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Abstract: In order to enhance the simulated accuracy of jujube yields at the field scale, this study
attempted to employ SUBPLEX algorithm to assimilate remotely sensed leaf area indices (LAI) of
four key growth stages into a calibrated World Food Studies (WOFOST) model, and compare the
accuracy of assimilation with the usual ensemble Kalman filter (EnKF) assimilation. Statistical
regression models of LAI and Landsat 8 vegetation indices at different developmental stages were
established, showing a validated R2 of 0.770, 0.841, 0.779, and 0.812, and a validated RMSE of
0.061, 0.144, 0.180, and 0.170 m2 m−2 for emergence, fruit filling, white maturity, and red maturity
periods. The results showed that both SUBPLEX and EnKF assimilations significantly improved
yield estimation performance compared with un-assimilated simulation. The SUBPLEX (R2 = 0.78
and RMSE = 0.64 t ha−1) also showed slightly better yield prediction accuracy compared with EnKF
assimilation (R2 = 0.73 and RMSE = 0.71 t ha−1), especially for high-yield and low-yield jujube
orchards. SUBPLEX assimilation produced a relative bias error (RBE, %) that was more concentrated
near zero, being lower than 10% in 80.1%, and lower than 20% in 96.1% for SUBPLEX, 72.4% and
96.7% for EnKF, respectively. The study provided a new assimilation scheme based on SUBPLEX
algorithm to employ remotely sensed data and a crop growth model to improve the field-scale fruit
crops yield estimates.
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1. Introduction

Jujube (Zizyphus jujuba) is a significant economic tree species in China with approximately
3,250,000 hectares in 2017, and its fruit has important nutritional and medical value [1,2]. The field-scale
jujube growth monitoring and yield estimation allow farmers to make management decisions, such
as precision planting, irrigation optimization, fertilization, and pest management, which are also
important components of precision agriculture and horticulture.

Assimilation of remote sensing information into crop models has been considered as a key
technical tool for yield prediction. The goal of assimilation is to reduce the uncertainty in the spatial
distribution of soil properties, crop parameters, and meteorological data of crop model applications in
large areas [3]. The key input parameters or state variables, such as phenology information [4], leaf
area index (LAI) [5–10], biomass [11], crop transpiration (ET) [7], and soil moisture (SM) [5,12–16], can
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be observed from remote sensing data. In recent years, data assimilation methods, mainly including
variational (calibration) and sequential (update) methods, have been used to integrate remote sensing
data and crop models to improve the prediction accuracy of canopy state variables and yields at the
field, regional, and national scale [17].

The variational method takes all available observations during the main growth season and
attempts to fit the model to the observations by minimizing the cost function, thereby optimizing
the initial parameters of crop models. The variational methods for remote sensing and crop
model assimilation have been reported, including, shuffled complex evolution simplex algorithm
(SCE-UA) [7,17–20], four-dimensional variational data assimilation (4DVAR) [9,21–24], particle swarm
optimization (PSO) [25–30], Powell’s conjugate direction method (Powell) [6,23,31,32], simplex search
algorithm (SSA) [33,34], maximum likelihood solution (MLS) [35], golden section searching (GSS) [36],
and annealing algorithm (AA) [21,24,37]. Canopy LAI is a state variable used by most studies
because it directly reflects the growth of the crop. In addition, FAPAR [36,37], ET [7,38], leaf nitrogen
accumulation [39], vegetation indices [21,25,31], and band reflectance [17] also demonstrate the
potential as state variables for remote sensing assimilation to optimize initial parameters for crop
models. The variational method attributes the model input, output, and the model’s own error to
the uncertainty of the initial conditions or the parameters of the model, and do not consider the state
variable estimation error during the time evolution of the model parameters. Therefore, in practical
applications, the assimilation accuracy of the variational method often depends on the quality and
accuracy of external observation data.

Sequential methods directly update the state variables of a modeling system when observation
becomes available. The magnitude of the state update then depends on the uncertainty in both
the model state and the observation. Examples of sequential approaches are the ensemble Kalman
filter (EnKF) [5,8,12–14,30,40–50], particle filter (PF) [51], constant gain Kalman filter (CGKF) [52,53],
and ensemble square root filter (EnSRF) [15,54]. For the state variables of sequential methods, LAI is
also the most focused, followed by soil moisture content (SM). The reported studies also show that the
EnKF algorithm has been adopted by more research to improve assimilation accuracy.

