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Abstract: To facilitate the advances in Sentinel-2A products for land cover from Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat imagery, Sentinel-2A MultiSpectral Instrument
Level-1C (MSIL1C) images are investigated for large-scale vegetation mapping in an arid land
environment that is located in the Ili River delta, Kazakhstan. For accurate classification purposes,
multi-resolution segmentation (MRS) based extended object-guided morphological profiles (EOMPs)
are proposed and then compared with conventional morphological profiles (MPs), MPs with
partial reconstruction (MPPR), object-guided MPs (OMPs), OMPs with mean values (OMPsM),
and object-oriented (OO)-based image classification techniques. Popular classifiers, such as C4.5,
an extremely randomized decision tree (ERDT), random forest (RaF), rotation forest (RoF), classification
via random forest regression (CVRFR), ExtraTrees, and radial basis function (RBF) kernel-based
support vector machines (SVMs) are adopted to answer the question of whether nested dichotomies
(ND) and ensembles of ND (END) are truly superior to direct and error-correcting output code (ECOC)
multiclass classification frameworks. Finally, based on the results, the following conclusions are
drawn: 1) the superior performance of OO-based techniques over MPs, MPPR, OMPs, and OMPsM
is clear for Sentinel-2A MSIL1C image classification, while the best results are achieved by the
proposed EOMPs; 2) the superior performance of ND, ND with class balancing (NDCB), ND with data
balancing (NDDB), ND with random-pair selection (NDRPS), and ND with further centroid (NDFC)
over direct and ECOC frameworks is not confirmed, especially in the cases of using weak classifiers
for low-dimensional datasets; 3) from computationally efficient, high accuracy, redundant to data
dimensionality and easy of implementations points of view, END, ENDCB, ENDDB, and ENDRPS
are alternative choices to direct and ECOC frameworks; 4) surprisingly, because in the ensemble
learning (EL) theorem, “weaker” classifiers (ERDT here) always have a better chance of reaching the
trade-off between diversity and accuracy than “stronger” classifies (RaF, ExtraTrees, and SVM here),
END with ERDT (END-ERDT) achieves the best performance with less than a 0.5% difference in the
overall accuracy (OA) values, but is 100 to 10000 times faster than END with RaF and ExtraTrees,
and ECOC with SVM while using different datasets with various dimensions; and, 5) Sentinel-2A
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MSIL1C is better choice than the land cover products from MODIS and Landsat imagery for vegetation
species mapping in an arid land environment, where the vegetation species are critically important,
but sparsely distributed.

Keywords: ND; END; ECOC; MRS; Extended object-guided morphological profiles; Multiclass
classification; Arid-land vegetation mapping; Sentinel-2A MSIL1C; Central Asia

1. Introduction

Arid and semiarid lands encompass approximately 30–40% of the Earth’s surface, and Central
Asia contains one of the world’s largest arid and semiarid areas. These areas have harsh climatic
conditions and they are under high pressure to produce food and fibers for their rapidly increasing
populations, which include a wide range of land utilization and management regimes, which results in
a reduction in arid ecosystem quality. Understanding the effects and responses between landscapes
and regional environments is fundamental to maintain their ecological and productive value in such
circumstances. Hence, the effects and responses of landscape heterogeneity on the local and regional
atmosphere, the surface energy balance, the carbon exchange, and climate changes are major topics that
have attracted widespread interest [1–5]. Among these responses, the vegetation species, distribution,
diversity, and biomass in these lands typically undergo wide seasonal and international fluctuations,
which are largely regulated by water availability and impacted by both climatic shifts and human
activities [6–8]. Thus, monitoring the vegetation status of these lands is an essential part of identifying
problems, developing solutions, and assessing the effects of actions.

However, large-scale and long-term field sampling of vegetation information is challenging when
considering the sampling efforts and costs. Moreover, the samples are often very sparsely distributed,
and site revisits remain infrequent, while the success of any monitoring of vegetation dynamics depends
on the availability of up-to-date and spatially detailed species richness and distribution at a regional
scale [9–11]. Fortunately, satellite-based remote sensing (RS) data can address these challenges by
identifying and detailing the biophysical characteristics of vegetation species’ habitats, predicting the
distribution and spatial variability in the richness, and detecting natural and human-caused changes at
scales that range from individual landscapes to the whole world [1,9,12–18]. Therefore, an increasing
number of geologists, ecologists, and biologists are turning to rapidly develop RS data sources for
vegetation-based ecological and environmental research at local, regional, and global scales [19–24].

