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Abstract: Mountainous areas are highly prone to a variety of nature-triggered disasters, which
often cause disabling harm, death, destruction, and damage. In this work, an attempt was made to
develop an accurate multi-hazard exposure map for a mountainous area (Asara watershed, Iran),
based on state-of-the art machine learning techniques. Hazard modeling for avalanches, rockfalls,
and floods was performed using three state-of-the-art models—support vector machine (SVM),
boosted regression tree (BRT), and generalized additive model (GAM). Topo-hydrological and
geo-environmental factors were used as predictors in the models. A flood dataset (n = 133 flood
events) was applied, which had been prepared using Sentinel-1-based processing and ground-based
information. In addition, snow avalanche (n = 58) and rockfall (n = 101) data sets were used. The data
set of each hazard type was randomly divided to two groups: Training (70%) and validation (30%).
Model performance was evaluated by the true skill score (TSS) and the area under receiver operating
characteristic curve (AUC) criteria. Using an exposure map, the multi-hazard map was converted into
a multi-hazard exposure map. According to both validation methods, the SVM model showed the
highest accuracy for avalanches (AUC = 92.4%, TSS = 0.72) and rockfalls (AUC = 93.7%, TSS = 0.81),
while BRT demonstrated the best performance for flood hazards (AUC = 94.2%, TSS = 0.80). Overall,
multi-hazard exposure modeling revealed that valleys and areas close to the Chalous Road, one of the
most important roads in Iran, were associated with high and very high levels of risk. The proposed
multi-hazard exposure framework can be helpful in supporting decision making on mountain
social-ecological systems facing multiple hazards.
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1. Introduction

Data and reports on Nat. Hazards show an increasing frequency of such disasters worldwide [1].
In addition, the number of people affected and the economic losses resulting from natural disasters
have increased worldwide except in some developed countries, which have experienced a decreasing
trend since 1900 [2,3]. Globally, communities in general are facing a wide range of natural hazards.
These hazards cannot be eliminated totally, but their effects can be minimized by applying new methods
and providing data support for the decision-making process [4,5].

Mountainous areas are characterized as social-ecological systems and, because of their geotechnical and
hydrological characteristics, are associated with elements of danger. For example, mountainous regions
are relatively active hydrologically and geophysically and there is considerable topography-driven
variation in vegetation, moisture, and energy [6,7]. Mountainous environments commonly experience
a wide range of natural disasters, such as avalanches [8–10], landslides [11–14], floods [5,15–18],
debris flows [19–21], soil erosion [22–24], and rockfalls [25–27]. Therefore, planners need hazard
susceptibility maps to cope with natural disasters in mountainous areas, particularly flash floods,
avalanches, and rockfalls [8,25,28]. These three most common hazards can damage transportation
systems, property, and danger human life in risk areas [28]. However, even in areas with a wide range
of natural risks, previous studies have mainly focused on one type of hazard [8,29–32]. As a result,
integrated multi-hazard analysis has been under-emphasized in natural disaster management and
planning. More importantly, most previous studies have focused solely on forecasting and controlling
Nat. Hazards [33], neglecting the human effects and the exposure component [4]. In fact, the exposure
of mountain social–ecological systems to geohazards has increased because of a combination of the
dynamic bio-geophysical environment and the challenges of land use planning [34,35]. Separate spatial
studies of different risk types in mountainous regions could in fact result in greater underestimation
of risks in total. A multi-risk assessment technique could thus be very useful for considering the
interactive reactions of different hazards on surrounding areas [36,37].

