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Abstract: Knowledge of key variables driving the top of the atmosphere (TOA) radiance over
a vegetated surface is an important step to derive biophysical variables from TOA radiance
data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative
Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA
radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the
total contribution of each input variable to the output variance. We determined the impacts
of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into
retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric
RTM MODTRANS. Because of MODTRAN'’s computational burden and GSA’s demand for many
simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows
approximating RTM outputs through a machine learning algorithm with low computation time.
A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance
as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified
the driving variables of emulated TOA radiance along the 400-2500 nm spectral range at 15 cm ™!
(between 0.3-9 nm); overall, the vegetation variables play a more dominant role than atmospheric
variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA
radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area
index, as these variables are the most important drivers in governing TOA radiance outside the
water absorption regions. A software framework was developed to facilitate the development of
retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical
variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2
data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM
simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation
properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without
the need of an atmospheric correction.
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1. Introduction

Retrieving spatially-explicit vegetation biophysical variables from space is one of the main goals
of optical remote sensing, and one of the objectives of international space programs such as NASA
Earth Observation Systems or the European Copernicus satellites constellation [1,2]. Particularly,
with the Sentinel-2 (S2) constellation an unprecedented inflow of optical data emerged for vegetation
monitoring applications with an optimized balance between high spatial, spectral and temporal
resolution [3]. The land surface reflectance for retrieval of biophysical variables is estimated from these
satellite observations through atmospheric corrections [4,5]. However, accurate atmospheric correction
strategies need exact atmospheric variables from the satellite data itself e.g., [6,7] or from external
meteorological sources such as AERONET [8] or ECMWE [9]. As the retrieval is based on all kinds
of assumptions regarding the model used and the retrieval method applied this step remains
challenging, with potentially large uncertainties in the derived atmospheric characteristics and error
propagation into surface reflectance [10]. To avoid the limitations of retrieving biophysical variables
from surface reflectance data, some studies have demonstrated the possibility to determine biophysical
variables directly from at-sensor top-of-atmosphere (TOA) radiance, [11-15] without the necessity
to go through the atmospheric correction process [11,12]. The downside of these approaches, however,
is that they are not straightforward; they require a sound physical understanding on the factors
determining the at-sensor spectral TOA radiance, e.g., as studied in [16-18]. It implies that biophysical
variables retrieval from TOA radiance data have so far been restricted to experimental studies.
With the purpose of democratizing these approaches to the broader community, what is lacking
is a freely available, streamlined and generic processing framework that enables to automate retrieval
applications directly from TOA radiance data.

At-sensor spectral TOA radiance is the combination of radiometric effects from surface reflectance,
atmospheric effects and target surroundings convolved with the sensor spectral and spatial response
functions [19]. Consequently, the identification of the key input variables that drive TOA radiance
is a first mandatory step to retrieve biophysical variables directly from at-sensor TOA radiance
data. Once having the drivers along the spectral range identified, it opens the door to develop
dedicated TOA radiance retrieval algorithms for optical sensors such as S2, taking into account
the wavelength-dependent role of the atmospheric factors. These drivers can be theoretically identified
by means of coupled surface-atmosphere radiative transfer models (RTMs).

Optical RTMs provide a physical interpretation of light interactions within a medium, e.g., leaf,
canopy and atmosphere, and are based on solving the radiative transfer equation. To exploit at-sensor
TOA radiance from vegetated surfaces, we need to consider three scales: (1) leaf, (2) canopy
and (3) atmosphere; which are associated to two groups of RTMs: vegetation and atmospheric
RTMs. Vegetation RTMs study the relationship between leaf and canopy biophysical variables
and reflectance, absorbance and scattering mechanisms. The two most widely used models are
the leaf model PROSPECT [20], and the canopy model SAIL [21]. The coupling of these two
models, named PROSAIL, has been used for over 30 years in sensitivity and retrieval studies [22,23].
Atmosphere RTMs study the interaction of radiation with the atmosphere, on its way to the surface,
and reflected back to the sensor. MODTRAN is among the most widely used RTM for atmospheric
simulation and correction due to its accurate simulation of the coupled absorption and scattering
effects [24,25]. Accordingly, the coupling of PROSAIL with MODTRAN allows assessing the leaf,
canopy, and atmosphere variables [11] that drive the observed at-sensor TOA radiance [26,27].

Enabling identifying and quantifying the role of leaf-canopy-atmosphere variables in determining
TOA radiance requires a rigorous sensitivity analysis that takes all interactions into account.
Such systematic analysis can be achieved by means of a global sensitivity analysis (GSA) [28].
GSA provides information on how the variation of model output is produced by the variation
of model input variables individually and globally through interactions with each other [29].
Hence, GSA enables to identify the influential and non-influential input variables for a model output,
e.g., TOA radiance along the 400-2500 nm spectral range. The drawback of GSA methods is that
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they are computationally expensive and complex because of the required large number of model
evaluations [28]. This is an important issue when coupled vegetation-atmosphere RTMs are used,
since the computational burden of such coupled models can be substantial [19,30]. To overcome this
computational burden it has been proposed to make use of emulation [31-33]. Emulators are statistical
models that approximate the input-output results of an RTM by means of machine learning [32],
and this at a fraction of the RTM computational cost. This technique has been earlier proven
successful in GSA studies of advanced physical models in various domains to enable identifying
driving variables [19,32,34-37], and will be further explored in this work.

Having entered the era of the Sentinels, the opportunity arises to develop retrieval algorithms directly
from S2 L1C data, i.e., at-sensor TOA radiance data. Accordingly, the pursued approach is as follows:
first an emulator from a surface-atmosphere model is developed as an approximation of the original RTMs
in order to identify the variables through a GSA of TOA radiance in the entire visible and near infrared
(VNIR) to shortwave infrared (SWIR) spectral range at a spectral resolution of 1 nm. Based on these
GSA results, biophysical variables retrieval strategies applicable directly to an at-sensor TOA radiance
dataset will be developed. From past experiences where different retrieval methods have been compared
for 52 data at TOC scale [38], the so-called hybrid retrieval methods, i.e.,, where RTM data is used
for training machine learning methods, are particularly promising in terms of accuracy and processing
speed [2,39]. Here, the developed retrieval algorithms should eventually be applicable to S2 L1C products,
thereby avoiding the uncertainties of the atmospheric correction process [40].

Altogether, this study boils down to the following objectives: (1) to develop emulators
to approximate the coupled PROSAIL-MODTRAN RTMs for a set of input variables and TOA radiance
output; (2) to apply the emulator into a GSA in order to identify the driving variables; and finally,
as a proof of concept, (3) develop hybrid retrieval models for biophysical variables from S2 L1C
(TOA radiance) and L2A (bottom-of-atmosphere reflectance) data. All these objectives have been
tackled with an in-house developed software framework that is made freely available to the community.

The remainder of this paper is structured as follows. Section 2 gives a further insight into 52
mission with specifications about instrument characteristics and its atmospheric correction (Sen2Cor)
and biophysical retrieval algorithms. Section 3 presents the software framework, RTM configurations
and toolboxes used to conduct the emulation, GSA and the TOA retrieval performance assessment
strategy. This is followed by presenting the results in Section 4 which are discussed in a broader context
(Section 5). Section 6 concludes this paper.