EnKF continuously updates a new set of input parameters at each observation spot. If the state
variable error statistic of remote sensing is a Gaussian distribution, the EnKF method can be considered
as the preferred assimilation method because most crop growth models are nonlinear [55]. However,
the EnKF approach can only work if the growth cycle (sowing date plus phenology) between the
model and satellite observations in the field is correct. If the phenological information is wrong,
the EnKF method is equivalent to forcing the LAI into a crop model that may belong to different
growth stages and basically have a time shift between the reality and model, which may result in
worse simulation accuracy [47]. If the phenology information is uncertain, the variational method is
usually superior to the sequential method, which can reduce the accumulation and diffusion of remote
sensing data errors in the assimilation process [3]. Of course, it also requires more computing time.
The SUBPLEX method is based on the Nelder�Mead simplex algorithm (NMS), which determines an
improved set of subspaces and then uses NMS to search each subspace [56]. For most applications,
SUBPLEX shows higher computational efficiency for the unconstrained optimization of general
multivariate functions than the simplex searching or forcing method [57]. In principle, SUBPLEX
shall be one of the variational assimilation methods, which is different from EnKF assimilation
process. It calculates a set of optimal input parameters based on the error of all remote sensing
observations and simulated values. In addition, when the number of remote sensing observations is
large, the SUBPLEX method can divide the observation spots into several lower-dimensional vectors,
thereby improving computational efficiency. More importantly, for objective functions affected by
remote sensing observations error, the measurement replication option of SUBPLEX can be used
to avoid convergence to a false minimum [56]. Whether SUBPLEX algorithm has the potential to
be applied to the assimilation of remote sensing and crop growth models also shows a valuable
research exploration.
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In addition, almost all remote sensing and crop growth model assimilation studies focus on
annual crops, and few studies have discussed the growth simulation and assimilation of perennial fruit
tree crops. Therefore, the objective of this study is to develop a data-assimilation framework based
on an unconstrained optimization algorithm (SUBPLEX) that integrates remotely-sensed LAI into a
calibrated WOFOST (World Food Studies) model to improve the jujube yield estimation at the field
scale. To accomplish this goal, the following two specific objectives are defined:

(1) To develop SUBPLEX algorithm to optimize the key input parameters of the WFOST model for
reducing the uncertainty.

(2) To compare the yield prediction performance of the proposed SUBPLEX assimilation with the
EnKF method.

2. Materials and Methods

2.1. Study Region

Figure 1 shows the study area, field experiment site, and the distribution of the field-scale
observations for yields and LAIs. The red area in the land use map represents the jujube planting area.
The study was carried out in an agricultural city with a large planting area of jujube trees (more than
50,000 ha), Alar City, Xinjiang, China. The study area covers 10 agro-ecological zones.
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Figure 1. Study region and observed samples for this study.

The prevailing planting pattern of jujube trees in the study area is a low and dense planting pattern
with a density of 2000 to 10,000 trees per hectare and a height of 1.5 to 2.5 m. The area is characterized
by basins, sandy loam, and less rain, and arid warm-temperate climate. The water demand for jujube
trees depends mainly on irrigation, which is managed by the government department. Generally,
a reasonable irrigation strategy is carried out based on the temperature and rainfall conditions,
combined with the water requirements of different development stages of jujube trees. Jujube tree
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germinates in mid-April, and the fruit matures at the beginning of October and is harvested in
early November.

2.2. Model and Data

2.2.1. WOFOST Model

WOFOST is a mechanistic model that explains crop growth on the basis of the underlying
processes, such as phenological development, CO2-assimilation, transpiration, respiration, and how
these processes are influenced by environmental conditions [58]. The potential production mode
was carried out in the study because jujube in the agro-ecological zone does not usually suffer from
water stress through adequate irrigation. Data collected in the two jujube orchards at the Tarim
University Experiment Station were employed to calibrate WOFOST input parameters. The calibrated
parameters were from five sources: Measured value, estimated value, calibrated value based on
measured data, WOFOST default value, fine-tuning values around the default data. For a potential
production calibration, length of the growth period and phenology were first executed, then light
interception and potential biomass production, and finally assimilate distribution between crop organs.
The values and details of the calibrated WOFOST model parameters for jujube growth simulation can
be found in a previous study [59]. In response to the underestimation of high-yield areas, the fraction
of above-ground dry matter to storage at DVS = 1.45 was increased to 0.9 (development stages, DVS).

2.2.2. Study Data

The observed data in this study mainly consisted of three parts, including field experiments, yield
data of 181 independent orchards, and initial total crop dry weight (TDWI) and LAI data for 55 sample
spots, see Table 1. In particular, the life span of leaves growing at 35 ◦C (SPAN) values for different
subplots in the field experimental area were observed with a range of 41 to 62 days and an average
of 53 days. It is very difficult to explain and verify the SPAN distribution at the regional scale [60].
Referring to the experience of existing research [9], the average SPAN of the field experiments was
used to verify the simulated average SPAN of different orchards. Hundred eighty-one pieces of yield
data were manually measured after harvesting in early November. Each orchard sample took up
from 45 to 210 pixels in a Landsat 8 satellite image, with an average of 104. The 55 sample plots with
different ages and planting densities were selected and monitored during the main growth season.
LAI was monitored four times during the main growth season, which was employed to establish and
validate the LAI inversion model based on remote sensing. In order to coincide with the time frequency
of the Landsat satellite, LAI was measured on the same day when the satellite covered study area,
using a fruit tree canopy analyzer (TOP-1300, Zhejiang Top Cloud-Agri Technology Co., Ltd., Zhejiang,
China) during four major developmental stages, including emergence, flowering, white maturity,
and red maturity. The TOP1300 uses the principle that canopy porosity is related to the canopy
structure. It is based on Beer’s law that light is weakened through the medium, and the theoretical
semi-empirical formula is used to calculate the canopy structure parameters by porosity. It consists of
a small fisheye camera, a measuring rod, and a microcomputer. The fisheye camera can penetrate the
different horizontal and vertical heights of the canopy and quickly perform a layered measurement of
the vertical distribution of the leaf area. It was corrected by manual measurement before measurement.
Each sample plot consisted of four relatively homogeneous subplots (30 m × 30 m). Average LAI
values from the four subplots were calculated to represent the unique LAI value in each sample plot.
The value of TDWI was measured when the fifth leaf on the bud was unfolded, which was employed
to evaluate the optimization performance of SUBPLEX algorithm. The definition and calculation of
TDWI refer to previous research [59].