Multi-hazard exposure mapping is an important key tool in enhancing resilience in the context of
Nat. Hazards in mountain areas and can play an important role in ensuring the long-term sustainability
of local ecosystems and communities [38–40]. Resilient social–ecological systems have the ability to
adapt and utilize relevant knowledge in order to mitigate natural disasters by self-organizing and
developing safe infrastructures based on nature-based solution [41]. Fortunately, there is growing
recognition of the importance of multi-hazard exposure analysis, and hazard-based attitudes and
policies are slowly changing to risk-based management in different parts of the world [1,42–44].
In an early study, Bell and Glader [4] developed a general method for analyzing multi-hazards in
mountainous areas for multiple processes, focusing on avalanches, rockfalls, and debris flow hazards.
In a later study, Gruber and Mergili [36] performed a regional-scale analysis of multi-hazards and
risk indicators in high mountainous regions of Tajikistan. Schmidt et al. [45] introduced a generic
framework for multi-risk modeling developed in New Zealand and developed a prototype software
that is capable of “plugging in” various natural hazards. Recently, Emmer [24] provided a review on
natural disasters worldwide and found that research on hydro-meteorological disasters prevails over
the research on geological and geomorphic disasters. However, their framework does not provide any
guidance on producing a single natural hazard map.

Avalanches, rockfalls, and floods frequently occur in mountainous regions of Iran and cause
severe damage to buildings, people, and natural environments [11,12,46,47]. This study investigates
multi-hazard exposure using different machine learning approaches due to the following reasons:
(1) Machine learning (ML) is a subfield of artificial intelligence where models can learn and improve
themselves based on historical events; (2) ML models can easily identify trends and patterns in a large
volume of data and involve continuous improvement during operation, which lets them make better
decisions [48]; (3) they are capable of handling data that are multi-dimensional and multi-variety [30];
and (4) they can directly extract knowledge of natural disaster processes based on previous disaster
occurrences and geo-environmental factors without human intervention, thus, they do not need experts’
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experiences and judgements to determine the importance of predictive variables [49]. To evaluate this
framework in an area with multiple hazards, the Asara watershed (Iran) was selected because it has
become considerably disaster-prone in the past decade and has experienced a disproportionately high
number of catastrophic natural disasters. In work to develop a global methodology for multi-hazard
exposure mapping in mountainous regions based on historical disaster events, the novelty of this
study lies in constructing an integrated framework based on different state-of-the-art machine learning
algorithms and using several morphometric, geo-environmental, and topo-hydrological factors for a
multi-hazard exposure analysis.

Specific objectives of the study were to: (1) Produce an exposure map based on proximity to
residential areas, main roads, rural roads, and power transmission lines; (2) apply three advanced
machine learning models including BRT (Boosted Regression Trees), GAM (Generalized Additive
Model), and SVM (Support Vector Machine) to produce a multi-hazard map (avalanche, flood,
and rockfall hazards); (3) evaluate the performance of each model using threshold-dependent
and threshold-independent methods; and (4) produce an integrated multi-hazard exposure map.
The intention was for the practical framework of multi-hazard exposure mapping developed in the
study to be transferable to other mountainous areas around the world.

2. Study Area

The study area, the Asara watershed, is in Alborz province, which is located in the Alborz
mountains of Iran (Figure 1). The watershed occupies an area of 1094.9 km2, with a range of elevation
from 1332 m.a.s.l at the watershed outlet to 4323 m.a.s.l at the headwaters. Mean annual precipitation
in the study area is 265 mm, of which 40% falls as snow. Chalous Road, which is one of the most
important transfer lines to the north of Iran, passes through the Asara watershed with 79.54 km. Traffic
on the road is generally very heavy, especially on the weekends and on state holidays.
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Figure 1. Geographical position of study area and different natural hazard occurrences including flood,
snow-avalanche, and rockfall. Field photographs of some natural hazard events occurred in the study
area: (a) Snow-avalanche between Kandovan Tunnel and Gachsar, (b) rockfall in the South of Vineh
village, and (c) flood in the north of Vineh village.
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In a land use perspective, the watershed is almost entirely covered by rangeland (95%), but it has
46 villages with around 5000 residents and many restaurants (near the main road). However, only
0.33% of the watershed is residential area. In this mountainous watershed, there are markedly high
frequencies and magnitudes of natural hazards, but the level of exposure and risk are also increasing
due to socio-economic changes such as the increase of population [50,51]. Some rivers and watercourses
in this semiarid region generate flashy stormflows that rapidly peak following brief and intense storms
which cause flashy floods in the area. The geological structure and geomorphological characteristics of
the study area is considerably complicated which often prone to rockfall and snow avalanche events
occurring [52].