2. The Sentinel-2 Mission

Sentinel-2 (S2) is a satellite mission part of the European Commission’s Copernicus programme,
with the goal of monitoring vegetation, soil and inland and coastal water areas for supporting
agro-ecosystems applications [3]. Developed by the European Space Agency (ESA), 52 mission
consists of a constellation of two satellites (S2A and S2B) that enables a global revisit time below
5 days. S2’s optical instrument-the MultiSpectral Instrument (MSI)-covers a wide swath (290 km)
with high spatial resolution (10-60 m) in 13 spectral bands from the visible and NIR (VNIR) to SWIR
spectral range. Further mission technical characteristics are summarized in Table 1 and Figure 1
for band configuration.
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Table 1. MSI/Sentinel-2 sensor characteristics as per [41].

Technical Characteristics Value

Imaging principle Pushbroom-grating
Spectral range [nm] 400-2200 nm
Geolocation accuracy <125m

SNR @L,,¢ 50-175

Radiometric accuracy 3% abs, 1% rel

A/D conversion 12 bits

Coverage Land and coastal areas

MSI Sentinel-2A ISRF

0.8+

061

Do4gr

0.2r

O 1 M . I ] h I I I
400 600 800 1000 1500 2000

Wavelength [nm]

Figure 1. MSI-S2A spectral response function for the 13 spectral bands used by the Ground Segment
from 15 January 2018 [42].

The S2 MSI data is freely available from Copernicus Open Access Hub. From mid 2018
onwards, two reflectance products are provided: L1C and L2A. The L1C product refers TOA
reflectances (i.e., TOA radiance normalized by incident solar irradiance). The L2A product refers
to bottom-of-atmosphere (BOA) reflectance, which is achieved by means of the Sen2Cor atmospheric
correction scheme (version 2.4.1) [5]. Sen2Cor processing scheme is based on state-of-the-art
algorithms that include cirrus cloud correction and scene classification [43,44]. Sen2Cor relies
on the Dark Dense Vegetation algorithm for the retrieval of aerosol type (rural/continental by default)
and optical thickness value at 550 nm (AOTs50) [45]. The Atmospheric Pre-corrected Differential
Absorption (APDA) algorithm is implemented for the retrieval of columnar water vapor (CWV) [46].
Derivation of surface reflectance is achieved from the atmospheric inversion of a set of look-up tables
generated with the libRadtran atmospheric RTM [47]. Sen2Cor achieves uncertainties around 0.03
for the AOTss50 and 0.3 g-cm 2 for the CWYV, which are propagated to absolute errors of <0.05 in surface
reflectance [48-50]. These errors, nevertheless, should not hamper the retrieval of biophysical variables
from L2A reflectance data, e.g., as successfully demonstrated by [51,52].

3. Materials and Methods

The general work flow is presented in Figure 2. In order to analyze the feasibility of retrieving
biophysical variables from TOA radiance, we performed three parallel studies. First, a GSA using
an emulator was carried out to determine the relative influence of each biophysical and atmospheric
variable in the TOA radiance signal. Secondly, a set of synthetic test scenarios were generated to assess
the performance of biophysical variables retrieval under controlled conditions. Three different retrieval
scenarios were implemented: (1) ideal surface reflectance data (i.e., without errors from atmospheric
correction), (2) TOA radiance, and (3) realistic surface reflectance data (i.e., affected by error propagation
from atmospheric correction). Finally, retrieval strategies were applied to a real S2 data at L1C
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(TOA radiance) and L2A (BOA reflectance). A detailed description of the used processing tools
and simulated datasets is provided in Sections 3.1 and 3.2. The used GSA and emulation algorithms
are described in Sections 3.3 and 3.4. Further information about the implemented method for retrieving
the various biophysical variables from the simulated data and evaluating their accuracy is described
in Section 3.5. The method to assess the performance on a real S2 image is then described in Section 3.6.

ARTMO

Input bio.
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PROSPECT4 = SAIL MODTRAN5S
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Emulatgr toolbox
A
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emulation
TOA

Atmospheric
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Performance
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Output bio.
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Total sensitivity
results 400-2500 nm

Figure 2. Flowchart of the pursued work-flow, divided into the Global Sensitivity Analysis (GSA)
study (right) and retrieval performance assessment (left).

3.1. Developed Toolboxes for Automated Processing

This work was conducted within the in-house developed ARTMO GUI framework. Automated
Radiative Transfer Models Operator (ARTMO) [53] is a Matlab scientific software package
that provides tools and toolboxes for running a suite of leaf, canopy and atmosphere RTMs
and for post-processing applications such as retrieval. The toolboxes used in this work are briefly
explained below.

¢  Atmospheric Look-up table Generator (ALG) [19] is an independent software tool that can
be plugged into ARTMO and allows generating and analyzing LUTs based on a suite of atmospheric
RTM, i.e., MODTRAN, 6SV, libRadtran.

*  Anew so-called “TOC2TOA” toolbox has been developed to enable coupling surface reflectance
simulations with atmospheric simulations, i.e., to reach TOA radiance data. The TOC2TOA toolbox
couples the atmospheric transfer functions with canopy reflectance simulations or observations
to enable TOA radiance data, thereby ensuring that consistent geometry at canopy and atmosphere
is preserved. Either canopy LUTs, surface reflectance data, e.g., from a field spectroradiometer,
or a BOA reflectance image can be coupled with atmospheric transfer functions to enable uppscaling
to TOA radiance data. In this version (1.0), the coupling assumes a Lambertian and homogeneous
surface according to the formulation proposed in [54].

¢ The Global Sensitivity Analysis (GSA) toolbox [55] calculates a global sensitivity analysis on RTMs.
The GSA toolbox enables to identify key driving input variables as well as non-influential input
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variables across the spectral range of spectral outputs. The main limitation of GSA is that it requires
many simulations, and is thus limited by the processing speed of the model under study [32].

e  To speed up GSA run-time, the GSA toolbox can be coupled with the Emulator toolbox [31,32].
This toolbox enables the evaluation of machine learning regression algorithms on their capability
to approximate RTM outputs as a function of input variables.

¢  The machine learning regression algorithms (MLRA) toolbox [56] is one of ARTMO's retrieval
toolboxes. The MLRA toolbox contains over 20 MLRAs that can be trained and validated
with either experimental or RTM data. Afterwards, a selected model can be applied to an image
for mapping applications.

3.2. Description of Simulated Datasets

The training and performance assessment of biophysical parameters retrieval from at-sensor TOA
radiance is based on simulated data of surface reflectance and TOA radiance. The use of RTMs allows us
to test the retrieval accuracy under controlled conditions. On the one hand, surface reflectance datasets
are based on the combination of PROSPECT-4 [20] and SAIL [21] RTMs, also known as PROSAIL.
PROSPECT-4 is one of the most widely used RTMs that simulates leaf optical properties. The model
calculates directional-hemispherical reflectance and transmittance measured from 400 nm to 2500 nm
at 1 nm spectral sampling. SAIL solves the radiative transfer equation for scattering and absorption
of four upward/downward fluxes at the canopy scale. In combination with PROSPECT-4 leaf optical
properties, SAIL provides top-of-canopy (TOC) reflectance in the 400-2500 nm spectral range at 1 nm
sampling. On the other hand, MODTRANS [24,57] was chosen to simulate the radiative transfer
in the atmosphere at 15 cm~! (0.3-9 nm in the covered spectral range of 400-2500 nm). MODTRAN has
been extensively used for remote sensing applications such as atmospheric correction [6,7,58]. It solves
the RT equation with an accurate simulation of the coupled absorption/emission and scattering effects
by molecules and particulate matter in a multilayered spherically symmetric atmosphere [59,60]. With
the application of the interrogation technique developed in [54], MODTRAN can generate the following
output atmospheric transfer functions: Atmospheric path radiance (L), direct/diffuse at-surface solar
irradiance (Eg;, /4if), direct/diffuse target-to-sensor transmittance (T;r/4i¢), and spherical albedo (S).