The WOFOST model was driven by meteorological data. The prepared meteorological data for the
WOFOST model included irradiation, minimum temperature, maximum temperature, early morning
vapor pressure, mean wind speed, and precipitation. Based on the theoretical basis of the WOFOST
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model, the rate and stage of crop development are calculated by the average daily temperature [61].
Figure 2 contains daily average temperature, total radiation, and precipitation data for 2017 in our
study. The average temperature data show that there were normal temperature conditions in 2017, with
small fluctuations. The average radiation in the study area was strong and showed large fluctuations.
The average daily temperature and total radiation during the main growing season of 2017 were 22.7 ◦C
and 19,683 KJ m−2 d−1, respectively, with a total rainfall of 79 mm.

Table 1. Observed field data.

Samples Sampled Date Max Min Average STDEV.P

Yields of 181 samples 1–15 November 10.75 4.79 7.74 2.43
TDWI of 55 samples 25 April to 5 May 24.06 5.69 13.45 7.53
LAI of 55 samples 9 June 0.78 0.27 0.46 0.12

27 July 2.51 1.03 1.76 0.37
12 August 2.43 0.89 1.70 0.40
28 August 2.35 0.81 1.62 0.41

Yield: t ha−1, TDWI: Total crop dry weight (kg ha−1), LAI: Leaf area index (m2 m−2).
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The four pieces of Landsat 8 satellite data with a spatial resolution of 30 m during the 2017
main growth season, including emergence, fruit filling, and maturity periods were acquired from the
United States Geological Survey (USGS). The dates of the available remote sensing images are 9 June,
27 July, 12 August, and 28 August, respectively. Band 4 (red, 0.630–0.680 µm) and 5 (near-infrared,
0.845–0.885 µm) from the Operational Land Imager (OLI) were used in this study for vegetation
index extraction and establishing LAI regression model. The geometric and atmospheric corrections
were carried out for four available Landsat 8 data by reference to the Albers conical equal-area map
projection using 50 field-measured ground control points and the fast line-of-sight atmospheric analysis
of spectral hypercubes (FLAASH) model, respectively. Their parameter settings refer to an existing
study [62].

2.3. Remotely Sensed LAI

Since the spectral information of the crop was strongly influenced by the soil background,
a soil-adjusted vegetation index (SAVI) may be a suitable choice to establish a statistical relationship
during this period before the soil was covered by vegetation [63]. Referring to the research method of
Huang et al. [9], the LAI inversion models at four different developmental stages were established
separately. Furthermore, the accuracy of the LAI statistical regression model based on remotely sensed
NDVI and SAVI was compared to determine a suitable index. Thirty-seven of the 55 samples were
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used to calibrate the LAI model and the remaining 18 samples were employed to validate the model.
SAVI [63] and NDVI [64], can be calculated by using Equations (1) and (2), respectively:

SAVI =
ρnir − ρred

ρnir + ρred + L
× (1 + L) L = 0.5 (1)

NDVI =
ρnir − ρred

ρnir + ρred
(2)

2.4. Assimilation Strategy

2.4.1. Selection of Reinitialized Parameters for WOFOST

In the WOFOST model, TDWI is equal to the dry weight sum of roots, stems, and leaves and
when the crop is germinated. TDWI strongly influences the initial growth rate of the LAI and biomass,
and expresses significant uncertainty in regional applications of the WOFOST model [9]. A slightly
higher TDWI value will distribute more dry matter to the leaves to produce a larger LAI, which, in turn,
increases photosynthesis and yield. SPAN parameter determines the rate and timing of leaf senescence,
which is also affected by nutrients, pests, and diseases in practice, but WOFOST does not consider
these aspects of crop growth [48]. SPAN mainly affects the downward trend of LAI in the later growing
season, thereby affecting the final yield. Both two parameters can change the trajectory of the LAI
during the main growth season and the maximum LAI achieved by the WOFOST model.

Previous studies have indicated that TDWI and SPAN parameters show significant uncertainty
in regional applications of crop models. After optimizing these two parameters by the assimilation
method, the prediction accuracy of crop yield was significantly improved [9,60]. In particular, TDWI
of perennial jujube trees was strongly influenced by tree age and planting density, showing uncertainty
in the same area [59]. The trends in the impact of TDWI and SPAN on the jujube LAI produced by the
WOFOST model were shown in Figure 3a,b. The initial growth rate and maximum leaf area index
increased with the increase of TDWI, but the growth rate was gradually decreasing. SPAN determined
the rate at which green leaves will turn brown, and therefore, affected leaf senescence rate and effective
green leaf index in the late growing season [60]. In addition, SPAN explained to some extent the effects
of nutritional stress, insect and disease factors on crop growth and yield [9]. Thus, TDWI and SPAN
input parameters were selected and recalibrated by assimilating remotely sensed LAI. The simulated
jujube yield was affected by the TDWI–SPAN joint distributions (Figure 4).
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2.4.2. Assimilation Methods