3. Methodology

In this section, we provide a step-by-step account of our machine learning approach to creating a
multi-hazard exposure map for the study watershed, using an exposure map and a multi-hazard map.
A flowchart of the methodology is presented in Figure 2.
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Figure 2. Methodology flowchart used in this study.

The first step of the study is to record the location of disaster occurrences (snow-avalanches,
rockfalls, and floods) over previous years (2010–2018). Next, the hazard susceptibility map of each
disaster was created and then they were integrated using a weighted linear combination (WLC)
technique (i.e., the same weights were considered for all hazard maps) to produce a multi-hazard map.
The accuracy of each hazard map was evaluated using statistical criteria including the area under the
receiver operating characteristic curve (AUC) and true skill score (TSS). To prepare a multi-hazard
exposure map, an exposure map should be created.

3.1. Multi-Hazard Modelling

3.1.1. Predictive Factors

The first step of the work was hazard modeling for avalanches, rockfalls, and floods in the
Asara watershed, beginning with selection of predictive factors. However, there are no universal
guidelines on choosing influential factors for each natural disaster. Therefore, based on the relevant
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literature [5,47,53–59], different topo-hydrological, geo-environmental, and morphometric factors were
selected for testing (Figure 3).Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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(i) aspect, (j) slope, (k) distance from stream, (l) profile curvature, (m) lithology, and (n) land use. 

  

Figure 3. Predictive factors: (a) Elevation, (b) TPI, (c) TRI, (d) TWI, (e) LS, (f) RSP, (g) VRM, (h) WEI,
(i) aspect, (j) slope, (k) distance from stream, (l) profile curvature, (m) lithology, and (n) land use.
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A digital elevation model (DEM) was produced for the study area from the airborne LIDAR
(Light Detection and Ranging) system that is effective and reliable means of terrain data collection in
large areas with cloudy weather conditions. The generated triangular irregular network (TIN) was
converted to an ArcGIS grid of 1 m pixel resolution using a TOPOGRID algorithm. In order to acquire
homogeneity with other predictive maps, and to increase the efficiency in terms of manipulation
and storage, the generated high-resolution DEM was coarsened to 10 m resolution. Scaling from
high- to coarse-resolution images is a common approach in spatial analysis and modeling, especially
in large-scale regions, and often results in decreasing computational load and time [10,33,44,45].
Therefore, a spatial resolution of 10 m was used to calculate topography related predictive factors
including topographic position index (TPI), terrain ruggedness index (TRI), topographic wetness index
(TWI), length-slope (LS), relative slope position (RSP), vector ruggedness measure (VRM), aspect, slope
degree, distance from stream, and profile curvature. TPI factor can be computed as Equation (1):

TPI =
Epixel

Esurrounding
(1)

where Epixel and Esurrounding are the altitude of the pixel and the mean altitude of the neighbor pixels,
respectively. TWI is a topo-hydrological factor and reflects the wetness potential of each pixel. It can
be calculated as below (Equation (2)):

TWI = ln
(
α

tanβ

)
(2)

where a is an area which drains to a point and β depicts the slope degree at the pixel. TRI also shows
the topographic nature of a watershed and can be calculated as Equation (3):

TRI =
√
|x|(max2 −min2) (3)

where x shows the elevation of each neighbor cell to cell (0,0) (m). In addition, min and max reflect the
smallest and largest elevation value among nine neighbor pixels, respectively. RSP is also represented
as a ratio, ranging from 0 (valley floor) to 100 (ridge top). It can be defined as Equation (4):

RSP =

(
z(s) − z(s)v

z(s)r − z(s)v

)
× 100 + 0.5 (4)

where z(s), z(s)r, z(s)v are elevation, ridge elevation, and valley elevation, respectively. It is worth
noting that TPI, TWI, TRI, and RSP layers were produced in SAGA-GIS software.