The generation of the simulated datasets (analysis, reference and retrieval) is represented in Figure 3
and further described in the paragraphs below.

The first dataset (further referred to as analysis) functions to train an emulator that allows
running a GSA to evaluate the relative contribution into TOA radiance of various leaf-canopy
and atmospheric properties. Thus, this dataset combines PROSAIL and MODTRAN into a database
of TOA radiance spectra. The first step was to generate the LUT of directional reflectance (p) derived
from the combination of the PROSPECT-4 and SAIL. A set of 10,000 samples of the six input leaf-canopy
variables were distributed according to a Latin Hypercube Sampling (LHS) distribution [61] (see Table 2).
The hot-spot, soil brightness coefficient, and the sun-target senor geometry variables have been excluded
from the analysis in order to facilitate the coupling between the vegetation and atmospheric RTMs.
Simulations were carried out in the 400-2500 nm spectral range at 1 nm sampling.
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Figure 3. Schematic representation of synthetic datasets based on PROSAIL and MODTRAN
simulations. The red-dashed and green lines identify the datasets used respectively for Global
Sensitivity Analysis and Biophysical parameters retrieval.

Table 2. Range of vegetation input variables for the PROSAIL LUTs according to Latin Hypercube
sampling. SAIL fixed variables: hot spot: 0.01; solar zenith angle: 30°; observer zenith angle: 0°.

Model Variables Units Minimum Maximum
Leaf variables (PROSPECT-4)

N Leaf structure index unitless 1.3 2.5
Cw Leaf water content g/ cm?] or [em] 0.002 0.05
Cab  Leaf chlorophyll content [ug/ cm?] 1 70
Cm Leaf dry matter content g/ cm?] 0.002 0.05

Canopy variables (SAIL)
LAI Leaf area index [m2/m?] 0.1 7
LAD  Leaf angle distribution [°] 0 90

The second step involves generating MODTRAN simulations. The analysis dataset contains
10,000 MODTRAN simulations sampled with a LHS distribution (see Table 3). These simulations
were carried out in the same spectral range as PROSAIL simulations with a sampling of 15 cm ™!
(0.3-9 nm in the covered spectral range of 400-2500 nm). Input variables were selected so that they
have an impact in the entire wavelength range (400-2500 nm) and include typical variability [8,62-64]
in: (1) the AOTss0; (2) the spectral dependency of the extinction coefficient, through the Angstrom
exponent; (3) the phase function, through the HG asymmetry parameter; (4) the single scattering
albedo; and column-integrated concentrations of (5) ozone (O3C) and (6) vapor (CWV).
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Table 3. Range of MODTRAN input variables for the analysis dataset according to Latin Hypercube
sampling. MODTRAN fixed geometric variables: solar zenith angle: 30°; viewing zenith angle: 0°.
Remaining MODTRAN parameters were set to their default values.

Model Variables Units Minimum Maximum
03C O3 column concentration [amt-cm] 0.25 0.35
CWv Columnar Water Vapour g-cm™2 0.4 4.5
AOTs559  Aerosol Optical Thickness at 550 nm  unitless 0.05 0.5
G Asymmetry parameter unitless 0.6 1
« Angstrém exponent unitless 0.05
SSA Single Scattering Albedo unitless 0.85 1

The surface (PROSAIL) and the atmospheric (MODTRAN) simulations were randomly one-to-one
combined (10’000 simulations) and propagated to TOA radiance following Equation (1) with the
Lambertian and homogeneous surface assumption:

Eiot Trotp

L:LO+77T(1—SP)

)
where Tyt = Tyir + Tyif is the total target-to-sensor transmittance and Tyt = Egjy cos i + Egif
is the total at-surface irradiance for a solar zenith angle 6;;. Here, the 1 nm sampling surface reflectance
(p) was interpolated by cubic splines to the MODTRAN wavelength grid. For the sake of simplicity,
the spectral dependency of all terms in the Equation (1) has been omitted. A random subset of 1000
cases is then used to train an emulator for further GSA calculation.

The second dataset (further referred to as reference) aims at representing realistic S2 observations
over land surfaces for broad atmospheric conditions and is used for validation. The reference dataset
is divided into three subsets to validate the retrieval strategies under three different scenarios
(see Figure 3): (1) retrieval from an ideal surface reflectance data, (2) retrieval from TOA radiance,
and (3) retrieval from surface reflectance after a non-perfect atmospheric correction. The first subset
(reference_toc) corresponds to a reference surface reflectance dataset composed of a random subset
of 5000 samples extracted from the analysis dataset previously described in Table 2. This scenario
should be taken as the ideal case, since there are no radiometric perturbances due to atmospheric
scattering and absorption. This surface reflectance data is combined with other 5000 MODTRAN
simulations to create the second subset of reference TOA radiance (reference_toa). This second scenario
refers to the goal of this paper i.e., to validate the performance of retrieving biophysical variables
directly from TOA radiance. In this case, MODTRAN simulations were run with varying conditions
of CWV, O3C, AOT55 and aerosol type with an LHS distribution (see Table 4) and in the same spectral
range and sampling as in the analysis dataset. With respect the aerosol type, the following 9 models
were included: MODTRAN's rural, urban and navy-maritime (with 3 air mass values identifying
coastal to strong land influence), and OPAC’s continental (clean, average and polluted) and urban [62].

Table 4. Range of MODTRAN input variables for the reference_toa subset according to Latin Hypercube
sampling. MODTRAN fixed geometric variables: solar zenith angle: 30°; viewing zenith angle: 0°.
Remaining MODTRAN parameters were set to their default values.

Model Variables Units Minimum Maximum
03C O3 column concentration [amt-cm] 0.25 0.35
CwWv Columnar Water Vapour g-cm™2 0.4 4.5
AOTs59  Aerosol Optical Thickness at 550 nm  unitless 0.05 0.5

Aerosol type 9 types (see text above)
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Both the reference_toc and the reference_toa subsets were convolved by S2 instrument spectral
response function (ISRF, f.) for each spectral channel c (1 to 13) [42] following Equation (2):

_JLfar
L= W ()

The third subset (reference_atm) aims to represent surface reflectance spectra obtained after
a non-perfect atmospheric correction as would be from Sen2Cor algorithm. Instead of implementing
an atmospheric correction process on the reference_toa subset, the reference_toc subset was perturbed
in order to reproduce the expected error propagation from the Sen2Cor algorithm [50]. Accordingly,
the reference_atm surface reflectance spectra (putm) is created from the reference_toc spectra (pioc)
following Equation (3):

Patm = Ptoc + €p 3)

where ¢, is the expected wavelength-dependent error from Sen2Cor shown in Figure 4.

Sen2Cor surface reflectance error
T T T T T T

0.1 :
[ Jstd
-® mean
_ 0.05 1
S
L
0
_0-05 L Il L L Il
400 600 800 1000 1500 2000

Wavelength [nm]

Figure 4. Typical error in surface reflectance after Sen2Cor atmospheric correction algorithm.
See Table VIII in [50] for detailed information.