The key innovation of this research was using the SUBPLEX method [56] to achieve the assimilation
of the remotely sensed LAI into the WOFOST model. The objective function calculator ran the WOFOST
model with the given set of input parameters, collected the simulation results, and computed the
differences with the observations. Different objective functions can be selected. In this study,
the objective function f (x) for SUBPLEX was constructed as the root of the mean squared error (RMSE),
see Equation (3). Relative tolerance for convergence (ε) determines the threshold at which the objective
function converges. In theory, a smaller ε value will result in better assimilation accuracy. However,
lower tolerance value will require more function evaluations. In this research, based on LAIs of 55
field measurements, the minimum objective function of LAIs for the four periods ranged from 0.01 to
0.27, with an average of 0.1. The test results also showed that when the ε value was reduced from
0.05 to 0.01, the coefficient of determination and accuracy of the yield prediction were only slightly
improved, so in order to keep the calculation efficiency, the ε value was set to 0.05. When f (x) was less
than ε (0.05), the assimilation process was ended.

f (x) =

√√
1
n

n∑
i = 1

(xs,i − xo,i)
2 (3)

where xs,i and xo,i represent the simulated and observed LAI values of the ith sample. n is the number
of observation spots.

The key to implementing the SUBPLEX method is to set the stepsizes and subspaces, and then use
a simplex searching algorithm NMS to search each subspace to perform an inner minimization. The
stepsizes, stores in the vector step, determine both the scale and orientation of the initial simplex used
in the inner minimizations. For the first cycle, step is equal to the initial step. Then, step is rescaled
according to how much progress was made during the previous cycle. The rescaled step is shown in
Equation (4):

step =

 min(max
(
‖∆x‖1/

(
‖step‖1, ω

)
, 1/ω

)
·step if nsubs > 1

ϕ·step if nsubs = 1
(4)

where ∆x represents the difference of observed and simulated LAI after successive iterations. nsubs
represents the number of subspaces. When there is only one subspace, the factor ϕ that represents
the simplex reduction coefficient is used to reduce the size of the simplex for the same step amount.
If the ϕ value is reduced, the subspace search becomes more accurate. ω represents the step reduction



Remote Sens. 2019, 11, 1945 8 of 20

coefficient, which is employed to control the degree to which step can be modified. A smaller ω value
can usually converge quickly to a local minimum. Conversely, a larger ω value will reduce the rate of
convergence, but a more comprehensive search can be achieved to obtain a smaller objective function
value. Next, the ith component of step was reset by Equation (5):

stepi =

{
sign(∆xi)·

∣∣∣−stepi

∣∣∣ if ∆xi , 0
−stepi if ∆xi = 0

(5)

To set subspaces, the relationship between nsubs and the subspace dimensions nsi was shown in
Equation (6):

nsubs∑
i = 1

nsi = n (6)

And nsmin ≤ nsi ≤ nsmax, for i = 1, . . . , nsubs. nsmin and nsmax represent the minimum and
maximum subspace dimensions, respectively.

And 1 ≤ nsmin ≤ nsmax ≤ n and nsmindn/nsmaxe ≤ n.
The first step in determining the subspaces was to sort the components of the vector of progress

by decreasing magnitude. The vector of progress was denoted by Equation (7):

∆x = (∆x1, . . . , ∆xn)
T (7)

Next, sorting ∆x, saw Equation (8):

∆̃x =
(
∆xp1, . . . , ∆xpn

)T
(8)

where
∣∣∣∆xpi

∣∣∣ ≥ ∣∣∣∆xpi+1
∣∣∣.

Specifically, the first subspace dimension ns1 was defined by Equation (9):

ns1 =


‖(∆xp1,...,∆xpk)

T
‖1

k −
‖(∆xp1,...,∆xpn)

T
‖1

n−k if k < n
‖(∆xp1,...,∆xpn)

T
‖1

n−k if k = n
(9)

where nsmin ≤ k ≤ nsmax and nsmin
⌈
(n− k)/nsmax

⌉
≤ n− k.

The first constraint forced ns1 to be in the proper range, and the second constraint guarantees that
the remaining (n− ns1) vector can be partitioned. The process was repeated to determine ns2, ns3, etc.

After the stepsizes and subspaces are set, the NSM algorithm is used to search each subspace
to minimize the cost function. The setting and selecting parameters for data assimilation are shown
in Table 2. TDWI_range and SPAN_range were set based on the range of TDWI and SPAN for field
measurements. The ε value was set with reference to the minimum value that the objective function
f (x) of all observation spots can reach. The initial step was set to the expected value of an artificial
setting according to the actual meaning of the parameter to be optimized, which can be further
optimized by using the SUBPLEX algorithm at the iteration process. In theory, smaller ϕ and larger ω
values can produce smaller objective function values, but the computational efficiency will decrease
accordingly. The actual test also showed that when ϕ was less than a usual value of 0.25 [56] and ω
was greater than a usual value of 0.1 [56], the minimized objective function value was not significantly
improved, so ϕ and ω were set to 0.25 and 0.1, respectively.

Figure 5 shows the assimilation flowchart for the SUBPLEX and EnKF methods. For open-loop
simulation, orchards of the same age are set to the same TDWI values based on measurements from
different orchards. The TDWI values of jujube trees aged 4 to 10 are equal to 6.27, 9.25, 13.25, 14.28,
16.29, 19.77, and 21.62 kg ha−1, respectively. SPAN is equal to 50, which is the average of calibrated
SPAN based on the SUBPLEX method. The assimilation details of the EnKF method can be found in an
existing study [47]. The ensemble size was set to 50 because the previous research showed that this
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scale can achieve good assimilation performance [47]. EnKF updated a new set of TDWI and SPAN
values when acquiring a new remote sensing observation spot to implement segmentation simulation.
In this study, there were four remotely sensed LAIs, so TDWI and SPAN were updated four times by
EnKF. SUBPLEX only obtained an optimal set of TDWI and SPAN values by iteratively calculating the
minimum objective function values of the four remotely sensed and the simulated LAIs during the
main growth stages, thereby achieving yield prediction based on the SUBPLEX assimilation method.