Regarding applications of RS data in vegetation studies, high- and moderate-resolution optical
RS sensors, including IKONOS, Satellite for Observation of Earth (SPOT), Thematic Mapper ™,
Enhanced Thematic Mapper (ETM), ETM+, Operational Land Imager (OLI), Sentinel-2, and Moderate
Resolution Imaging Spectroradiometer (MODIS), are widely accepted and are considered to be
adequate for vegetation species, diversity, distribution, and biophysical information extraction in
different settings [25–32]. Creating land cover maps that detail the biophysical cover of the Earth’s
surface is among the oldest and ongoing hot applications. Land cover maps have been continuously
suggested proven especially valuable for predicting the distribution of both individual plant species
and species assemblages across broad areas that could not otherwise be surveyed in more quantitative
ways with respect to vegetation index (VI)-based approaches [9,33–35]. In particular, after various land
cover products that are derived from RS data at the regional and global scales have been produced,
and they are freely available at spatial resolutions from 30 m to 1 km. Solid proofs can be found for
extensive applications of representative products, including the 1 km University of Maryland (UMD)
land cover layer [36], the Global Land Cover 2000 (GLC2000) products [37], the MODIS products [38],
the 500 m MODIS [39], the 300 m GlobCover [40], and the 30 m global land cover maps [41] for
vegetation studies at the regional and global scales [42–49]. However, most of the existing land cover
products are coarse, not only in the spatial resolution and land cover type details, but also in the
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update frequency. For example, the 30 m global land cover maps are only available for 2010, 2015,
and 2017 with a maximum of 10 land cover types (only eight types for our study area), while the
MODIS products are only available for 2000, 2005, 2010, and 2015 with a maximum 300 m resolution
(only 15 types for our study area). Furthermore, the differences between these products are very large,
as shown in Figures 1b and 1c.
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Figure 1. (a) Geographic location of the study area, (b) 2015 Moderate Resolution Imaging
Spectroradiometer land use and cover change (MODIS LUCC), (c) 2017 GLC30, (d) blue rectangle,
(e) blue rectangle, and (f) green rectangle. Sentinel-2 RGB image of the study area with in situ points
(red dots) and the corresponding land cover types.
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The Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed in the
same orbit with a five-day revisit time over land and coastal areas. Each satellite carries a MultiSpectral
Instrument (MSI) with 13 bands spanning from the visible and the near-infrared (VNIR) portion of
the electromagnetic spectrum to the short wave infrared (SWIR) portion of the spectrum and features
four bands at a 10 m spatial resolution, six bands at a 20 m spatial resolution, and three bands at
a 60 m spatial resolution with a 290 km field of view [50]. Since Sentinel-2A and Sentinel-2B were
successfully launched on June 23, 2015, and March 7, 2017, respectively, their products (Level-2A,
which covers the bottom-of-atmosphere reflectance in cartographic geometry; Level-1B, which covers
the top-of-atmosphere (TOA) radiance in sensor geometry; and, Level-1C, which covers the TOA
reflectance in fixed cartographic geometry) have been widely applied for monitoring land cover
changes, agricultural applications, monitoring vegetation and retrieving biophysical parameters,
observing coastal zones, monitoring inland water, monitoring glaciers and ice and mapping snow,
mapping floods, and management [51–56]. However, these products have not been used for detailed
vegetation mapping in arid land environments. Hence, the first objective of this paper is to investigate
the performance of the Sentinel-2 MSIL1C product for vegetation mapping in an arid land environment.

Producing any substantial land cover/use maps always requires a specific classification method
or ML algorithm. Although many methods and algorithms have been developed for satellite data
classification applications, the search for advanced classification methods or algorithms is still a hot
filed [57–60]. There are no supper classification methods or algorithms that could universally work at
high performance, due to facts that classification performance not only controlled by robustness of
adopted methods or algorithms, but also affected by discrimination and identification quality, size and
distribution quantity of provided data [61,62]. According to the literatures from RS data classification
community, the commonly used ML algorithms are artificial neural networks (ANNs) [63], support
vector machine (SVM) [64,65], extreme learning machine (ELM) [66], decision trees (DTs) [67], ensemble
methods, such as bagging, adaboost, and RaF [57,68,69], and deep neural networks (DNNs) [70,71].
In most scenarios, these algorithms involve a nominal class variable that has more than two values
problem, because the real-world land surface usually recorded by EO sensors with simultaneous
discrimination of numerous classes. In general, there are two approaches for addressing this type
of problem: 1) adapting the binary algorithm to its multiclass counterpart to deal with multiclass
problems directly (e.g., DTs, ANNs, ELMs, RaFs); and, 2) reduce the multiclass problem into several
binary subproblems first, then form a multiclass prediction based on the results from several binary
classifiers, such as AdaBoost, multiclass SVMs, and ND [72–74]. When compared with the direct
approaches, the latter approach is appealing, because it does not involve any changes to the underlying
binary algorithm [75]. In particular, a structural risk minimization (SRM) rule-based SVM can
successfully work with limited quantities and quality of training samples and it often achieves a higher
classification accuracy than linear discriminate analysis (LDA), DTs, ANNs, bagging, AdaBoost,
and RaFs [64–66,76–78].

Well-known examples of the second approach are ECOC and pairwise classification, which often
result in significant increases in the accuracy [72,75,79]. However, many studies have explicitly proven
that ECOC works better than pairwise classification mainly due to its more advanced decoding
strategies [80–82]. The ECOC framework consists of two steps: coding and decoding. Popular
coding strategies include one-versus-all, one-versus-one, random sparse, binary complete, ternary
complete, original and dense random coding, while the most frequently applied decoding designs are
Hamming decoding, inverse Hamming decoding, Euclidean decoding, attenuated Euclidean decoding,
loss-based decoding, probabilistic decoding, β-density-based distribution decoding, and loss-weighted
decoding [72,82]. While the one-versus-one and one-versus-all strategies have been widely adopted in
RS data classification, only a few works [83,84] have focused on applications of the ND and its ensemble
variants, which have been proven to outperform the direct multiclass, ECOC, and pairwise classification
methods while using C4.5 and logistic regression as the base learners [75,85,86]. Additionally, the most
recent and more advanced direct multiclass classification methods may also see improved accuracy
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by interacting with ND and END. Thus, the second objective of this paper is to investigate the
performance of the popular ND algorithms, including NDCB, NDDB, NDRPS, NDFC, and their
ensemble versions (i.e., ENDCB, ENDDB, ENDRPS, and ENDBC, respectively) by setting C4.5 and
bagging [87], AdaBoost [88], an RaF [89], a RoF [90], ExtraTrees [91], and an SVM [92] as the base learners.

The discrimination and identification quality of the provided data is another critical factor that
controls the classification performance of the adopted classifier. Over the years, many approaches have
been proposed to increase the discrimination and identification ability of the provided data. Among
these approaches, structural filtering, MPs, random fields, object-based image analysis (OBIA) and
geographic OBIA (GEOBIA), sparse representation (SR), and deep learning (DL)-based contextual
information extraction are the most undertaken families of methods [77,93–96]. In the last ten years,
mathematical morphology (MM)-based operators, such as MPs, EMPs, APs, and MPs with partial
reconstruction (MPPR), have been the most widely accepted approaches in the RS image classification
community, mainly due to their advanced and proven performances in contextual information
extraction from HR/VHR RS imagery [68,77,93,96,97].