Finally, the third dataset (further referred to as retrieval) is used to train the retrieval
algorithms for each of the biophysical variables (see Section 3.5). The retrieval dataset consists
of two subsets of surface reflectance (retrieval_toc) and TOA radiance (retrieval_toa), both generated
with the same process as for the construction of the reference dataset. Regarding the retrieval_toc subset,
this is constructed from the remaining 50% samples from the analysis dataset that were not used
in the reference_toc subset. The TOA radiance subset uses a new set of 5000 MODTRAN simulations
with the same input variables as in Table 4 but only using MODTRAN'’s rural aerosol type. In this way,
the retrieval of biophysical variables from TOA will carry along errors due to uncertainties in aerosol
optical properties.

3.3. Global Sensitivity Analysis (GSA)

In order to identify the driving vegetation and atmospheric variables having an impact on TOA
radiance, we first conducted a global sensitivity analysis (GSA) of the TOA radiance simulations
from the analysis dataset. Most GSA methods are variance-based methods, which decomposes
the variance of the model output into fractions that can be attributed to inputs or sets of inputs [28,65].
While the Sobol” method [66] pioneered in developing a variance-based GSA method, a modified
version was proposed by [67], which proved to be effective in identifying the so-called Sobol’s
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sensitivity indices. These indices quantify both the main sensitivity effects (first-order effects: S;,
i.e., the contribution to the variance of the model output by each input variables) and total sensitivity
effects (St;, i.e., the first-order effect plus interactions with other input variables) of input variables.
This method has been applied here. A description according to [68] is given below.

Formally, we have a model y = f(x), where y is the model output, and x = [x1,x2, ..., Xk
is the input feature vector. A variance decomposition of f(-) as suggested by Sobol [66] is:

}T

Zv+2§: e+ VA, 4)

i=1j=i+1

where x is rescaled to a k-dimensional unit hypercube Ok, QF = {xI0 < x < 1,i = 1,...,k};
V(y) is the total unconditional variance; V; is the partial variance or ‘main effect’ of x; on y and given
by the variance of the conditional expectation V; = V[E(y|x;)]; V;; is the joint impact of x; and x;
on the total variance minus their first-order effects. Here, the first- order sensitivity index S; and total
effect sensitivity index St; are given as [28]:

5 - Vi _ VIEGx)

V(y) V(y) ©)
and:
E[V(y|x~)]
Sti=Si+),Si i T
=S5 +j#i5] + W) (6)

where x.; denotes variation in all input variables and x;, S;; is the contribution to the total variance
by the interactions between variables. Following Saltelli et al. (2010) [67], to compute S; and St;, two
independent input variable sampling matrices P and Q of dimensions N X k are created, where N
is the sample size and k is the number of input variables. Each row in matrices P and Q represents
a possible value of x. The variable ranges in the matrices are scaled between 0 and 1. The Monte Carlo
approximations for V(y), S; and St; are defined as follows [67,69]:

) 1 N N
YW =5 LU®)» h/h—ﬁZﬂﬂ 7)
j=1 j=1
and:
o1 N AQ)F(RY); — f(P)))
&_N; V(y ®
and:
~ 1 N (f(R); — £(PG))
TEWET Wy v

where 7 is the estimate; fy is the estimated value of the model’s output; we abused notation by defining

(i)

f(P) as all outputs for row vectors in P; PQ represents all columns from P except the i*" column which
is from Q, using a radial sampling scheme [70]. Matrices are generated with an LHS of size N x 2k
where P and Q are the left and right half of this matrix, respectively [67]. In order to compute S; and St;
simultaneously, a scheme proposed by [29] was used, which reduced the model runs to N (k + 2).
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3.4. Emulation

Instead of entering the computationally expensive coupled PROSAIL-MODTRAN into GSA,
we used an emulated version of these coupled models. Emulation is a statistical learning technique
used to estimate model simulations when the model under investigation is too computationally costly
to be run many times [71]. The basic idea is that an emulator uses a limited number of simulator runs,
i.e., input-output pairs (corresponding to training samples), to train a machine learning regression
algorithm (MLRA) in order to infer the values of the complex simulator output given a yet-unseen input
configuration. These training data pairs should ideally cover the multidimensional input parameter
space using a space-filling sampling algorithm, e.g., LHS. Once the emulator is built, it is not necessary
to perform any additional runs of the model; the emulator computes the output that is otherwise
generated by the RTM.

When it comes to emulating RTM spectral outputs, however, the challenge lies in delivering a full
spectrum. This implies that the MLRA should be able to generate multiple outputs to reconstruct
a full spectral profile, which is not a trivial task. For instance, the contiguous spectral profile between
400 and 2500 nm consists of over 2000 bands when binned to 1 nm resolution. Only some MLRAs
can obtain multi-output models, but that typically lead to highly complex models with long training
time and certain risk of overfitting because of model over-representation, e.g., as with neural networks.
A workaround solution was developed that enables the regression algorithms to cope with large
spectroscopy datasets by taking advantage of the so-called curse of spectral redundancy, i.e., the Hughes
phenomenon [72]. Since spectroscopy data usually shows a great deal of collinearity, it implies
that such data can be compressed to a lower-dimensional space through dimensionality reduction
techniques such as principal component analysis (PCA) [73]. Accordingly, spectroscopy data can
be converted into components, which are only a fraction of the original amount of bands, and implies
that the multi-output problem is greatly reduced to a number of components that preserve the spectral
information content (see also [74-77]). Afterwards, the components are then reconstructed again
to spectral data [31-33,36,77].

In earlier RTM emulation evaluation studies [31-33], various MLRAs were analyzed on their
predictive performance. In each of these studies Gaussian processes regression (GPR) [78]
was evaluated as the top performing one. Although its superior performance went somewhat
at the expense of processing speed as opposed to other MLRAsS, it runs numerous times faster than
the original RTM [31-33]. GPR is a probabilistic kernel method, and has been widely used for retrieval
of biogeophysical variables and emulation applications [79-81]. Kernel methods in machine learning
owe their name to the use of kernel functions [82-84]. These functions quantify similarities between
input samples of a dataset. Similarity reproduces a linear dot product (scalar) computed in a possibly
higher dimensional feature space, yet without ever computing the data location in the feature space.

GPR generalize Gaussian probability distributions in function spaces [78]. The prediction
and the predictive variance of the model for new samples are given by:

f(x;) = Zik(xirxq) (10)
V[£(xg)] = k(xg,%g) = (K+021); ! (11)

where k(-, -) is a covariance (or kernel function), . is the vector of covariances between the query point,
x4, and the n or training points, and ¢ accounts for the noise in the training samples. As one can see,
the prediction is obtained as a linear combination of weighted kernel (covariance) functions, the optimal
weights given by w = (K + ¢21) ~'f(x). Many different functions can be used as kernels for [85]. We
used the automatic relevance determination squared exponential kernel for GPR, which has a separate
length hyperparameter for each input dimension. Stochastic gradient descent algorithms maximizing
the marginal log-likelihood are employed, which allow optimizing a large number of hyperparemeters
in a computational effective way.
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Based on experience from earlier emulation exercises [32,33], the TOA radiance data was first
compressed into 20 PCA components. The GPR emulator was trained with 70% of the 1000 samples
and the remaining dataset was kept for validation. Goodness-of-fit statistics were calculated to assess
the emulator’s capability to generate accurate TOA radiance data: the Pearson’s correlation coefficient
(R?) and root-mean-square error (RMSE) are calculated according to Equations (12) and (13):

n Z?:l (Xref,i : Xret,i) - Z?:1 Xref,i : Z?:l Xret,i

R2 — , (12)
n 2 n 2 n 2 n 2
n Zizl Xrgf,i - <Zi=1 Xref,i) {” Zi:l Xret,i - ( i=1 Xret,i) ]
and:
1 & 2
RMSE = \/ -y (X,gf,i - X,et,,») , (13)
i=1

where X,,r; and X, ; are respectively the reference and retrieved values.