Table 2. SUBPLEX assimilation settings.

Name Description Set Value in This Study

n the number of assimilated LAI 4
f function to be minimized Equation (3)

m the number of optimized
parameters for WOFOST 2 (TDWI and SPAN)

ϕ
simplex reduction coefficient

(0 < ϕ < 1) 0.25

ω
step reduction coefficient

(0 < ω < 1) 0.1

ε relative tolerance for convergence 0.05
TDWI_range the range of TDWI 5–30
SPAN_range the range of SPAN 40–60

max-evaluation maximum number of evaluations
allowed 200

Initial step the initial step size to compute
numerical gradients

0.5 for TDWI
1 for SPAN
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3. Results

3.1. Remotely Sensed LAI

The statistical regression models between vegetation index (NDVI or SAVI) and LAI for the four
jujube key growth periods are shown in Equations (10)–(13), respectively, which were obtained from
regressions of 37 field-measured LAI and SAVI or NDVI (Figure 6). The difference between the 37
samples for each period was extremely significant (p < 0.001). On 9 June between emergence and
flowering, SAVI was used to establish the LAI linear regression model, while in other development
stages NDVI was employed to invert LAI (exponential model) for obtaining a more accurate model.
Previous studies also showed that SAVI exhibited better LAI statistical regression performance before
the soil was covered by vegetation. NDVI performed better when vegetation coverage was higher [9].

9 June 2017 : LAI = 2.08112× SAVI− 0.2889 p < 0.001 (10)

27 July 2017 : LAI = 0.11071× e4.01646×NDVI p < 0.001 (11)

12 August 2017 : LAI = 0.18101× e3.48957×NDVI p < 0.001 (12)

28 August 2017 : LAI = 0.16731× e3.69701×NDVI p < 0.001 (13)
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Table 3 shows the detailed results of calibration and validation LAI inversion models at four
growth periods. The average R2 for calibration and validation was 0.822 and 0.801, respectively,
with a range from 0.710 to 0.918. The calibrated and validated average % error was 9.9% and 10.4%,
respectively. Except for 12 August 2017, the consistency and accuracy of correction sets at other days
were slightly higher than the validation sets. The verification results show that the established model
accurately expressed the LAI values of different phenological development stages.
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Table 3. The comparison of LAI inversion models for four key periods.

Date Calibrated R2 Calibrated RMSE
(%) m2 m−2 Validated R2 Validated RMSE

(%) m2 m−2

09 June 2017 0.774 0.058 (12.7) 0.770 0.061 (12.5)
27 July 2017 0.918 0.108 (6.2) 0.841 0.144 (8.1)

12 August 2017 0.710 0.229 (13.6) 0.779 0.180 (10.5)
28 August 2017 0.884 0.115 (7.1) 0.812 0.170 (10.4)

3.2. Assimilation Process

Taking a sample as an example, the LAI observed in the four key growth stages was 0.64, 1.97, 2.18,
1.87 m2 m−2, respectively. For EnKF assimilation, the blue line represents the simulated state variable
(Figure 7), here LAI, which was brought forward in time until an observation was available (red dot).
At this point, an analysis step was performed to adjust the state of the model based on the observed
LAIs, which resulted in a “jump” in the simulated state. The model was then advanced in time until
the next observation was reached, and the process was repeated. The green line demonstrates the
principle of a variational method of SUBPLEX. The model was first run without data assimilation (first
guess). Next, all observations with an assimilation window were collected to adjust the model until it
better matched the observations (analysis). In this process, model parameters or other properties were
adjusted to minimize the cost function. After 47 iterations, a combination of TDWI and SPAN was
screened (TDWI = 17, SPAN = 57), with a small difference against measured values (TDWI = 15.98,
SPAN = 55). It is noted that Figure 7 only shows a sample to illustrate the difference in the assimilation
process of the two methods for all 181 samples of which in 100 samples, the yield prediction accuracy
of the SUBPLEX method was superior to the EnKF method.
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3.3. SUBPLEX Assimilation Evaluation Based on the Field-Measured LAI