However, the SE sequences or attribute filters (AFs) that are necessarily adopted in the above
operators always result in computationally inefficient and redundant high-dimensional features,
which may become prohibitively large data processing cases. Additionally, the sequences of SE and
AFs, with limited sizes and shapes, cannot match all of the sizes and shapes of the objects in an image;
specifically, a single SE is not suitable for an entire image in each operation case [97,98]. MSER-MPs,
SPMPs, and multi-resolution segmentation (MRS)-OMPs have been proposed for the spectral-spatial
classification of VHR multi/hyperspectral images with the ExtraTrees, ForestPA, and ensemble extremely
randomized decision trees (EERDTs) ensemble classifiers in our previous works to overcome such
challenges [98,99]. MSER_MPs(M), SPMPs(M), and OMPs(M) were also proposed by considering the
mean pixel values within regions, such as MSER objects, superpixels, and MRS objects, to foster effective
and efficient spatial FE. The improvements from taking the mean values were clear. Specifically, the
size of the regions generated was on a reasonable scale, which was mainly controlled by the spatial
resolution and a readily available landscape image [99]. However, as hybrid methods of MPs and
OBIA, comparison studies between SPMPs and OBIA, and between OMPs and OBIA were not carried
out in our previous works. In addition, as generally known from the OBIA and GEOBIA communities,
there are plenty of spectral, statistical, spatial, and geometrical measures of regions (i.e., objects) that
can be adopted to further improve the classification accuracy [27,100–102]. Thus, extending the OMPs
by considering more advanced object measures is interesting, especially when using Sentinel-2A
MSIL1C data for vegetation mapping in large coverage areas in arid land environments, which is the
last objective of this paper. In Table 1, we provide the acronym with corresponding full names that are
used in this paper.

Table 1. Acronyms with corresponding full names used in this paper.

Acronyms Full Name Acronyms Full Name

AA Average accuracy MSIL1C MultiSpectral Instrument Level-1C

AFs Attribute filters MSER-MPs Maximally stable extremal region-guided MPs

ANNs Artificial neural networks ND Nested dichotomies

AVHRR Advanced VHR Radiometer NDBC ND based on clustering

CBR Closing by reconstruction NDCB ND with class balancing

CVRFR Classification via RaF
regression NDDB ND with data balancing

DL Deep learning NDFC ND with further centroid

DNNs Deep neural networks NDRPS ND with random-pair selection
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Table 1. Cont.

Acronyms Full Name Acronyms Full Name

DTs Decision trees OA Overall accuracy

ECOC Error-correcting output code OBIA Object-based image analysis

EERDTs Ensemble of ERDTs OBR Opening by reconstruction

EL Ensemble learning OBPR Opening by partial reconstruction

ELM Extreme learning machine OLI Operational Land Imager

END Ensembles of ND OMPs Object-guided MPs

ENDBC Ensemble of NDBC OMPsM OMPs with mean values

ENDCB Ensemble of NDCB OO Object-oriented

ENDDB Ensemble of NDDB OOBR Object guided OBR

ENDRPS Ensemble of NDRPS PCA Principal component analysis

END-ERDT END with ERDT RaF Random forest

EOMPs Extended object-guided MPs RBF Radial basis function

ERDT Extremely randomized DT ROI Region of interest

ESA European Space Agency RoF Rotation forest

ETM Enhanced Thematic Mapper SE Structural element

ExtraTrees Extremely randomized trees SEOM ESA’s Scientific Exploration of Operational
Missions

EVI Enhanced vegetation index SNAP Sentinel Application Platform

GEOBIA Geographic OBIA SPOT Satellite for Observation of Earth

GPS Global positioning system SR Sparse representation

HR High resolution SRM Structural risk minimization

LDA Linear discriminate analysis SVM Support vector machine

LR Logistic regression SVM-B SVM with Bayes optimization

ML Machine learning SVM-G SVM with grid-search optimization

MM Mathematical morphology SWIR Short wave infrared

MPs Morphological profiles UA User accuracy

MPPR MPs with partial
reconstruction UMD University of Maryland

MRFs Markov random fields TOA Top-of-atmosphere

MRS Nulti-resolution
segmentation VHR Very high resolution

MODIS Moderate Resolution
Imaging Spectroradiometer VI Vegetation index

MSI MultiSpectral Instrument VNIR Visible and the near-infrared

2. Materials and Methods

2.1. Materials

2.1.1. Study Region

Our study area is located at the Ili River delta, in the central-western part of the Balkhash Lake
basin, in the southeastern part of Kazakhstan (Figure 1a). The Balkhash Lake basin is one of the
largest internal drainage areas in the arid and semiarid region in Central Asia; it is located between
72.44◦–84.99◦E and 42.24◦–49.14◦N, covering an area of approximately 500,000 km2 and it is shared by
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the Republic of Kazakhstan (approximately 60%) and the People’s Republic of China (approximately
40%) [103]. Balkhash Lake is the world’s fifth-largest inland water reservoir (605 km long and 4–74 km
wide), with a volume of 87.7 km3 and a catchment area of 15,730 km2 [104]. All of the inflow to the
Balkhash Lake is received from the western Tien-Shan and the Dzungarsky Alatau and the runoff