Finally, the trained GPR emulator was imported into the GSA toolbox. In the GSA toolbox,
the number of emulations executed was (N(k+2), where N represents the number of samples and k
the number of input variables. We chose 1000 runnings per variables. This led to 14,000 runnings
to compute the GSA sensitivity indices. The GSA results provide insights into the role of the driving
variables at TOA as observed by a satellite sensor. Based on these insights, hybrid retrieval schemes
were developed for retrievable biophysical variables, as described below.

3.5. Hybrid Retrieval Schemes

When it comes to selecting a biophysical variable retrieval method for processing large
images such as Sentinel-2 (52), it requires models that are fast, robust and easily applicable.
Based on a systematic comparison of parametric, non-parametric and RTM-inversion retrieval methods
taking both accuracies and run-time into account [86], it was concluded that hybrid retrieval schemes,
i.e., machine learning methods trained by RTM simulations, can achieve both accurate and fast
estimates. Regarding the used MLRA, similar as in emulation, GPR was evaluated as a powerful
method for mapping applications [38,39,87]. Starting with Equation (10), we used a scaled Gaussian
kernel function:

(
k(xi,x;) = vexp < -) 1272/

> + 51‘]‘ . (T%, (14)
b=1 i

Regarding retrieval, three important properties of the method are worth stressing here.
First, the obtained weights w after optimization gives the relevance of each spectrum x; (see [88]
for extended equations). The predictive mean is essentially a weighted average of the vegetation
biophysical parameter values associated with the training samples closest to the test sample. Second,
the inverse of 0y, represents the relevance of band b. Intuitively, high values of 0, mean that relations
largely extend along that band hence suggesting a lower informative content. These features have
been extensively studied in [87,88] and proved to be valuable for gaining insight into relevant bands.
Third, and particularly of interest for mapping applications, a GPR model provides not only a per-pixel
prediction, but also an uncertainty (or confidence) level for the prediction. Hence, uncertainty intervals
are directly delivered along with the variable estimates, which enables to assess the model transferability
in space and time [86,88].

We assessed the performance on biophysical variable retrieval on the three reference scenarios
previously described in Section 3.2. The MLRA retrieval toolbox was first used to train and to validate
an MRLA from the retrieval datasets and then to apply the trained model to retrieve biophysical
variables from the reference datasets. Based on experience from earlier retrieval exercises [32,33],
the two retrieval databases were split into 70% for the training and 30% for the validation of the GPR
retrieval algorithms. The retrieval_toc dataset was used to train and validate one GPR model



Remote Sens. 2019, 11, 1923 13 of 26

for the retrieval of biophysical variables from surface reflectance. The retrieval_toa was instead
used for the retrieval from TOA radiance. Goodness-of-fit statistics were calculated to assess
the GPR models’ capability to retrieve accurately biophysical variables. The error difference between
the reference and the retrieved biophysical variables is calculated for each of the 5000 samples
in the reference database and the histogram plotted. In addition, Pearson’s correlation coefficient
(R?) and root-mean-square error (RMSE) are calculated.

3.6. Retrieval of Biophysical Variables from Sentinel-2 L1C and L2A Images

As a proof-of-concept of the developed TOA radiance retrieval algorithms, a 52-A image was selected
for both the TOA L1C and BOA L2A reflectance products. The chosen image was acquired by S2A on 22
August 2018 at 12:56 h (UTC time +2 h) over the area of Barrax (Spain). Barrax is a sparsely vegetated
site located in Spain between 38.75° N and 39.75° N and 1.73° W and 3.00° W. It is predominately
flat with a mean elevation of 700 m above sea level (a.s.l.), although there is some rugged terrain
in the northeast reaching 1185 m a.s.l. For the given location and acquisition date, The image was
illuminated with a mean SZA of 30.8°. Since the focus here is retrieval over vegetated surfaces, a subset
over the Barrax agroecosystem was chosen (600 x 600 pixels). This region is characterized by large
agricultural fields with center pivot irrigation systems. Main crops are wheat, alfalfa, rapeseed, sunflower
and garlic. In August, the non-irrigated areas are bare soil or senescent vegetation. In addition, an AOT
at 550 nm of approximately 0.15 was determined from the AERONET stations of Aras de los Olmos
(at 130 km north-east) and Murcia (100 km south-east) at the time of observation.

As described in the section above (Section 3.5), we applied the GPR retrieval algorithms to S2 L1C
and L2A data for the GSA-identified dominant thus retrievable variables. To do so, the S2 L1C TOA
reflectance data first had to be converted to TOA radiance data, which is done in the SN AP toolbox.
In addition, only the 10 m and 20 m bands were used at 20 m resolution without the broadband B8
as it is overlapping with B8a (see Figure 1).

Further, in an attempt to make the models better fit to process real S2 data, Gaussian noise
was added to the retrieval TOC and TOA training datasets. The addition of noise to the RTM
generated spectral bands has multiple purposes: it simulates errors of radiometric calibration,
atmospheric noise and residuals from the atmospheric correction, but to some extent also
bridge between the simplified representation of the RTM and the actual radiometric behaviour
of the canopy [89]. Generally, noise prevents the retrieval model from over-fitting on the training
database. However, an accurate quantification of all error terms in the sensing process remains
difficult [89]. While for the TOC training dataset noise levels can be obtained from 52 surface reflectance
studies as in [50], for TOA that is not the case. After some testing of additive and multiplicative noise
levels, eventually, a 2% multiplicative Gaussian noise was used. The GPR model development
and image processing were done in the MLRA toolbox. Finally, to account for the non-vegetated
surfaces, 20 distinct bare soil spectral signatures were added to the L1C and L2A training datasets.

4. Results

Following the method described in Section 3, we show the results corresponding to:
(1) the conducted GSA of the leaf-canopy-atmosphere RTM (Section 4.1), (2) the performance
assessment on the retrieval of biophysical variables from synthetic S2 surface reflectance and TOA
radiance (Section 4.2), and (3) the proof-of-concept results for the retrieval of biophysical variables
from real S2 L1C and L2A data.

4.1. Global Sensitivity Analysis Results

A GPR emulator was first developed as approximation of the coupled PROSPECT4-SAIL-MODTRAN
model given 12 input variables and 1000 samples taken from the analysis dataset. GPR was used
because of superior performances as opposed to other MLRAs [31-33]. This was also the case here:
GPR clearly outperformed competing algorithms such as neural networks and kernel ridge regression
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(results not shown). Training the GPR emulator took less than 3 min. It reached an overall accuracy
with RMS errors (RMSE) of 1.06 and normalized RMS errors (NRMSE) of 2.39%. When plotting
the NRMSE along the spectral range, it appears that accuracies are consistent with the exception
of the water absorption regions around 1400 and 1900 nm where accuracies are somewhat poorer
(errors around 6%) (results not shown). This accuracy is on the same order as earlier published
emulators [33,90], and can be considered as adequate for subsequent GSA calculations.

Running the GPR emulator into the GSA with 1000 samples per variable took less than
40 s. In comparison, if the same analysis would have been done by the original coupled RTMs,
run-time would take on the order of several weeks. The total sensitivity GSA results shown in Figure 5
are expressed as relative contributions to output variance for each one of the input variables in the TOA
spectrum (St;, expressed in %). The figure leads to the following observations:

*  Generally, the GSA results indicate that atmospheric variables had a weaker influence than
vegetation variables. Regarding the atmospheric variables, clearly, the H>O content had a strong
impact in discrete parts of the spectrum, in agreement with the location of H,O absorption bands.
Relatively small impact bands can be found at 820 nm, while stronger impact (over 70% St;)
in the region of 900-950 nm and 1100-1150 and the largest impact bands (over 80% St;) between
1350-1450 and between 1800-1900 nm where the H>O absorption saturates.