In addition, a geological map with 1:100,000 scale was obtained from the Iranian Department
of Geology. The details of each geological class described are summarized in Table 1. In addition,
Landsat-8 Operational Land Imager (OLI) images were used to create land use map in 2018. Atmospheric
corrections were carried out using the FLAASH module in ENVI software. Furthermore, the Gram-
Schmidt Pan Sharpening module was applied for fusion of panchromatic and multispectral satellite
images. In accordance with the resolution of other DEM-extracted layers, the produced land use map
was resampled with a spatial resolution of 10 m in ENVI software. Next, a supervised classification
method with the maximum likelihood algorithm was employed. In order to evaluate the accuracy
of the produced land use map, not only field investigations with a global positioning system (GPS)
receiver were conducted, but also points from Google Earth were also used.

According to confusion matrices, the overall accuracy was 92.40%, which indicates a high
classification accuracy.

According to the literature, different predictive factors were selected for each disaster type,
as indicated in Table 2 [26,27,53–59]. As can be seen in Table 2, some factors are relevant for all hazards.
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Table 1. Geology of the study area.

Code Formation Description Area (%)

COm Mila Dolomite platy and flaggy limestone containing
trilobite; sandstone and shale 2.12

Eabtd - Andesitic and basaltic volcanic tuff deictic 5.34

Ek Ziarat Reef-type limestone and gypsiferous marl 0.03

Ek Karaj Well bedded green tuff and tuffaceous shale 53.20

Ek.a Asara Calcareous shale with subordinate tuff 6.41

Ekgy - Gypsum 5.04

Eksh Shale Greenish-black shale, partly tuffaceous with
intercalations of tuff

7.96

Jl Lar Light grey, thin—bedded to massive limestone 2.03

Mm,s,l - Marl, calcareous sandstone, sandy limestone and
minor conglomerate 0.72

P - Undifferentiated Permian rocks 0.87

pC-Cs Soltanieh Thick dolomite and limestone unit, portly cherty
with thick shale intercalations 1.06

pCk Kahar Dull green grey salty shales with subordinate
intercalation of quarzitic sandstone 3.13

Pr Ruteh Dark grey medium—bedded to massive limestone 2.81

Qft2 - Low level pediment fan and valley terrace deposits 1.24

TRe Elikah thick bedded to pinkish shaly limestone with worm
tracks and well to thick 0.75

TRJs Shemshak Dark grey shale and sandstone 7.30

Table 2. The spatial database of predictive factors.

Factor
Natural Hazard Type Data Type

and ScaleSnow-Avalanche Rockfall Flood

Elevation 3 3 3 Grid (10m)
Topographic position index (TPI) 3 3 3 Grid (10m)
Terrain Ruggedness Index (TRI) 3 3 3 Grid (10m)
Topographic wetness index (TWI) - - 3 Grid (10m)
Length-slope (LS) 3 3 - Grid (10m)
Relative slope position (RSP) 3 3 - Grid (10m)
Vector Ruggedness Measure (VRM) 3 3 - Grid (10m)
Wind exposition index (WEI) 3 - - Grid (10m)
Aspect 3 3 - Grid (10m)
Slope degree 3 3 3 Grid (10m)
Distance from stream - - 3 Grid (10m)
Profile curvature 3 3 3 Grid (10m)
Lithology 3 3 3 Polygon (1:100,000)
Land use 3 3 3 Polygon (1:100,000)

3.1.2. Multi-Hazard Inventory

Based on field surveys in different seasons and available documents at the Road Organization (RO)
of Iran and the Regional Water Company (RWC), the locations of 292 disaster events involving snow
avalanches (58), rockfalls (101), and floods (133) have been recorded (2010–2018). Unfortunately, there
is no information on disasters before 2010. The RWC have been using Sentinel-1-based processing and
ground-based information for flood detection and monitoring. This method has different advantages,



Remote Sens. 2019, 11, 1943 8 of 20

as have been described in the literature [9,12]. It operates at specific wavelengths not limited by a lack
of illumination or cloud cover. In addition, it can acquire data over a site under all weather conditions
during night or daytime. Moreover, it is suitable for gathering information in flooded areas because of
its high revisit frequency (i.e., high temporal resolution).

For each disaster type, the collected observed data were randomly divided into two groups,
one for model training (70%) and one for model validation (30%), as suggested elsewhere [30,60].
The locations of each hazard type and some field photographs of the damages of hazards are shown
in Figure 1. As can be seen, field photographs of the study watershed clearly indicate the sites of
avalanches, rockfalls, and floods and the consequences and damage.