from their ridges. The two largest rivers flowing into the lake are the Ili River and Karatal River,
accounting for approximately 78% and 15% of the total inflow, respectively [105]. Balkhash Lake
and several plentiful wetlands in its inflow deltas are considered to be very sensitive ecosystems,
whose existence depends on variable climate conditions and extensive human activities, especially in
the form of water abstractions from inflows. During the Soviet era, the inflow waters were largely
used for irrigation (mainly for rice crops), industry, the water supply to populated areas, and the
fishing industry, which resulted in a significant decrease in the water level and the degradation of the
surrounding environments [103,105]. After the collapse of the Soviet Union, most of the social and
economic activities in the Balkhash Lake basin rapidly diminished, which causes drastic changes in the
land cover/use and broad rehabilitation of the ecosystem. Understanding the effects and responses
between such drastic changes and the regional environment is crucial for the sustainable development
of this basin, which can only be accomplished by the sustainable monitoring of entire environments.
Many efforts have been made in recent decades; however, while most studies have focused on water,
e.g., water resource management, water level and surface changes, chemical properties, regional-scale
land cover/use changes, ecosystem services, and vegetation activity [106–111], only a few studies have
focused on basin-level studies while using RS datasets [104]. In almost all of the above studies, datasets
from Landsat, the Advanced Very-High-Resolution Radiometer (AVHRR), and MODIS were mainly
used. Hence, it is of interest to use more advanced Sentinel-2A MSIL1C products with more advanced
spatial FE and ML techniques for vegetation mapping in this area.

2.1.2. Datasets

• Sentinel-2 data collection and preprocessing

In this study, Sentinel-2A geolocated TOA reflectance (L1C) products were acquired from the
Copernicus Open Access Hub (https://scihub.copernicus.eu). We selected a total of six images with zero
or near-zero (< 10%) cloud coverage, taken between 25 July and 8 August, 2017. Only the visible bands
of blue (band 2), green (band 3), red (band 4), and the near-infrared (band 8) region with a 10 m spatial
resolution were used. All of the images of the study region were projected to WGS 84/UTM zone 43N
and then mosaicked while using the SNAP (v6.0), which is a free, open source software program that
is distributed by the ESA under the GNU General Public License and was founded through the ESA’s
Scientific Exploration of Operational Missions (SEOM) Program. In Figure 1d, Figure 1e, and Figure 1f,
true RGB color images were composited by setting band 4 to red, band 3 to green, and band 2 to blue,
respectively, for real-world land surface illustration purposes.

• In situ data collection

In total, 120 valid in situ sites (red dots in Figure 1d) were visited on July 27, 28, 29, and 30, 2017.
Specifically, 46 field sites were visited on July 27 in the Bakanas irrigation area (Figure 1e), 23 field
sites were visited on July 28 in the Ili River delta region, six field sites were visited on July 29 on
the way back from Balkhash city to Bakanas District, and 45 field sites were visited on July 30 in
the Bakbakty irrigation area (Figure 1f). For all of the field sites, the coordinates were determined
while using a differential global positioning system (GPS) and the Chinese BeiDou navigation system,
which has a 2 m positioning accuracy. Additionally, the land cover type among 23 possibilities with 19
vegetation types was recorded (Figure 1), between 10 AM and 6 PM local time. Moreover, field sites
are determined at locations with only large and uniform spatial coverage of the same land cover type
for a more objective and representative in situ site selection. Figure 2 shows the ground photos of
representative land cover types in our study area. According to the collected in situ information and

https://scihub.copernicus.eu
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further referring to the high-resolution optical images in Google Earth, 582 regions of interest (ROIs)
were selected for model training, validation, and data classification for vegetation mapping. Detailed
ROI, training sample, and validation sample information are listed in Table 2.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 31 
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Table 2. Details of the land cover types in the training and validation samples in the test datasets.

LC Types 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Total

ROIs 253 39 30 17 30 13 6 7 16 1 4 20 9 33 7 6 2 5 19 15 5 8 37 582
Train 147 230 295 144 325 225 128 19 304 12 92 164 42 277 117 45 27 75 976 171 30 238 475 4558
Test 2794 4366 5600 2726 6180 4269 2428 352 5768 218 1753 3113 794 5256 2226 852 516 1429 18542 3246 560 4523 9021 86532

Total 2941 4596 5895 2870 6505 4494 2556 371 6072 230 1845 3277 836 5533 2343 897 543 1504 19518 3417 590 4761 9496 91090
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2.2. Methods

2.2.1. Related Methods

• Ensemble of nested dichotomies

In the area of statistics, ND are a standard technique for solving certain multiclass classification
problems with logistic regression (LR). Generally, ND can be represented with a binary tree structure,
where the set of classes is recursively split into two subsets until there is only one (Figure 3). In other
words, the root node of the ND contains all of the classes that correspond to the multiclass classification
problem, and each node contains a single class, which means that, for an n-class problem, there are n
leaf nodes and n-1 internal nodes. To build an ND approach based on such a tree structure, we perform
the following steps: 1) at each internal node, store the instances pertaining to the classes associated with
current node but no other instances; 2) group the classes pertaining to each node into two subsets to
ensure that each subset holds the classes that are associated with exactly one of the node’s two successor
nodes; and, 3) train the binary classifier at each node for the resulting binary class problem [75,85].
If the adopted binary classifier at each node can compute the class probability, the ND can compute
class probability in a natural way, which is a convenient feature in real-world applications [112].
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After an ND approach is built, one critical question is how to combine the probability estimates
from individual binary problems to obtain class probability estimates for the original multiclass problem.
Multiclass probability estimates can be obtained by simply multiplying the probability estimates
returned from the individual binary learners because the individual dichotomies are statistically
independent as they are nested. More specifically, let Ci1 and Ci2 be the two subsets of classes generated
by a split of the set of classes Ci at internal node i of the tree structure, and let p(c ∈ Ci1|x, c ∈ Ci ) and
p(c ∈ Ci2|x, c ∈ Ci ) be the conditional probability distributions that are estimated by the binary learner
at node i for a given instance x. Subsequently, we can have the estimated class probably distribution
for the original multiclass problem by [85]:

p(c = C|x) =
n−1∏
i=1

(I(c ∈ Ci1)p(c ∈ Ci1
∣∣∣x, c ∈ Ci) + I(c ∈ Ci2)p(c ∈ Ci2|x, c ∈ Ci )) (1)

where I(·) is the indicator function and the product is over all the internal nodes. Notably, not all of
the nodes must be examined to compute the probability for a particular class value, which makes the
evaluation of the path to the leaf associated with that class sufficient.