¢ The aerosol optical properties (extinction, absorption and phase function) were the most
dominant atmospheric variables. Particularly, the AOTs59 and phase function (through the
Henyey-Greenstein parameter, G) had a relatively strong impact (30% St;) in the region of 400
to 500 nm, where the scattering is higher. This impact diminishes to a few percents in the range
of 500 to 1300 nm and with barely any influence after 1300 nm. According to the GSA results,
the O3 seemed not to have a relevant influence over the variance of the TOA radiance even
at the bottom of the Chappuis absorption band (400-650 nm) where the O3 absorption is higher.

* Among vegetation variables, at the leaf level, chlorophyll content (Cab) was the main driver
of TOA radiance in the visible range (450-750 nm) with over 60% St;, while dry matter content
(Cm) was the main driver in the NIR range (750 to 1200 nm), 70%. Water content (Cw) had
a negligible impact on the visible and the NIR but had a considerable impact in the SWIR
(1400 to 2500 nm), with St; up to 20%. These three variables explain more than the 60%
of the variance along the visible and NIR spectral range (400-1400 nm). The leaf layer variable (N)
had a rather weak influence, but it covered the whole spectral range. Among canopy variables,
LAIis the most dominant variable. It has influence along the whole spectral range, but it becomes
especially dominant from 1400 nm onwards. LAI especially dominates the 2000-2400 nm SWIR
region with a St; of around 80%.

From a practical point of view, the GSA results suggest that it should be perfectly possible to retrieve
Cab (dominant in the visible), Cw (dominant in the NIR-SWIR) and LAI (dominant in the NIR-SWIR)
from TOA radiance data. When interpreting these results in view of 52 band settings (see Figure 1),
we observed that atmosphere has little influence in the SWIR, B11 at 1610 nm and B12 at 2190 nm.
These bands seem to be particularly appropriate for LAI retrieval. At the same time, given the dominance
of Cab in the visible, and the relatively strong contribution of Cw further in the NIR-SWIR; these regions
are well covered by S2 bands. It is therefore worthwhile to explore the retrievability of these three
biophysical variables directly from S2 TOA radiance data.
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Figure 5. Total sensitivity (St;) results of TOA radiance using a GPR emulator of a 12 variables
PROSAIL-MODTRAN model. See Tables 2 and 3 for the full names of the variables.

4.2. Biophysical Variables Retrieval

GPR models were developed for the variables Cab, Cw and LAI using the retrieval training data
with noise added for nine bands at 20 m (without B8). These models were then validated against
simulated reference data for: (1) the TOC scale, (2) TOA reference data, and (3) TOC dataset with noises
according to Sen2Cor atmospheric correction errors. At the TOC scale, it was no surprise that retrievals
against the TOC reference dataset led to excellent validation results with for Cab and Cw an R?
of 0.94-0.97 (Table 5). LAI was poorer validated, with a R? of 0.68, due to saturation for higher
LAI values, i.e., above 3. This suggests that the LAI model is suboptimally trained. What is more
of importance in the context of this study is that results only degrade slightly when upscaling to
TOA data, thus with the inclusion of atmospheric variables in the LUT. Excellent results are again
obtained for Cab and Cw (R? of 0.91-0.95), while poorer yet consistent results are achieved for LAI
(R? of 0.62). When moving back to the TOC scale, but now with adding noise levels according to
Sen2Cor atmospheric correction errors, the results tend to degrade further. Given that this exercise is
conducted with simulated data, the latter scenario is considered closer to reality. Comparison of these
results may suggest that retrieving biophysical variables directly from TOA radiance data can be more
beneficial, however, that is yet to be evaluated when applying to real data.

Table 5. Retrieval performance results against 5°000 LUT reference datasets for biophysical variables
retrieval from surface reflectance (TOC), TOA radiance (TOA) and surface reflectance with noise levels
after atmospheric correction (ATM). For the TOC and TOA retrieval datasets 2% Gaussian noise was
added, while for the TOC-ATM retrieval datasets noises are added according to [50].

Retrieval: TOC TOA TOC-ATM

R%:
-Cab 0.972  0.948 0.907
-Cw 0.942 0.908 0.813
- LAI 0.684 0.623 0.520
RMSE:
- Cab 3.312 4586 6.077
-Cw 0.003 0.004 0.006
- LAI 1.120 1.223 1.381
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An easy way to gain insight into the functioning of the GPR models at TOC and TOA scale
is by means of inspecting the sigmas (03), i.e., the band relevance, of the trained GPR models. They have
been plotted in Figure 6 for the three biophysical variables. The lower the o3, is, the more important
the band. Accordingly, the 0j, reveal the most important wavelengths with spectral information used
for the development of the models. The following observations can be made:

*  Opverall, no systematic differences between TOC and TOA ¢}, can be observed. About the same
patterns appeared with low ¢;, for the majority of bands. This suggests that models can be
developed from both TOC and TOA data sources with about the same degree of retrieval success.

* A closer inspection towards Cab and LAI reveals that TOA data led to considerably higher
0y, for some bands (i.e., 490, 783 and 865 nm for Cab; 490 and 740 nm for Cw). This suggests
that for these variables the TOA data has more difficulty to develop the retrieval algorithms.
Conversely, the 0, similarity between the TOC and TOA bands for the LAl models suggests that
the role of atmosphere is of marginal importance for LAI retrieval.

e  For all variables, the band in the blue is evaluated as poorly contributing, both for TOC and TOA.
For TOA this can be explained by the influence of aerosols, while at TOC scale this may be rather
due to the remaining impact of the aerosols in the atmospheric correction. It is also of interest
that the SWIR bands play an important role for TOC and TOA retrieval algorithms.

Cab Cw LAI
HToC lToc HlToc
40 40 40
HTOA WTOA WToA
30 30 30
2 o o
) ) b
20 20 20
10 10 10 II |I I
0 0 0
490 560 665 705 740 783 865 16102190 490 560 665 705 740 783 865 16102190 490 560 665 705 740 783 865 16102190
Wavelength [nm] Wavelength [nm] Wavelength [nm]

Figure 6. GPR band sigma (03) for trained models for S2 L2A TOC and L1C TOA data. The lower
the 03, the more important the band in the model development.

Finally, as a demonstration case, we applied the TOC- and TOA-trained GPR models
to a cloud-free subset of a S2 L1C and L2A imagery over the Barrax region to evaluate the actual
performance of the models to convert S2 data into maps. The obtained maps are shown in Figure 7.
At a glance, the similarity between both L1C and L2A maps can be observed; for both data levels,
reasonable retrievals are obtained. This is encouraging, as it suggests that retrievals can be directly
obtained from L1C data given a cloud-free sky, but a closer inspection is necessary to evaluate
the quality of both products. Clearly differences appear. For Cab, the L2A product provides a sharper
contrast between vegetated and non-vegetated surfaces with probably some overestimations. The Cw
map looks most similar, while LAl is generally underestimated with probably overestimation for L1C
over vegetated surfaces. These differences are also reflected in the scatter plots shown underneath.
They indicate that, despite some mismatch for non-vegetated surfaces, Cab and Cw perform alike,
for Cab a systematic overestimation for the L2A product as compared to the L1C product. On the
other hand, the LAI L1C and L2A products are more poorly correlated; particularly the L1C yielded
considerably higher estimates over the green irrigated areas. Yet, it must be remarked that both LAI
models require improvements. This and other limitations are discussed further on.
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Figure 7. Maps of biophysical variables obtained from L2A (Top) and L1C (Middle) data. Scatter plots
of both maps with gridded color density (Bottom).