3.1.3. Application of Models

Generalized Additive Model (GAM)

GAM is a non-parametric regression method proposed by Hastie and Tibshirani [61], which is
a combination of the Generalized Linear Model and an additive model. Basically, GAM is formed
by two functions, a link function and a smoothed function, in which the first one is used to build
the relation of the mean of the dependent variable with the smoothed function of the independent
variables. Thus, incorporating the two mentioned functions enables the GAM not only to work well
with various distribution types of data, but it also has ability to deal with highly non-linear problems.

Consider a dataset D = (xi, yi), xi ∈ Rn and yi is the output class i = 1, . . . , cl, the general form of
the GAM is depicted in the following equation:

G(y) = α+ f1(x1) + . . .+ fm(xm) (5)

where g(.) is the link function, f (.) is the smooth function; xi is the independent variable; y is the
expected value; and α is the intercept.

The process of training the GAM model can be separated into three main steps. The first one is to
carry out the data analysis to identify the distribution curve for the dependent variable and the link
function, whereas the second one is to determine the parameters of the GAM model, and the last one is
to optimize the model.

Boosted Regression Tree (BRT)

BRT has been proposed by Friedman [62]. It is relatively new and powerful machine learning
algorithm for regression and classification, which combines a regression tree and a boosting algorithm.
The motivation of the BRT is that the performance of the regression tree as a single base learner is not
satisfactory, but the performance can be boosted with a series of base learners [63].

Using the dataset D, the boosting algorithm improves the regression tree model, F(x) by adding
an estimator, h(x) to derive a new BRT model, Fnew(x) as in Equation (6). This is an iteration process
and the number of iterations (M) plays an important role in the performance of the final BRT model

Fnew(x) = F(x) + γh(x) (6)

where γ ∈ (0, 1) is the learning rate which is used to control the problem of over-fitting.
The loss function is established as below:

L =
1
2
[y− F(x)]2 (7)

With each iteration, a new tree add to the original model must ensure the reduction of the loss
function. The training phase of the BRT will be completed when the predefined number of iterations is
reached. Other detailed descriptions of the BRT can be found in Elith et al. [64] and Chung [65].
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Support Vector Machine (SVM)

SVM is one of the most powerful supervised machine learning algorithms for both classification
and regression, which was developed in the framework of statistical learning theory [66]. The working
principal of the SVM model is that, first, it transforms the original input data to a new feature
space, and then, in the new space, a decision function is established through an optimal hyper plane.
The decision function (Equation (8)) will be used to classify new data:

g(x) = sign(
n∑

i=1

yiαiK
(
xi, x j

)
+ b) (8)

where αi is the Lagrange multiplier; K
(
xi, x j

)
is the kernel function. In this research radial basis kernel

function (RBF, Equation (9)) was used:

K
(
xi, x j

)
= exp

(
−γ‖ xi − x j ‖

2
)

(9)

The detail explanations of the SVM are given by [67]. All three models were performed in
R software. Each disaster (i.e., avalanche, rockfall, flood) was modeled separately using each of
these models.

3.1.4. Accuracy Assessment

The goodness-of-fit and predictive performance of each model were assessed using the training
group and validation group of data, respectively. In order to quantitatively evaluate the accuracy
of the models in the training and validation steps, threshold-independent and -dependent methods
were applied.

Among threshold-dependent methods, the true skill score (TSS) was selected because it is a useful
evaluation metric for assessing the accuracy of the model [68]. TSS is an alternative for the kappa,
while still keeping all its advantages. Similar to the ROC curve, TSS is calculated based on Sensitivity
and Specificity as follows (Equation (10)):

TSS = Sensitivity + Specificity− 1 (10)

Both Sensitivity and Specificity factors can be computed as below:

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

FP + TN
(12)

where FN (false negative) and FP (false positive) are the numbers of pixels erroneously classified,
whereas TN (true negative) and TP (true positive) are the number of pixels that are correctly
classified [46]. All FN, FP, TN, and TP are the fundamental elements of the contingency table
(also termed the confusion matrix).