Ever since the basic form of the class subset split criterion was originally proposed by
Frank and Kramer [85], many other sophisticated criteria, such as random selection, random-pair
selection, clustering, multisubset evaluation, class-balanced-based optimization, data-balanced-based
optimization, and genetic algorithm-based optimization, have been proposed and proven to have
superior performance on the classification accuracy and model training efficiency, especially with END,
which use common EL algorithms such as bagging, boosting, and RaFs [74,75,85,86,112–114].

According to the formation by Frank and Kramer [85], there are T(c) = (3c
− (2c+1

− 1))/2
possible dichotomies for a c-class problem, which is very large and not ideal for efficient model
training. Especially when large amounts of data are readily available, advanced, but computationally
inefficient learners (e.g., ANNs and SVMs) are adopted in an ensemble scenario. One simple solution
is using random selection dichotomies instead of complete selection dichotomies, which reduces
the number of possible dichotomies to T(c) = (2c − 3) × T(c − 1), where T(1) = 1. Briefly, all the
distinct dichotomies for a given n-class problem were uniformly sampled with replacement, and the
class probability estimates for a given instance x were obtained by averaging the estimates from
the individual END members. According to statistical theory regarding EL, reduced numbers of
dichotomies are still large enough to ensure that there is a high level of diversity among END members
to facilitate the improvement by the ensemble. One drawback of random selection is that it can produce
very imbalanced tree structures, which results in a negative effect on the training time of the full
model while the number of internal nodes remains the same in any ND for the same number of classes
because an unbalanced tree often implies that the internal binary learners are trained on large datasets
near the leaves. Dong et al. [75] proposed class-balanced and data-balanced versions of ND, namely,
the NDCB and NDDB, respectively, to mitigate the effect of this issue. When compared with NDCB,
NDDB can avoid the potential problem from multiclass problems with imbalanced samples. Empirical
experiments have shown that NDCB and NDDB have little effect on the accuracy in most cases, but they
have great benefits in reducing the time needed for model training, particularly for problems with
many classes in ensemble NDCB and NDDB (ENDCB and ENDDB, respectively). The growth function
for NDCB is [75]:

T(c) =


1
2

(
c

c/2

)
T
(

c
2

)2
, i f c is even(

c
(c + 1)/2

)
T
(

c+1
2

)
T
(

c−1
c

)
, i f c is odd

(2)

where T(2) = T(1) = 1.
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When constructing an effective EL system, one is always faced with a dilemma between high
classifier diversity and excellent performance, which is hard to satisfy in practice. Unfortunately,
the above END methods are deterministic when generating subclass groups that cannot maintain the
benefits of high diversity. Additionally, errors that are made by binary classifiers at earlier nodes can be
inherently spread to lower nodes of the ND tree and they cannot be easily corrected. For these reasons,
it is important to generate the dichotomies in a nondeterministic way to reach the high diversity
requirement on the one hand and reduce the number of errors in and the size of the upper nodes of the
ND tree on the other hand. NDBC, NDRPS, and their ensemble versions are good examples for this
intension [74,112]. However, as compared with NDCB, NDRPS is more direct, easily discovers similar
classes, and exhibits a degree of randomness, which leads to more diversity and a higher-performing
ensemble. The growth function of the NDRPS was empirically estimated by [112]:

T(c) = p(c)T
( c

3

)
T
(2c

3

)
(3)

where p(c) represents the size of the dichotomies from the base learner and T(2) = T(1) = 1.

• Multiresolution segmentation

OBIA is a classic technique in RS image interpretation that integrates the spatial and spectral
features and it splits RS images into a set of nonoverlapping homogeneous regions or objects, depending
on the segmentation method that was specified. During recent decades, OBIA has gained widespread
attention in the RS community, mainly because it can overcome the limitations of pixelwise analysis,
such as the neglect of geometric, contextual, and semantic information, particularly in the processing
of HR/VHR RS imagery [100–102,115]. Over the years, many image segmentation methods have been
proposed and extensively examined while using various RS imagery. Among these methods, MRS is
one of the most frequently used methods, which is mainly due to its capability to produce high-quality
segments at different scales [69,102,116,117].

MRS is a bottom-up region-merging-based segmentation technique that starts with one-pixel
objects and it merges the most similar adjacent pixels or objects provided that the internal heterogeneity
of the resulting object does not exceed a user-defined threshold [118]. The heterogeneity measure
in eCognition considers the spectral heterogeneity, which allows for multivariant segmentation by
adding weights to the image channels, and the shape heterogeneity, which describes the improvement
in the shape with regard to the smoothness and compactness. In any OBIA, the segmentation scale
determines the average size and number of segments that were produced. Defining an optimal
scale segmentation to avoid oversegmentation and undersegmentation issues is always challenging
because of the spectral similarity between different objects and landscape complexity in the real
world [101,102,119]. For MRS, numerous studies demonstrate the importance of the scale parameter,
because it controls the dimensions and the size of the segments, which may directly affect subsequent
results [101,117,119]. A successful research result on scale optimization is to combine the local variance
(LV) and the rates of change of the LV (ROC-LV) to determine the appropriate segmentation scales
for a given resolution [120]. The automated selection of scale parameters is basically an automation
of the ESP tool, where the production of a graph is replaced by an iterative procedure that segments
an image at the first threshold that occurs in the LV graph. The readers are referred to the original
works by [118] and [120] for more detailed information.