The 55 field-measured LAIs were assimilated into the WOFOST model to verify the performance
of the reinitialized input parameters. For TDWI parameter, when the remotely sensed LAI was not
assimilated, the average TDWI value of the same aged orchards was input to the WOFOST model.
Scatter plots for re-calibrated TDWIs based on SUBPLEX assimilation versus measured 55 TDWIs are
shown in Figure 8a, with an R2 of 0.86. After SUBPLEX assimilation, the accuracy of the corrected
TDWI with an RMSE of 1.88 kg ha−1 was significantly higher than that of the unassimilated LAI
(RMSE = 5.09 kg ha−1), and the calibrated average TDWI value of 13.91 kg ha−1 showed an error of
3.3% compared with field-measured average value of 13.46 kg ha−1. The samples with a prediction error
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between −10% and 10%, −20% and 20% accounted for 41.6% and 83.6%, respectively (Figure 8b). These
values showed better performance for TDWI calibration than open-loop simulation with 21.8%, 36.4%,
and 49% of −10–10%, −20–20% and −40–40%, respectively. RBE values after SUBPLEX assimilation
were distributed more centrally around zero compared with the values with open-loop simulation.
For SPAN parameter, validating its spatial distribution was difficult due to a lack of corresponding
measured data for 55 samples. However, the average value after assimiltion with 49.95 days showed
an error of 5.8% compared with the field experimental mean value of 53 days. The results also
suggested that SUBPLEX assimilation reduced the uncertainty of TDWI and SPAN input parameters
to some extent.
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Based on field-measured LAI, the yield prediction performance of two assimilation methods
is presented in Table 4. Both SUBPLEX and EnKF significantly improved yield prediction accuracy
compared with the unassimilated results, with higher R2 and lower RMSE values. The results also
show that the SUBPLEX assimilation accuracy (R2 = 0.86, RMSE = 0.55 (7%) t ha−1) was slightly higher
than EnKF (R2 = 0.81, RMSE = 0.65 (8.2%) t ha−1), significantly higher than open-loop simulation.
The WOFOST-simulated yields with open-loop simulation overestimated the actual average yield,
with an error of 4.3%. SUBPLEX and ENKF assimilations produced only 2.7% and 2.8% prediction
errors for average yield, respectively, indicating better performance. For maximum yield forecast,
EnKF was slightly more accurate, while for minimum production forecast, SUBPLEX was slightly
better. However, both methods showed slightly higher errors in the maximum yield prediction with a
value of about 7.6%. The jujube yield prediction using the field-measured LAI assimilation into the
WOFSOT model indicated that SUBPLEX had the potential to be an effective assimilation method and
demonstrated better accuracy than the EnKF method.

Table 4. Comparison of the estimated yield at the field scale based on field-measured LAI.

Mean t ha−1 Maxmium t ha−1 Minmium t ha−1 R2 RMSE (%) t ha−1

Field-measured yield at
the 55 samples 7.931 10.71 4.848 – –

Open-loop simulation 8.271 8.89 5.946 0.58 0.95 (12.1)
EnKF assimilaiton 7.717 9.887 5.303 0.81 0.65 (8.2)

SUBPLEX assimulaiton 7.707 9.713 4.791 0.86 0.55 (7.0)

3.4. Evaluation of Model Performance Based on Remotely Sensed LAI

After carrying out SUBPLEX assimilation, the joint distribution of TDWI and SPAN was generated
for 181 samples to provide variability in parameter distribution between different samples (Figure 9a).
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Explaining the shape of the distribution was difficult because they were the result of many interaction
factors [60], such as meteorological conditions, pests and diseases, and nutritional stress. However,
TDWI values recalibrated by SUBPLEX assimilation ranged from 5.84 to 22.75 kg ha−1, showing high
variability between orchards. Assimilating remotely sensed LAI achieved good TDWI correction for
181 samples, with an average value of 13.46 kg ha−1 compared with the field-measured mean value of
13.45 kg ha−1 (55 samples). SPAN values ranged from 40 to 60 days with an average of 49.73 days,
which showed an error of 6.2% versus the measured mean value at the field experiments with 53
days. Figure 9b shows that the SUBPLEX algorithm used fewer function calls (iteration times) to
complete data assimilation, ranging from 9 to 77 with an average of 40, at relative tolerance ε = 0.05.
The low number of iterations also indicates that the SUBPLEX algorithm showed a relatively high
computational efficiency to some extent.
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The scatter plots of the simulated yields achieved from the unassimilated, EnKF, and SUBPLEX
assimilations versus actual yields are shown in Figure 10a. The WOFOST-estimated yield with open-loop
simulation exhibited a poor spatial distribution and prediction performance, clearly deviating from
the line y = x and 71.8% of the samples were severely overestimated. Both EnKF and SUBPLEX
assimilations significantly improved yield simulation performance with a scatter distribution closer to
the line y = x. Although the dispersion of yield forecasts achieved by the SUBPLEX method was higher
than that of ENKF, SUBPLEX showed better performance in high-yield and low-yield areas. Compared
with the simulation without the assimilation and EnKF method, the SUBPLEX assimilation produced a
relative bias error (RBE, %) that was more concentrated near zero (Figure 10b). The absolute RBE for
yield simulation was lower than 10% in 80.1% and lower than 20% in 96.1% for SUBPLEX, 72.4% and
96.7% for EnKF.

The positive results achieved by SUBPLEX or EnKF assimilations were also confirmed by the
indices of agreement and detailed prediction error (Table 5). The WOFOST simulation with open-loop
simulation showed lower yield prediction accuracy, being an R2 of 0.39, RMSE of 1.06 (13.8%) t ha−1,
MAE (mean absolute error, %) value of 12.5% and average RBE of 8.65%, respectively. Both SUBPLEX
and EnKF methods improved the simulated accuracy, with a much higher coefficient of determination
(R2
≥ 0.73) and lower error (RMSE ≤ 9.2 t ha−1). In addition, average RBE value from two assimilation

methods agreed with the results shown in Figure 10 with a lower value, which shows that the error
distributions were uniform to some extent. Furthermore, the SUBPLEX also indicated slightly better
assimilation performance with an improvement of R2 (increased by 6.9%), RMSE (increased by 9.9%),
and MAE (increased by 11.4%) than EnKF, respectively.