The receiver operating characteristic (ROC) curve is a plot of the Sensitivity versus “1—Specificity”
of a diagnostic test. The area under the ROC curve (AUC) is the most commonly used method
for scrutinizing the performance of the model and it has been known as a threshold-independent
evaluation metric [69,70]. AUC values vary from 0 to 1, where a value of 0 reflects a completely
inaccurate test and a value of 1 implies a perfectly accurate test [49]. According to the common
classification of the model accuracy, an AUC under 0.7 is unacceptable, 0.7–0.8 is considered good,
0.8–0.9 is considered very good, and more than 0.9 is excellent [14].
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3.2. Exposure-Related Factors

Main road network, rural road network, residential areas, and power transmission lines in the
study watershed were defined as vulnerable components. The Euclidian distance tool was used to
prepare maps of exposure-related factors in the ArcGIS environment. Based on the analytical hierarchy
process (AHP) method [71], the weight of each factor was determined. In this step, questionnaires
were prepared and distributed to ten experts (hydrologists, geologists, etc.) within and outside Iran.
In order to assess the consistency of the comparisons, the consistency ratio (CR) should be calculated.
A CR value less than 0.1 indicates that comparisons are consistent and acceptable. In addition, a rate
(R) was assigned to each class of exposure-related factor, according to the order of their importance
and exposure, using an expert knowledge-based method [71]. Following Adiat et al. [1], R values of 1,
2, 3, 4, and 5 were assigned to classes indicating, respectively, very low, low, medium, high, and very
high exposure. These rates were then normalized for use in the spatial analysis of exposure.

3.3. Multi-Hazard Exposure Mapping

In order to generate the final multi-hazard exposure map, avalanche hazard (AH), rockfall hazard
(RH), and flood hazard (FH) maps with the highest accuracy from the three machine learning models
were selected. Next, a multi-hazard map was produced by combining the most accurate AH, RH,
and FH maps (multi-hazard = AH + RH + FH). Finally, the exposure and multi-hazard maps were
fed into a risk equation (Risk = Hazard × Exposure) [71,72] and a multi-hazard exposure map for the
Asara watershed was generated.

4. Results

4.1. Hazard Maps

Hazard maps for the Asara watershed based on the BRT, GAM, and SVM models were created
for avalanches (Figure 4), rockfalls (Figure 5), and floods (Figure 6). According to Figure 4, the snow
avalanche susceptibility maps of the study area generated by the three models had the same overall
spatial pattern, with high avalanche susceptibility in the central part of the study area. However,
the spatial detail of each model also differs: High susceptible class in the GAM result covered more
areas than other two models. It is clear that the high susceptibility is mostly in avalanche slopes in the
northern aspect, which is in agreement with the results of Kumar et al. [43] who conducted avalanche
susceptibility mapping in Nubra valley region, Indian Himalaya. In fact, the shady slopes become
instable in the winter, while the sun facing aspects remain more stable.

As can be seen in Figure 5, BRT and SVM models resulted in relatively similar pattern, although
the predicted susceptibility degree in the GAM model is a bit different. The northern part of the study
area has the highest snow avalanche susceptibility, which also has the highest slope degree. In the
flood susceptibility mapping, all the three models showed the relatively same prediction (Figure 6):
Flood susceptible areas are mostly in areas with high drainage density. In general, high drainage
density sites can be found in different parts of the study area.

Table 3 summarized the results of the goodness-of-fit for each disaster type and also each model.
In snow avalanche modeling, SVM had the highest accuracy (AUC = 94.1%, TSS = 0.82), followed by
the BRT (AUC = 91.2%, TSS = 0.73). However, the least accuracy belonged to the GAM (AUC = 84.4%,
TSS = 0.68). According the accuracy of the rockfall models in the training step, SVM outperformed
other models based on the both AUC (95.3%) and TSS (0.84) criteria. Considering the AUC criterion,
the variation in the goodness-of-fit of BRT (92.6%) and GAM (92.2%) models was not high. TSS values
for BRT and GAM indicated that BRT (TSS = 0.75) performed better than GAM (TSS = 0.72). In flood
hazard modeling, BRT produced a better prediction (AUC = 96.5%, TSS = 0.83), followed by SVM (AUC
= 91.9%, TSS = 0.75), and GAM (AUC = 89.7%, TSS = 0.72). However, the goodness-of-fit of the model
illustrates how well the model fit the training data set. The prediction capacity and generalization
abilities of the model cannot be judged using the goodness-of-fit of the model because it is determined
by the training data set that were already used to build the model [13].
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Table 3. Goodness-of-fit and predictive performance of models for three hazard types.