2.2.2. Proposed Method

MPs are composed of morphological opening and closing profiles, which consist of an ensemble
of OBR and CBR operators. According to the definition of MPs, OBR and CBR operators are connected
operators that satisfy the assertion of removing the structures that cannot contain the SE and preserving
those structures that can contain the SE [121–123]. While applying such operators with a sequence of
SEs of increasing size, one can extract information regarding the contrast and the size of the geometrical
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structures that are present in the image. Originally, the formulation of the spatial information that
was included in the MPs refers to a single-band image; therefore, the direct construction of MPs is not
straightforward for multi/hyperspectral images. Several approaches have been considered to overcome
this shortcoming [77,93,94,124,125]. Among these approaches, one simple, and yet efficient, approach
is to use a few images that contain most of the spectral information that was obtained by some FE
method, namely, the EMPs [121]. If we consider the first m principal components that were extracted
from the multi/hyperspectral images with principal component analysis (PCA), the EMPs are obtained
by stacking all of the MPs that are built on all m components.

According to the definition from MM and our previous works [98,99], the MRS object-guided
morphological OBR operators can be obtained by first eroding the input image while using segmented
objects (where Θλ

S represents the numbers (S) of objects from MRS with scale λ) in the SE approach
and by using the result as a marker in geodesic reconstruction by a dilation phase:

OOBR( f ) = RD
f

[
f � (∃Θλ

j, j∈S ∈ Θλ
S)

]
(4)

Similarly, we have

OCBR( f ) = RE
f

[
f ⊕ (∃Θλ

j, j∈S ∈ Θλ
S)

]
(5)

where the object-guided CBR (OCBR), which was obtained by complementing the image fC, contains
the object-guided OBR (OOBR) with SEs ∃Θλ

j, j∈S and it complements the resulting procedure:

OCBR( f ) = RDC
f

[
f C
� (∃Θλ

j, j∈S ∈ Θλ
S)

]
(6)

In MM, the erosion of f by b at any location (x, y) is defined as the minimum value of all the pixels
in its neighborhood, denoted by b. In contrast, dilation returns the maximum value of the image in
the window that was outlined by b. Subsequently, we can have the following new formations for the
erosion and dilation operators:[

f � (∃Θλ
j, j∈S ∈ Θλ

S)
]
(x, y) = min

(s,t)∈Θλ
j, j∈S

{
f (x + s, y + t)

}
[

f ⊕ (∃Θλ
j, j∈S ∈ Θλ

S)
]
(x, y) = max

(s,t)∈Θλ
j, j∈S

{
f (x + s, y + t)

} (7)

By substituting Equation (13) into Equations (10) and (12), we have the formations of the OOBR
and the OCBR as:

OOBR( f ) = RD
f

 min
(s,t)∈Θλ

j, j∈S

{
f (x + s, y + t)

}
OCBR( f ) = RE

f

 max
(s,t)∈Θλ

j, j∈S

{
f (x + s, y + t)

} = RDC
f

 min
(s,t)∈Θλ

j, j∈S

{
fC(x + s, y + t)

}
(8)

If the SEs ∃Θλ
j, j∈S are specified by MRS objects with a sequence of scale parameter λ, then the MRS

object guided morphological profiles (OMPs) of an image f can be defined as:

OMPs( f ) =
[
OOBR( f )(∃λ∈{λ

∗

1,λ∗2,...,λ∗Q}), OCBR( f )(∃λ∈{λ
∗

1,λ∗2,...,λ∗Q})
]

(9)

where {λ∗1,λ∗2, . . . ,λ∗Q} represents the sets of Q numbers of the user-specified scale parameter λ.
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By further considering the extensively proven performance from object profiles in OO-based
image classification, the extended OMPs (EOMPs) can be calculated, as follows:

EOMPs( f ) =
[
OOBR( f )(∃λ∈{λ

∗

1,λ∗2,...,λ∗Q}), OCBR( f )(∃λ∈{λ
∗

1,λ∗2,...,λ∗Q}), ( f )
(∃λ∈{λ∗1,λ∗2,...,λ∗Q})

OO

]
(10)

where

( f )
(∃λ∈{λ∗1,λ∗2,...,λ∗Q})

OO =

[ (
O
λ∗k
Min, O

λ∗k
Mean, O

λ∗k
Max, O

λ∗k
Std, O

λ∗k
Roun., O

λ∗k
Comp., O

λ∗k
Asym., O

λ∗k
Rect., O

λ∗k
MeanIn., O

λ∗k
Density, O

λ∗k
BorderI., O

λ∗k
ShapeI., O

λ∗k
Elliptic

)∣∣∣∣∣
k=1,...,Q

]
(11)

represents the collections of 13 object features, including pixel value-based measures, such as the
minimum, the maximum, the mean, the standard deviation, and the mean of the inner border,
and geometrical measures, such as the roundness (O

λ∗k
Roun.), the compactness (O

λ∗k
Comp.), the asymmetry

(O
λ∗k
Asym.), the rectangular fit (O

λ∗k
Rect.), the border index (O

λ∗k
BorderI.), the shape index (O

λ∗k
ShapeI.), and the

elliptic fit (O
λ∗k
Elliptic).

Finally, Figure 3 shows the overall technical flowchart for the proposed method.

