find that the overlapping part of the sensed
image and the reference image was extracted in the modified sensed image. In addition, the modified
sensed image was adjusted to the same size as the reference image. Therefore, the modification step is
essential and efficient.



Remote Sens. 2019, 11, 1833 12 of 20

(a) (b)

(c) (d)

(e) (f)

Figure 3. Six modified sensed images: (a) the modified sensed image of Image Pair 1; (b) the modified
sensed image of Image Pair 2; (c) the modified sensed image of Image Pair 3; (d) the modified sensed
image of Image Pair 4; (e) the modified sensed image of Image Pair 5; and (f) the modified sensed
image of Image Pair 6.
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The ground truth and deformation parameters evaluated by the proposed method, SIFT-RANSAC,
SIFT-GSM, SIFT-RANSAC-PC and RIRMI are summarized in Table 2, respectively, for Image Pairs 1–5.
It is easy to find that RMSE and LMSE of the proposed method of the proposed method are always
smaller than the other four methods, regardless of the registration difficulty of the reference image
and the sensed image, which strongly demonstrates the high accuracy and robustness of the proposed
method. Besides, it can be found that RMSE of SIFT-RANSAC-PC is lower than SIFT-RANSAC, which
shows the combination of SIFT and phase correlation is a wise idea.

RANSAC is an outlier removal method assuming that the number of inliers in the initial point
set is much larger than outliers. Once large differences of the reference image and the sensed image
lead to more outliers in the initial point set extracted by SIFT, the results of the coarse registration for
SIFT-RANSAC-PC will be poor. GSM uses geometric similarity to eliminate outliers, which will not be
affected by the number of outliers. Both SIFT-RANSAC-PC and the proposed method combine SIFT
and PC, and RMSE and LMSE of the proposed method are smaller than SIFT-RANSAC-PC in Table 2.

Due to the combination of phase correlation-based image registration method, computation cost
of the proposed method is bound to be a little large. In Table 2, we can find that processing time of
the proposed method is about 0.2 s longer than SIFT-based method, and much shorter than RIRMI,
which shows that the proposed method spends a little more time (0.2 s) to improve the accuracy and
robustness. The added computational cost is very small, and the improvement is significant.

Image registration results of Image Pairs 1–6 registered by the proposed method are shown in
Figure 4. Observing the roads, rivers, etc. in the image registration results, it can be found visually that
the registration error of the proposed method is small in these five pairs of remote sensing images.
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Table 2. Comparison of deformation parameter evaluated by the proposed method, evaluated by four other methods and the ground truth.

Image Pair Method a11 a12 a21 a22 tx ty RMSE LMSE Time (s)

1

Ground truth 0.235 0.086 −0.086 0.235 −160.525 59.117 −− −− −−
SIFT-RANSAC 0.235 0.086 −0.086 0.235 −160.755 58.299 0.615 0.0236 5.97

SIFT-GSM 0.235 0.086 −0.086 0.235 −160.0848 58.197 0.561 0.0466 6.03
SIFT-RANSAC-PC 0.235 0.086 −0.086 0.235 −160.077 58.444 0.313 0.0196 6.3

RIRMI 0.235 0.086 −0.084 0.235 −160.739 58.378 0.392 0.0361 32.11
the proposed method 0.235 0.086 −0.086 0.235 −160.199 59.3 0.261 0.0187 6.31

2

Ground truth 0.996 −0.074 0.0758 0.998 52.27 −42.875 −− −− −−
SIFT-RANSAC 0.993 −0.0786 0.0786 0.994 52.624 −43.023 1.325 0.0077 6.25

SIFT-GSM 0.995 −0.075 0.075 0.995 52.544 −43.263 0.906 0.0059 6.32
SIFT-RANSAC-PC 0.993 −0.0727 0.0785 0.996 52.271 −42.613 0.713 0.0044 6.38

RIRMI 0.997 −0.0735 0.0742 0.997 52.053 −41.267 0.644 0.0035 33.25
the proposed method 0.995 −0.0731 0.0775 0.997 52.252 −42.977 0.317 0.0027 6.41

3

Ground truth 1.819 −0.438 0.442 1.792 46.664 56.888 −− −− −−
SIFT-RANSAC 1.811 −0.442 0.434 1.783 47.352 55.334 4.601 0.3986 3.27

SIFT-GSM 1.812 −0.444 0.442 1.774 47.864 56.455 4.372 0.3835 3.16
SIFT-RANSAC-PC 1.811 −0.43 0.43 1.811 46.596 54.317 2.64 0.4199 3.41

RIRMI 1.814 -0.431 0.44 1.77 45.69 55.889 3.48 0.3788 25.78
the proposed method 1.814 −0.434 0.434 1.814 47.21 56.347 2.187 0.3762 3.33

4

Ground truth 2.999 −0.0009 0.0084 3.014 −6.559 −6.778 −− −− −−
SIFT-RANSAC 3 −0.001 −0.002 2.996 −3.64 1.409 3.23 0.2004 5.77

SIFT-GSM 3 0.0003 0.001 2.997 −3.848 0.218 2.959 0.1838 5.81
SIFT-RANSAC-PC 3 0.004 -0.004 3 −5.707 0.415 2.453 0.1784 5.92

RIRMI 3 −0.003 −0.004 3 −3.412 −0.356 2.56 0.1931 29.58
the proposed method 3 0.0001 −0.0001 3 −4.927 −0.809 2.116 0.1686 5.97

5

Ground truth 1.998 −0.104 −0.015 2.004 18.428 −13.749 −− −− −−
SIFT-RANSAC 1.976 0.0517 0.0522 1.976 17.39 −13.797 3.513 0.2657 6.31