Hazard Type Model

Goodness-of-Fit
(Training Step)

Predictive Performance
(Validation Step)

AUC (%) TSS AUC (%) TSS

Snow-avalanche
BRT 91.2 0.73 89.6 0.71

GAM 84.4 0.68 83.1 0.61
SVM 94.1 0.82 92.4 0.72

Rock-fall
BRT 92.6 0.75 88.5 0.67

GAM 92.2 0.72 90.3 0.69
SVM 95.3 0.84 93.7 0.81

Flood
BRT 96.5 0.83 94.2 0.8

GAM 89.7 0.72 86.9 0.67
SVM 91.9 0.75 89.3 0.69

The validation results showed that the SVM model had the highest performance for predicting
snow avalanche (AUC = 92.4%, TSS = 0.72), followed by BRT (AUC = 89.6%, TSS = 0.71) (Table 3).
However, GAM was the least accurate of the three with an AUC value of 83.1% and a TSS value of
0.61. For rockfall mapping, SVM was the best model based on the AUC (93.7%) and TSS (0.81); GAM
(AUC = 90.3%, TSS = 0.69) and BRT (AUC = 88.5%, TSS = 0.67) were second and third, respectively.
In addition, the results of validation in flood hazard modeling demonstrated that BRT (AUC = 94.2%,
TSS = 0.8) outperformed SVM (AUC = 89.3%, TSS = 0.69) and GAM (AUC = 86.9%, TSS = 0.67).

Considering the best model for each hazard type (i.e., SVM for snow avalanche and rockfall,
and BRT for flood), a weighted integration method was used to conduct the multi-hazard susceptibility
analysis which the AUC values in the validation step are the assigned weight. The multi-hazard
susceptibility map of the study area is shown in Figure 7.
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4.2. Exposure Map

Figure 8 represents exposure factors and Table 4 illustrates the classes of each exposure factor
and their normalized rate (NR) values. Results of the AHP based exposure analysis showed that the
distance from the residential area (DFRA) is the most important factor, whereas the distance from
power transmission lines (DFPTL) had the least importance among exposure-related factors (Table 5).
It is worth noting that the consistency ratio (CR) was 0.07 in this study. Therefore, it shows that there is
a reasonable level of consistency in the pairwise comparison because it is less than 0.1. Based on the
maps of exposure-related factors (main roads, rural roads, residential areas, and power transmission
lines), the final exposure map was produced (Figure 9). It indicates that residential areas and roads are
the most important elements in terms of the exposure analysis.

Table 4. Normalized rates (NR) for classes of the vulnerability factors.

Vulnerability Factors Class Rate (R) Normalized Rate (NR)

Distance from residential
area (m)

0–50 5 5/15 = 0.333
50–100 4 4/15 = 0.266
100–250 3 3/15 = 0.2
250–500 2 2/15 = 0.133

>500 1 1/15 = 0.066
Total 15 -

Distance from main road (m)

0–50 5 0.416
50–100 4 0.333
100–250 2 0.166

>250 1 0.083

Distance from rural road (m)
0–50 5 0.555

50–100 3 0.333
>100 1 0.111

Distance from power
transmission lines (m)

0–50 5 0.625
50–100 2 0.25
>100 1 0.125
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4.3. Multi-Hazard Exposure Map

Figure 10 represents the multi-hazard exposure map in the Asara watershed. Based on the
multi-hazard exposure classification (equal interval method), the watershed was classified into five
classes: ery low risk, low risk, medium risk, high risk, and very high risk. There is significant spatial
variation in multi-hazard exposure. High risk areas cover 1.88% and very high cover 0.08% of the
study area, whereas 52.12%, 36.27%, and 9.65% of study watershed were classified as very-low, low,
and medium risk areas, respectively.
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5. Discussion