2.2.3. Experimental Setup

To analyze the performance of the introduced the multiclass classification methods ND and END,
state-of-the-art and classic ML algorithms, including C4.5 [87], END with ERDT (END-ERDT) [91],
RaFs [89], ExtraTrees [91,98], classification via random forest (CVRaFs) [126], RoFs [90], and an SVM [64],
were also applied in direct- or ECOC-based multiclass classification. The considered ECOC methods
include one-versus-one (ECOC:1vs1), one-versus-all (ECOC:1vsAll), random correlation (ECOC:RC),
dense random (ECOC:DR), sparse random (ECOC:SR), and ordinal (ECOC:Ordinal) methods. Critical
tree parameters of C4.5, END-ERDT, RaF, RoF, CVRaF, and ExtraTrees classifiers are set by default,
while the ensemble size is set to 100 by default for RaF, RoF, CVRaF, and ExtraTrees. The involved
parameters of the radial basis function (RBF) kernel-based SVM were tuned by using Bayes optimization
(SVM-B) and 10 by 10 grid-search optimization (SVM-G) [127].

We applied a disk-shaped SE with n = 10 openings and closings by conventional and partial
reconstructions to obtain the MPs and MPPR from the four raw bands of MSIL1C and the first
three PCA-transformed components, ranging from one to ten with a step-size increment of one.
These parameters mean that we obtain 84 = 4 + 4 × 10 × 2 dimensional datasets using four raw
bands and 63 = 3 + 3 × 10 × 2 dimensional datasets using the first three PCA-transformed components,
which are represented by Raw_MPs, Raw_MPPR, PCA_MPs, and PCA_MPPR in the graphs in
the experimental parts. For fair evaluations from dimensionality, we set the MRS segregation scale
parameter λ with 10 different values in the FE phase for OMPs and EOMPs. In other words, we obtained
84 = 4 + 4 × 10 × 2 and 63 = 3 + 3 × 10 × 2-dimensional datasets for the raw and PCA-transferred data,
respectively, while using OMPs and 524 = 4 + 4 × 13 × 10 and 393 = 3 + 3 × 13 × 10 dimensional OO
feature datasets from the raw and PCA-transformed data, respectively. Naturally, there are 604 = (524
− 4) + 84 and 453 = (393 − 3) + 63 dimensional datasets for raw and PCA-transferred data, respectively,
while using EOMPs.

In the experiment, the average accuracy (AA), the overall accuracy (OA), the CPU running time
(CPUTime), and the kappa statistic were used to evaluate the classification performance of all the
considered methods. All of the experiments were conducted while using Oatave 5.1.0 on a Windows
10 64-bit system with an Intel Core i7-4790 3.60 GHz CPU and 64 GB of RAM.
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3. Results

3.1. Subsection Assessment of the Feature Extractors

3.1.1. Accuracy Evaluation

Figure 4 illustrates the OA values from the ensemble methods, including RaF, ExtraTrees,
and END-ERDT while using MPs, MPPR, and EOMP features that were extracted from the raw and
PCA-transformed datasets. Each point on the x-axis represents the MRS scale sets for OO, OMPs,
OMPsM, and EOMPs feature extractors (e.g., 50-500-50 means the scale parameter λ of MRS that starts
with 50 and stops at 500 with total 10 steps by step 50), while the y-axis representation the OA values.
First, the superiority of the proposed FE method EOMPs is obvious when compared with that of the
MPs, MPPR, OMPs, and OMPsM, and the superiority of OO as compared with that of the MPs, MPPR,
and OMPs. Specifically, the best improvements were achieved by EOMPs across all three classifiers
with two datasets (see the dark green lines). Moreover, the superiority of MPPR compared to MPs and
OMPs and the superiority of OMPsM when compared to MPPR is clear, which again supports the
findings by Liao et al. [97] and Samat et al. [98]. Additionally, the performance of OO and OMPs could
actually be limited by setting the segmentation scale parameter λ to very large values. For example,
a decreasing trend in the OA values from OMPs can be observed after the starting scale is larger than
100 with 100 or 50 scale steps (see the brown lines).
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Figure 4. Overall accuracy (OA) values from RaF (a and d), ExtraTrees (b and e), and END-ERDT (c
and f) using morphological profiles (MPs) (disk, 1-10-1), MPs with partial reconstruction (MPPR) (disk,
1-10-1), and extended object-guided MPs (EOMP) features extracted from the raw bands.

3.1.2. Visual Evaluation

In Figure 5, a 600 × 800 image patch was selected from the south-central area of the Bakbakty
irrigation area (Figure 1f) to show the differences between the OBR, opening by partial reconstruction
(OBPR) and object guided OBR (OOBR) operators with different scale parameter settings while using
the first raw band. According to the graphs in the first row of Figure 4, the image becomes slightly
grayer as the size of the SEs increases in OBR, with most of the small details, such as boundaries
between objects, still remain. In contrast, boundaries between different objects become too blurred and
indistinguishable as the size of the SEs increases in OPPR; many large objects, such as the urban area in
the central-western area that should appear at a certain scale of the area attribute, remain at a low scale,
and disk shapes, such as new objects, are created with large SE size after OPPR (see the last image in row
2 of Figure 4). For the proposed EOMPs, the target image becomes slightly grayer as the scale parameter
λ, which controls the total number and individual scales of segments, increases. Furthermore, most of
the boundaries between the different land cover types remain exactly as in the original, which is mainly
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due to the EOMPs only filtering the areas within the corresponding boundaries. However, when the
segments are too large and are composed of many different objects, the performance of OOBR could be
limited by returning profiles of only one object. In addition, different segments could have the same
minimum and/or maximum pixel values; as a result, OOBR could return similar, or even the same,
profiles for different objects. For example, a very bright and rectangular building in the center of the
target image cannot be distinguished from its surroundings when the value of λ is greater than 600
(see the last row of Figure 4).
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Figure 5. Examples of OBR (row 1), opening by partial reconstruction (OBPR) (row 2), multi-resolution
segmentation (MRS) segments (row 3), object-guided OBR (OOBR) (row 4) computed from band 1 (first
image at row 1) at the center-bottom of Figure 1f (the numbers in the table in row 3 show the disk sizes
in OBR and OBPR and the segmentation scale λ in MRS).