5. Discussion

Here we discuss the various processing steps that are required to achieve a generic TOA retrieval
processing chain, i.e., (1) emulation, (2) GSA, and (3) retrieval. These steps have been streamlined
and automated thanks to the development of some dedicated toolboxes. We will therefore close
the discussion with prospects for further improvements.

5.1. Emulation of Leaf-Canopy-Atmosphere RTMs

The first objective was to identify the driving variables of vegetated surfaces that shaped the TOA
radiance reaching an optical sensor in space. To do so, RTMs of leaf, canopy and atmosphere
were coupled. The coupling process of the leaf-canopy-atmosphere RTMs-PROSPECT-4,
SAIL and MODTRAN:-allowed to simulate LUT of TOA radiance data assuming a Lambertian surface.
However, because MODTRAN is computationally expensive and takes some seconds to run a single
simulation, it implies that running thousands simulations can take days to weeks. To overcome this
computational burden, with emulation a bypass was found to speed up the production of simulated
TOA radiance data [32]. Given the assumption that the emulator approximates the TOA radiance
outputs of the original leaf-canopy-atmosphere RTMs with sufficient accuracy, it can then be safely used
for RTM-based applications such as GSA studies. By having the emulator producing the simulations
quasi instantly, the GSA was processed in the order of seconds. Validation against reference
data showed that the emulator can reproduce TOA radiance with sufficient accuracy (NRMSE
errors of 2.4%) for conducting reliable GSA studies [91]. The emulation accuracy is consistent
with earlier analysis for the emulation of PROSPECT-4, PROSAIL and MODTRAN [90]. Based on this
and earlier studies, the following observations can be drawn. The accuracy of the emulator depends
on the type of the algorithm used, number of variables, number of training samples and complexity
of the model [32,90,91]. From multiple machine learning methods tested such as neural networks
and other kernel-based methods, in this (results not shown) and earlier studies, Gaussian processes
regression (GPR) yielded the highest accuracies in approximating the outputs of the original RTM.
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Thereby, accuracies can be improved with adding more training data although that is at the expense
of processing speed. Typically, training with about 1000 simulations is considered as a good trade-off
between accuracy and optimizing processing speed, e.g., for GSA calculations [33,90].

5.2. GSA

Although earlier sensitivity studies have studied aspects of coupled leaf-canopy-atmosphere
models along the spectral range e.g., [16,18,92], these are “local” studies sensitivity studies, i.e., keeping
the majority of variables fixed. With “global” sensitivity analysis (GSA), all variables are ranged
at the same time and interactions are calculated. Variance-based GSA proved to be a powerful
tool to determine and study the main drivers that govern TOA radiance as observed by a sensor.
This becomes extremely relevant in identifying retrievable biophysical variables [2,93]. In principle,
a high sensitivity value indicates that the input variable is responsible for a significant portion
of the output variance and should thus be possible to retrieve e.g., as recorded by an Earth observing
satellite. To the best of our knowledge, this is the first time that a GSA was used to decompose
the full leaf-canopy-atmosphere radiative transfer of TOA radiance into their driving variables along
the 400-2500 nm spectral range at 1 nm resolution. The most remarkable GSA result is the relatively
small contribution of the atmospheric variables driving the TOA radiance variance. This indicates that
the contribution of vegetation variables is much more important than the contribution of atmospheric
variables. In view of mapping applications, it implies that the retrieval of biophysical parameters from
TOA radiance should be certainly possible. Moreover, small inaccuracies in the atmospheric data do
not affect the sensitivity of the vegetation variable in the TOA radiance [11]. Regarding the atmosphere
drivers, HyO concentration is the most dominant variable, but it only appears in the water vapor
absorption bands; its presence outside these bands appeared negligible as opposed to other drivers.
In general, optical sensors do not consider these water vapor absorption bands for biophysical variable
retrieval. O3 concentration has no effect in the GSA, neither at the Chappuis band (400-650 nm),
where O3 has it absorption bands. Outside the water vapour absorption bands, aerosol optical
thickness (AOT) is the atmospheric variable with the strongest impact on TOA radiance. Its importance
is especially relevant at the lower part of the spectrum (400-500 nm) as combination of high aerosol
absorption/scattering and low surface reflectance. This suggests that the retrieval of biophysical
parameters would be more feasible in clear atmospheric days and further away in the spectrum.
These results can be related to the ones found by [11,93], who observed that the sensitivities of surface
reflectance are comparable to the TOA radiance sensitivities, which implies that atmospheric variables
have a rather weak influence in driving variability of the TOA radiance data. Obviously, this is only
valid given a cloud-free sky.

Both leaf and canopy variables drive the TOA radiance along the 400-2500 nm spectral range
outside the water vapour absorption bands. The leaf variable that has the greatest contribution
to the TOA radiance spectrum explains more than 50% of the variance in the whole spectrum.
Chlorophyll content (Cab) has a dominant impact in the visible region but disappears throughout
the red edge as the wavelengths become too large for chlorophyll absorption [94]. Dry matter content
(Cm) is dominant in the NIR (750-1200 nm) and water content (Cw) in the SWIR (1400-500 nm).
The results are very similar to the ones found by [93]. Regarding the canopy variables, the most
important one was the leaf area index (LAI), especially in the visible range and SWIR, and less
important in the NIR, also found in other studies [32,93]. A limitation in the conducted study is
that soil brightness coefficient was not included in the GSA. As demonstrated in earlier studies [91],
this variable also exerts some influence of a few percent, about equally spaced along the spectral range.
The variables that shows hardly any sensitivity, e.g., N, can be safely kept to default values in order
to simplify and speed up the GSA [91]. From a retrieval point of view, the GSA result determines
which of TOA radiance input variables are the most relevant, and thus suitable for retrieval directly
from TOA radiance. Given the dominance of Cab, Cd and Cw at the leaf scale and LAI at the canopy
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scale, in principle, these variables are retrievable from at-sensor TOA radiance data, as has been shown
before [11].

5.3. TOC and TOA Retrieval Models

When it comes to the developed TOC and TOA retrieval models, the relevant bands as given
by the GPR band sigmas (03) (Figure 6) are supposed to be in agreement with the obtained GSA results
(Figure 5). The bands with lowest 03, are expected to fall within regions of high sensitivity towards
the targeted variable.

*  Regarding the Cab models, the most relevant bands (low ¢3) for both TOC and TOA fall within
the visible region which is justified by the high sensitivity of Cab. The St; rapidly declines when
entering the red edge, which is also observed by the higher sigmas. Of interest hereby are the
relatively high importance of the two SWIR bands, even though the GSA results show Cab has
no influence there. This has to be interpreted by indirect co-varying relationships between LAI
and Cab. After all, Cab absorption only occurs when leaves are available (which in turn reduce
the role of soil background). The amount of leaves is controlled by LAI [53,87].

¢ Regarding the Cw models, the most relevant bands for both TOC and TOA are found in the 1610
and 2190 nm SWIR bands. These are regions where Cw plays an important role. Further, the o3,
band ranking suggest that also the visible bands are of importance, which can be again attributed
to co-varying relationships with other leaf properties such as Cab and the amount of leaves,
ie., LAI[53,87].

e  Regarding the LAI models, relevant bands are found all throughout the spectra with lowest
0p in the red (665 nm), and especially in the two SWIR bands. This is again in agreement
with the GSA results where LAI is dominant in the SWIR.