Remote Sens. 2019, 11, 1945 14 of 20

Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 19 

 

value at the field experiments with 53 days. Figure 9b shows that the SUBPLEX algorithm used 
fewer function calls (iteration times) to complete data assimilation, ranging from 9 to 77 with an 
average of 40, at relative tolerance ε = 0.05. The low number of iterations also indicates that the 
SUBPLEX algorithm showed a relatively high computational efficiency to some extent. 

 
Figure 9. (a) TDWI-SPAN distribution for 181 samples. (b) Number of iterations for each sample. 

The scatter plots of the simulated yields achieved from the unassimilated, EnKF, and 
SUBPLEX assimilations versus actual yields are shown in Figure 10a. The WOFOST-estimated yield 
with open-loop simulation exhibited a poor spatial distribution and prediction performance, clearly 
deviating from the line y = x and 71.8% of the samples were severely overestimated. Both EnKF and 
SUBPLEX assimilations significantly improved yield simulation performance with a scatter 
distribution closer to the line y = x. Although the dispersion of yield forecasts achieved by the 
SUBPLEX method was higher than that of ENKF, SUBPLEX showed better performance in 
high-yield and low-yield areas. Compared with the simulation without the assimilation and EnKF 
method, the SUBPLEX assimilation produced a relative bias error (RBE, %) that was more 
concentrated near zero (Figure 10b). The absolute RBE for yield simulation was lower than 10% in 
80.1% and lower than 20% in 96.1% for SUBPLEX, 72.4% and 96.7% for EnKF. 

  
Figure 10. (a) Yield prediction scatter plots for EnKF, SBUPLEX, and open-loop simulation. (b) 
Frequency distribution for RBE achieved from the contrast between simulated and observed yields. 
Bin size = 5. 

The positive results achieved by SUBPLEX or EnKF assimilations were also confirmed by the 
indices of agreement and detailed prediction error (Table 5). The WOFOST simulation with 
open-loop simulation showed lower yield prediction accuracy, being an R2 of 0.39, RMSE of 1.06 
(13.8%) t ha−1, MAE (mean absolute error, %) value of 12.5% and average RBE of 8.65%, respectively. 

Figure 10. (a) Yield prediction scatter plots for EnKF, SBUPLEX, and open-loop simulation.
(b) Frequency distribution for RBE achieved from the contrast between simulated and observed
yields. Bin size = 5.

Table 5. Validation results of the estimated yield at the field scale using remotely sensing LAI.

R2 RMSE (%) ha−1 MAE, % Average RBE, %

Open-loop simulation 0.39 1.06 (13.8) 12.5 8.65
EnKF with remotely sensed LAI 0.73 0.71 (9.2) 7.73 0.77
SUBPLEX with remotely sensed

LAI 0.78 0.64 (8.3) 6.85 −0.39

4. Discussion

In this study, SUBPLEX demonstrates slightly better global yield prediction performance than
EnKF. The detailed results also indicate the accuracy of ENKF in 100 of the 181 samples is lower than
that of SUBPLEX. The reason may be that the tree age and physiological genetic factors may affect the
actual emergence date and phenology time of jujube trees. The premise of ensuring the accuracy of
the EnKF method is that the growth cycle between the model and the satellite observations (planting
date plus phenology) is correct. If the phenological development time has a big error, the sequential
approach of EnKF is also equivalent to forcing the LAI into a crop model that may belong to different
growth stages, and there is essentially a time shift between the reality and the model, which may
result in worse simulated accuracy [47]. The SUBPLEX as a kind of variational method may reduce
the accumulation and diffusion of remote sensing data errors in the assimilation process, as well
as the impact of the phenological time shift on assimilation results to some extent [3]. SUBPLEX’s
process is to optimize TDWI and SPAN parameters in the WOFOST model in order to ensure that the
remotely-sensed LAI and the simulated WOFOST LAI match as well as possible. Then, the corrected
TDWI and SPAN parameters will be used to re-drive the WOFOST model. If the WOFOST model
is run from a shifted phenology time, the emergence, flowering, and maturity dates will be offset.
However, the entire simulation curve is shifted overall, so it has little effect on the final predicted yield.
For example, when TDWI and SPAN are set to a fixed value (TDWI = 21.6, SPAN = 53), the corrected
WOFOST model is attempted to run from 115 days, 118 days, and 121 days, respectively, and the
predicted yields are 9.039, 9.203, and 9.271. Obviously, when the phenological time deviation is six days,
there is only a relatively small 2.5% yield prediction error. It is speculated that when the phenological
development time is uncertain, the use of SUBPLEX usually results in better assimilation accuracy for
yield prediction than using the EnKF method.

In theory, more state variables of remote sensing observations can produce better assimilation
accuracy. In practice, satellite data for key crop growth seasons may not be available due to revisit cycles
and cloud coverage limitations. Loss of remote sensing observations at critical developmental stages
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may have a key impact on model performance. To further discuss the sensitivity of LAI during different
phenological stages and two assimilation methods to yield prediction, only three field-measured
LAIs from 55 observations were employed to establish assimilation strategies to compare the yield
prediction performance of the EnKF and SUBPLEX methods (Table 6). The results show that when
the observation data on 9 June, 27 July or 12 August are missing, respectively, the performance of
SUBPLEX assimilation is still higher than that of the EnKF method. When the observation data of
28 August is missing, the performance of the SUBPLEX method drops sharply, and its accuracy is
also significantly lower than that of the EnKF method. The main reason should be that the SPAN
parameter mainly affects the LAI change in the late growing season, while the lack of LAI (28 August)
in the red maturity period leads to a larger error in the corrected SPAN parameters, with a mean
deviation of 2.7 days compared to the use of four LAIs. Further tests showed that when the SPAN
parameter was set to a fixed value (average of field measurements, 53), the R2 and RMSE of the yield
prediction were improved to 0.73 and 0.77 t ha−1, respectively, which was also slightly higher than the
EnKF assimilation accuracy under the same conditions. The finding also indicates that when using
the SUBPLEX method to optimize SPAN parameters, the assimilated LAI shall include at least one
observation spot in the middle and late stages of maturity. If this observation spot is missing, it is
recommended to design an average SPAN for SUBPLEX assimilation. In addition, the combination of
high or medium spatial resolution remote sensing satellite data, such as Landsat and Sentinel satellites,
can be recommended to resolve the problem of remotely sensed state variables missing.