The results of this study indicated that the predictive ability of models in Nat. Hazards is highly
affected by the type of the hazard. In this study, we found that SVM was the most accurate model for
analyzing avalanche and rockfall hazards in the Asara watershed, while BRT had the highest accuracy
for spatially predicting flood hazard. Therefore, a machine learning model that has a high predictive
performance for a natural disaster (e.g., snow avalanche) may showed a lower performance for another
natural disaster (e.g., flood). The SVM-based classifiers automatically determine classification areas by
statistical analysis of observed training datasets. In addition, the SVM model does not offer direct access
to classification borders and thus it is not easy to check the classification, so users should carefully
select positive and negative events. The results obtained in the present study confirm previous findings
on the ability of SVM to predict avalanche hazards [73,74] and rockfall hazards [25]. The results
of this study confirm previous findings that BRT is one of the most accurate models for mapping
flood-prone areas [57]. Tree-based models automatically fit non-linear relationships to flood area input
factors [75]. Therefore, since Nat. Hazards present a high level of complexity, especially in a complex
system such as a mountainous watershed, multi-hazard analysis should be undertaken using different
advanced machine learning techniques [17,76]. ML models are critical in helping landscape managers
to understand the complex factors controlling Nat. Hazards and more efficiently plan the mitigation
measures [71,76].

Production of an exposure map based on AHP was one of the important steps in our multi-hazard
exposure mapping approach. Analytical hierarchy process offers a flexible, step-by-step, transparent
way to combine factors that play an important role for exposure in different dimensions [77,78].

The present study identified the possible high-risk areas in one of the most important mountainous
watersheds (in terms of travel and traffic) in Iran. In general, the results should not be viewed as definite
risk maps, but should be used as basis for planning risk management and implementing ecological
engineering measures to the high-risk areas. The multi-hazard exposure map (Figure 10) showed that
areas associated with a high and very high levels of risk represented a very small proportion of the
Asara watershed. However, the areas with high and very high risk levels were mostly located in the
valleys which are also the concentration points of infrastructure and population.
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These are the areas where the preventive actions should be prioritized. In case of floods, it is
necessary to protect lower lands that are exposed to flood hazards by constructing impounding dams
upstream of the larger villages [79]. The dams will not only prevent flooding but also provide water
during the dry season. For villages that are located headwaters and are less exposed to flood risk,
a construction of flood protection walls should reduce the risk considerably. To reduce the rock-fall
risk, structural protection measures in the areas with high risk, existing infrastructure, and residential
areas need to be implemented. These measures can include the removal of unstable rock elements,
slope reshaping or stabilization of unstable rock masses by the use of vegetation or steel wire mesh.
New buildings should be carefully planned in all high risk multi-hazard areas. They should be sited
and designed according to the character of the local landscape and very high risk areas should be
avoided [80]. Moreover, all aforementioned engineering measures should be accompanied with raising
the people’s awareness in the high risk areas.

6. Conclusions

A multi-hazard exposure study was conducted based on three natural disasters (avalanches,
rockfalls, and floods) in a mountainous region in Iran. The SVM, BRT, and GAM models were
used to predict disaster prone areas for a very important Iranian watershed with a high level of
vehicular traffic. Results indicated that the SVM model had the highest accuracy for avalanches
and rockfalls hazards, while BRT demonstrated the best performance for spatially predicting flood
hazard. Therefore, the hazard models applied differed in their accuracy of prediction for the different
hazards, which should be borne in mind when selecting a model for risk mapping. Furthermore,
results revealed that hazard type can affect the ranking of the models. The approach presented and
the results obtained could be very useful for multi-risk mapping in mountainous areas around the
world. The multi-hazard exposure analysis helps to spatially prioritize the areas of implementation of
most cost-efficient engineering and nature-based solution practices in high risk areas. Therefore, it
helps the communities to adapt to natural disasters. Further research should be done to investigate the
importance of predictive factors in multi-hazard modeling.
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