We subsequently applied the TOC and TOA models to S2 L1C and L2A subsets for mapping
applications over the Barrax agricultural site. The obtained maps merely serve as proof
of concept to demonstrate that retrievals can be directly obtained from L1C TOA radiance data,
i.e., without the need for an atmospheric correction. While results are encouraging, it must be pointed
out that the models are still premature to make them produce accurate estimates for each pixel.
Validation against ground truth data and fine tuning of the models is still required, e.g., accounting
for the diverse variability of non-vegetated surfaces present in a S2 image, yet that is considered
as beyond the scope of this work. Here we merely present the streamlined processing framework
for the development of vegetation properties retrieval models applicable to at-sensor TOA data made
available to the community. In this respect, in view of applying the presented tools for mapping
applications, there are some opportunities for improvements that deserve to be mentioned:

¢  Obtained maps from L1C and L2A data are surprisingly consistent given that no optimization
steps were applied. Yet, it must be remarked, the images were acquired on a clear-sky summer
day for a flat surface, making that the role of atmosphere is predominantly homogeneous
and predictable. Obviously the retrieval from TOA data will be more challenging in a more
rugged terrain and in atmospheric heterogeneous conditions, e.g., haze, clouds and shadowing
effects. With the offered toolboxes (ALG, TOC2TOA, GSA, retrieval) these effects can be studied,
and specific retrieval strategies developed.

¢  The TOC and TOA models were trained by simulated data using RTMs that deal with spectral
variability of homogeneous vegetated surfaces. Although 20 soil spectral signatures were added
to the training, that is definitely not enough to cover the natural variability of non-vegetated
surfaces at S2 spatial resolution for complete images. For instance, the models are not trained
for water bodies and man-made surfaces. Ideally, spectral variability of all kinds of non-vegetated
surfaces should be added to the training dataset. Similarly, most likely the model performs poorly
over heterogeneous vegetated surfaces such as forests.
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*  Another way how to further optimize the training LUT for operational mapping is by using
sample distributions that reflect reality more, e.g., normal or log-normal distributions for key
variables. A more refined LUT may be necessary to mitigate the drawback of the LAI saturation.
It is expected that by refining the LUT, e.g., excluding unrealistic situations the LAl model will
be greatly improved, e.g., that saturation only occurs at higher LAI (>6). This is also the strategy
in the official S2 vegetation algorithms as found within the SNAP toolbox [95].

*  There are some aspects of the obtained maps from L1C and L2A data that require clarification.
For instance, the fact that L2A-retrieved Cab is more pronounced than the one from L1C might
indicate that the atmosphere has still some impact on the Cab. Indeed, aerosol properties have
some influence in the AOT (although according to the GSA results this influence is residual <5%).
The same holds for LAI, since LAl is also sensitive to the visible part (not only in the SWIR).
Regarding Cw, their similarities in the obtained L1C vs L2A maps can be explained from the GSA,
since Cw is mostly impacting in the SWIR range, where outside the water absorption bands
the atmosphere has little influence. In this respect, it can be understood that Cw achieves the same
performance from L1C or from L2A data.

¢  Asa final remark, the TOA reflectance to TOA radiance conversion as well the Sen2Cor TOA (L1C)
to BOA (L2A) conversion is done with routines based on the libRadtran RTM. These differences
may lead to discrepancies as compared to the here used MODTRAN routines. For instance,
the 52 processing uses the Thuillier [96] solar irradiance, while MODTRAN uses the Kurucz [97].
The role of using different atmospheric RTMs in atmospheric correction and in TOA radiance
biophysical variables retrieval is yet to be investigated.

Given these topics for improvements, it would be premature to apply the obtained models
into an operational context, but that is also not the aim of this study, as here the tools have
been created to facilitate the developments of hybrid (i.e., RTM-based) TOA retrieval algorithms.
It is foreseen that in follow-up studies the processing chain will be applied for dedicated TOA-based
mapping applications.

5.4. ARTMO Toolboxes

The retrieval of vegetation properties from at-sensor TOA radiance data was made possible
thanks to the development of two new toolboxes integrated within the ARTMO framework: ALG and
TOC2TOA. These toolboxes allow to streamline RTM simulations and do the coupling between canopy
simulations and atmosphere RTMs. ALG generates look-up tables based on a suite of atmospheric
RTMs (65V, MODTRAN and Libratran) [19]. ARTMO already allowed to run vegetation RTMs
in a forward and inverse direction at the leaf and canopy level. With the TOC2TOA toolbox the coupling
with atmospheric LUTs has been made possible. Yet, here only the first version of the TOC2TOA toolbox
has been presented, and new utilities and improvements are considered; e.g., (1) to take adjacency
effects into account [17], (2) to couple surface with atmosphere for non-Lambertian surfaces [14],
and (3) to add the possibility to couple atmospheric models with water RTMs.

Furthermore, ARTMO incorporates several RTM post-processing toolboxes such as the retrieval
toolboxes and the Emulation and GSA toolboxes. By combining both toolboxes, multiple TOA
sensitivity studies or retrieval strategies can be developed and analyzed, e.g., for all kinds
of atmospheric scenarios. All the presented toolboxes are freely downloadable at http:/ /artmotoolbox.
com. They can facilitate the interested user to repeat the presented study or to conduct related
at-sensor TOA radiance studies that involve the processing of RTM simulations, sensitivity,
emulation or retrieval.

6. Conclusions

This study aimed to quantify the relative importance of key input variables in leaf, canopy
and atmosphere radiative transfer models (RTM) by using Gaussian process regression as emulator.
Such models can be used to derive top-of-atmosphere radiance data that can be further used to estimate
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biophysical variables. To do so, the leaf RTM PROSPECT-4 was coupled with the canopy RTM SAIL
and the atmosphere RTM MODTRAN. Because MODTRAN is computationally expensive, a bypass
was sought by making use of emulation. Emulators are statistical constructs that enable to approximate
the outputs of the original RTMs, but this is at low computation cost so that large LUTs can be produced
almost instantly. The emulator subsequently allowed to calculate a global sensitivity analysis (GSA)
and to identify the driving variables. The GSA total sensitivity index quantified that vegetation
variables had a more dominant impact than atmosphere variables on TOA radiance for atmospheric
windows. This finding provides support to develop retrieval strategies of biophysical variables such
as leaf chlorophyll content (Cab), leaf water content (Cw) and leaf area index (LAI) directly from TOA
radiance data, e.g., given Sentinel-2 band settings.

Accordingly, the coupled leaf-canopy-atmosphere RTMs served to train hybrid retrieval models
by using the machine learning algorithm Gaussian processes regression for the processing of Sentinel-2
TOA radiance data (L1C) and bottom-of-atmosphere reflectance data (L2A) given a cloud-free sky.
Retrievals of Cab, Cw and LAI were consistent, although optimization is still required for operational
processing. The maps demonstrate the possibility to retrieve biophysical variables directly from
at-sensor TOA radiance data by means of developing machine learning models, thus without the need
of an atmospheric correction step, and this in a streamlined and largely automated environment.

Summarizing, to the benefit of the community, the here developed toolboxes enable
the coupling of leaf-canopy-atmosphere RTMs for any sensor band settings, so they can be used
for the generation of TOA LUTs for multiple Earth observation applications, e.g., the retrieval of surface
and atmospheric variables.
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