SIFT-GSM 1.993 −0.039 −0.011 1.993 18.498 −14.125 2.97 0.3276 6.38
SIFT-RANSAC-PC 1.979 −0.0896 −0.00215 2.017 18.191 −13.996 2.6 0.3196 6.52

RIRMI 1.978 0.0898 −0.0167 2.006 18.586 −13.244 2.003 0.2577 30.17
the proposed method 1.993 −0.108 −0.012 2.004 18.735 −13.184 1.217 0.2166 6.55

6

Ground truth 0.502 0.027 0.0015 0.5011 −10.543 1.5112 −− −− −−
SIFT-RANSAC 0.496 0.0036 −0.0064 0.489 −9.684 4.978 1.531 0.1699 5.87

SIFT-GSM 0.5132 0.0095 0.0036 0.5144 −10.356 3.6516 1.245 0.2477 5.91
SIFT-RANSAC-PC 0.502 0.0254 0.00067 0.497 −10.830 4.027 1.0574 0.2359 6.03

RIRMI 0.503 0.00063 0.00063 0.503 −11.237 3.946 0.876 0.1277 28.66
the proposed method 0.501 0.0256 0.00064 0.501 −10.585 2.302 0.376 0.1306 6.12
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(a) (b)

(c) (d)
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Figure 4. Cont.
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(g) (h)

(i) (j)

(k) (l)

Figure 4. Image registration results: (a,b) correspondence to the registration result of Image Pair 1; (a)
overlapped image before the registration; (b) the difference after the registration; (c,d) correspondence
to the registration result of Image Pair 2; (c) overlapped image before the registration; (d) the difference
after the registration; (e,f) correspondence to the registration result of Image Pair 3; (e) overlapped
image before the registration; (f) the difference after the registration; (g,h) correspondence to the
registration result of Image Pair 4; (g) overlapped image before the registration; (h) the difference
after the registration; (i,j) correspondence to the registration result of Image Pair 5, (i) overlapped
image before the registration; (j) the difference after the registration; (k,l) correspondence to the
registration result of Image Pair 6; (k) overlapped image before the registration; and (l) the difference
after the registration.

For Image Pair 4, the RMSE value of the proposed method is 2 pixels due to the large scale
difference (three times), but, in Figure 4h, we can see the registration result is good visually. Local
checkerboard mosaicked images of Image Pair 4 are displayed in Figure 5. In Figure 5, we can find that
there is no misplacement at the road junction in the proposed method, but there is a small misplacement
at the road junction in the other four methods, which shows that the registration result for this image
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pair is improved through the proposed method. This demonstrates that the proposed method is robust
to scale difference.

(a) (b)

(c) (d)

(e)

Figure 5. Checkerboard mosaicked image of Image Pair 4: (a) correspondence to SIFT-RANSAC; (b)
correspondence to SIFT-GSM; (c) correspondence to SIFT-RANSAC-PC; (d) correspondence to RIRMI;
and (e) correspondence to the proposed method.

5. Discussion

In the experiments, we selected five pairs of remote sensing images. RMSE and LMSE of all
these five method are low for Image Pairs 1 and 2, because Image Pair 1 is a simulated image and
the scale and grayscale difference of Image Pairs 2 and 6 are small. In this case, the feature-based
method can register the reference image and the sensed image with small error, and the accuracy
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improvement of the proposed method is not very significant. For Image Pair 3, the texture of the
reference image and the sensed image is very different, resulting in large RMSE, LMSE and poor
precision of feature-based method. This demonstrates that feature-based method is not suitable for
large texture difference. The phase correlation is not sensitive to texture, leading to obvious accuracy
improvement of the proposed method and SIFT-RANSAC-PC. Grayscale difference in Image Pair 4
is large, which is not conducive to feature extraction and description. Then, the registration result
of SIFT-RANSAC method in Image Pair 4 is not good. The significant improvement of the proposed
method demonstrates that the fine registration of the proposed method helps overcome interference of
large grayscale difference. There exists obvious noise in the reference image of Image Pair 5, and RMSE
and LMSE of the proposed method are much lower than those of the other four methods, which show
the robustness of the proposed coarse-to-fine method. Experimental results of different condition of
remote sensing images show the accuracy and robustness of the proposed method.

6. Conclusions

Many image registration methods have been proposed based on feature or phase correlation
in recent years. Feature-based methods are efficient to scale and rotation difference, but sensitive to
grayscale, texture difference and noise. Besides, accuracy of feature-based methods is obviously lower
than phase correlation-based methods. Therefore, we propose a novel coarse-to-fine image registration
method in combination with SIFT and phase correlation. For higher accuracy, we add an efficient
outlier removal strategy (GSM) after SIFT. Firstly, SIFT is adopt for coarse registration because it is
efficient to scale and rotation difference, GSM is used to remove outliers and registration parameters are
evaluated with affine deformation model. Then, the sensed image is modified by the coarse registration
parameters to meet the requirements of phase correlation-based method. After that, fine registration
parameters are evaluated through phase correlation with log-polar coordinate transformation. Lastly,
the final registration parameters are evaluated by the fusion of coarse and fine registration parameters.

Several remote sensing image pairs with different resolution, grayscale, texture and scene were
used to test the efficiency and robustness of the proposed method. In addition, the registration results
of the proposed method were compared with several relative image registration methods. RMSE,
LMSE and image registration results demonstrate the high accuracy and robustness of the proposed
method. There also exist some shortages in the proposed method. When the scale-difference or noise
of the reference image and the sensed image is so significant that the coarse registration fails, the fine
registration will not work because the sensed image cannot be modified. In the future, we will find
more general and robust feature-based registration methods to guarantee the coarse registration.
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