Table 6. Model performance of SUBPLEX versus EnKF when missing an observation.

Available Observations R2 RMSE (%) t ha−1 MAE, % Average RBE, %

SUBPLEX

Four observations 0.86 0.55 5.77 −2.3
Without 9 June 0.84 0.59 6.04 −1.75
Without 27 July 0.85 0.58 6.01 −1.48

Without 12 August 0.81 0.65 6.35 −3.31
Without 28 August (a) 0.36 1.18 12.3 0.23
Without 28 August (b) 0.73 0.77 9.02 4.49

EnKF

Four observations 0.81 0.65 6.78 −1.42
Without 9 June 0.65 0.88 8.78 −7.69
Without 27 July 0.75 0.75 7.93 −1.87

Without 12 August 0.74 0.76 7.98 −1.59
Without 28 August 0.71 0.81 8.73 −1.02

(a) represents that TDWI and SPAN parameters are optimized. (b) represents that only TDWI is optimized, SPAN is
equal to a fixed value that is the average of the field measurements.

The present research also compares the computational efficiency of SUBPLEX and the brute force
optimization method, with higher computational efficiency. Still taking the sample of Section 3.2 as
an example, the function calls of the forced method take 1000 times, while the function calls of the
SUBPLEX method are only 25. The SUBPLEX algorithm can find a solution with a similar accuracy
with much fewer function calls. Of course, the computation time is closely related to the initial steps of
TDWI and SPAN. When the initial step size of TDWI and SPAN is adjusted to 0.1 and 0.5, respectively,
the iteration number of the cost function is increased to 43, and when they are adjusted to 0.05 and
0.1, the number of iterations is increased to 76. The running time test also shows that the SUBPLEX
method runs slightly longer than the EnKF method. However, the time difference is usually less than
ten seconds for different samples, which is a speed that can be fully accepted. However, the yield
prediction accuracy of SUBPLEX assimilation is higher than EnKF.

The setting of key parameters of SUBPLEX will directly affect the minimization of the objective
function of remote sensing inversion and model simulation, which will affect the optimization accuracy
of the parameters and the final simulation yield, such as relative tolerance for convergence ε, simplex
reduction coefficient ϕ, and step reduction coefficient ω. Smaller ε, ϕ, and larger ω values usually
result in a minimized objective function, and of course, the computation time increases. In our study,
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the minimization of the objective function of all samples ranges from 0.001 to 0.26, with most samples
between 0.05 and 0.1. Furthermore, when trying to decrease ε from 0.05 to 0.01, the R2 value only
increases by 0.0015, and the RMSE decreases by 0.003 t ha−1. Similarly, when ϕ decreases from 0.25
and ω increases from 0.1, the final yield assimilation accuracy is not significantly improved. Therefore,
ε = 0.05, ϕ = 0.25, and ω = 0.1 are set in the study. It is recommended that when the SUBPLEX
algorithm is carried out for remote sensing assimilation, the parameter setting can refer to the range of
the minimum value of the objective function. When the parameter adjustment cannot significantly
improve the objective function value, the parameter value at this time can be used as a suitable choice.
In the future, further research on parameter optimization settings and automatic search methods
has significant exploring significance for SUBPLEX assimilation. In addition, the comparison of the
accuracy and computational efficiency of the SUBPLEX and the 4DVAR variational algorithm is also
worth exploring.

5. Conclusions

In this study, the SUBPLEX algorithm was tested to assimilate remotely-sensed data into the
WOFOST model to improve the modeling accuracy for jujube yield at the field scale. The state variables,
here LAIs, from the four key development stages, were assimilated into a validated WOFOST model
to optimize the initial input parameters, TDWI and SPAN, thereby improving yield estimation for
jujube fruit trees. The results indicate that the assimilation method has the potential to enhance
the yield estimation accuracy compared with unassimilated simulation, and the SUBPLEX method
showed slightly better yield prediction performance versus EnKF assimilation. EnKF assimilation
overestimated the actual yields in high-yield orchards and underestimated yields in low-yield orchards.
The SUBPLEX method can reduce the shift error of phenological development time to some extent,
thereby carrying out a more accurate yield simulation. The results indicate that the SUBPLEX algorithm
can be considered as a promising assimilation method of remotely-sensed information and crop growth
models. In the future, the assimilation performance of the SUBPLEX method applied to other crops at
the field and regional scales needs to be further tested and compared. In addition, the determination
and automatic optimization of the initial input parameters of SUBPLEX assimilation, such as initial step
size, relative tolerance and initial values of the parameters to be re-calibrated, are worthy of further
research and exploration to enhance its computational efficiency and assimilation accuracy.
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