3.2. Evaluation of ND and END

3.2.1. Classification Accuracy

As mentioned in Part 1, the second objective of this paper is to investigate the performance
of popular ND algorithms and their ensemble versions. Hence, Figure 6 presents the OA values
from various classifiers that were adopted in direct, ND, ECOC, and END multiclass classification
frameworks by using all of the considered features.

If we simply compare the OA bars from all of the adopted classification algorithms while using
various features in all three multiclass classification framework scenarios, the results of MPPR are
superior to those of MPs and OMPs, and the results of OMPs are superior to those of MPPR, OO is
superior to MPs and MPPR, EOMPs is superior to all others, and are uniformly shown in almost all of
the classification scenarios, which confirms the superiority of our proposed method.
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When comparing the OA bars in Figures 6a and 6b from C4.5, ERDT, RaF, and ExtraTrees in direct
and ND multiclass classification, improvements from ND, NDCB, NDDB, NDRPS, and NDFC over the
direct framework is not clear. Interestingly, the performance of the weak, direct multiclass classification
algorithm can be reduced in the case of readily available low-dimensional data with low discrimination
capability. For instance, the C4.5 classifier reached OA values that were greater than 82% and 80%
individually while using the original raw bands and the PCA-transformed datasets, respectively, in the
direct multiclass classification framework; moreover, C4.5 in ND, NDCB, NDDB, NDRPS, and NDFC
multiclass classification frameworks uniformly reached OA values that were less than 82% and 79%
while using the original raw bands and the PCA-transformed datasets, respectively. Similar results can
also be found for ERDT not only using the original raw and PCA-transformed datasets, but also using
MPs and MPPR features from the original raw and PCA-transformed datasets, whereas the ERDT has
proven much weaker than C4.5 [98]. When comparing the OA bars of ensemble classifiers, such as RaF
and ExtraTrees, there are no obviously increased or decreased OA values observed for ExtraTrees in the
direct and ND, NDCB, NDDB, NDRPS, and NDFC multiclass classification frameworks, but a slightly
decreasing trend is shown by RaF in the ND, NDCB, NDDB, NDRPS, and NDFC frameworks while
using the original raw and PCA-transformed datasets.

According to the results that are shown in Figures 6c and 6d, there are no obvious increases or
decreases in the OA for the same classifiers with different ECOC techniques, except for ERDT and
C4.5 in the one vs. all (1 vs. all) and C4.5 in ordinal multiclass classification cases while using original
raw and PCA transformed datasets. Additionally, differences in OA values from ECOC techniques
using OO and spatial features are smaller and more stable than those from the ND frameworks.
Take the C4.5 classifier as an example, 95%–99% and 93%–98% OA value ranges for ND multiclass
classification framework becomes into 98%–99.80% and 97.5%–99.80% OA values for ECOC RC.
Additionally, more interestingly in comparing with direct and ND frameworks, better OA results can
always be reached for weak classifiers (e.g., C4.5, ERDT) in ECOC one vs. one, random correlation,
dense random, and sparse random multiclass classification techniques. For instance, a minimum
larger than 82% (ECOC 1vs all) and maximum around 86% (ECOC RC, DR and SR) OA values are
shown by C4.5 in ECOC frameworks while using original raw bands, while minimum larger than
81% (NDRP) and maximumly larger than 82% (ND) OA values are shown in ND, NDCB, NDDB,
NDRP, and NDFC frameworks. On the contrary, when the stronger classifiers, such as RaF, ExtraTree,
and SVM are adopted, differences between them in direct, ND, and ECOC frameworks are much
smaller, especially from those using high dimensional datasets with high discrimination capabilities.
In contrast with RaF and ExtraTrees, better OA values could be reached by SVM in ECOC frameworks
while using low dimensional datasets with low discrimination capabilities in the original raw bands
and PCA-transformed datasets.

By comparing the results in Figures 6e and 6f with the results in Figures 6a and 6b, we can clearly
observe the superiority in the OA values of END, ENDRPS, ENDCB, and ENDDB over ND, NDRPS,
NDCB, and NDDB, respectively, which is in accordance with the findings from Frank and Kramer [93],
Dong et al. [83], and Rodríguez et al. [94]. Interestingly, the OA values of ERDT in the END, ENDRPS,
ENDCB and ENDDB frameworks always reached better OA values than C4.5 and RaF (except for
ENDRPS) with the same multiclass classification sets, even when using the original raw bands and
PCA-transformed datasets with low discrimination capabilities (see the bars in light blue in Figures
6e and 6f). When better data with high discrimination capabilities are available, the END, ENDRPS,
ENDCB, and ENDDB multiclass classification frameworks are capable of reaching better OA values
while using weak but simple classifiers (e.g., C4.5 and ERDT) than direct and ECOC when using
stronger but more complex classifiers (e.g., RaF, ExtraTrees, and SVM). For example, the OA values for
C4.5 and ERDT are approximately 98% larger in the END framework, while the OA values for SVM-B
and SVM-G are approximately 97% larger in the ECOC:Ordinal framework while using various spatial
features that were extracted from the original raw bands.
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In Figure 7, we present the OA curves from the direct and END-based multiclass classification
frameworks with incrementally increased ensemble size. The conventional C4.5 and ERDT classifiers
are adopted in direct multiclass classification approaches RaF and ExtraTrees, respectively. C4.5, ERDT,
RaF, and ExtraTrees are adopted as the base learners in the END, ENDCB, ENDDB, and ENDRPS
frameworks. Note that the size of RaF and ExtraTrees are set to 100 in the END, ENDCB, ENDDB,
and ENDRPS frameworks. Based on the results, the superiority of ENDCB and ENDDB over END
is not obvious in the context of the OA values, as shown in a study by Dong et al. [75]. In contrast,
ENDRPS showed the worst results while using the C4.5 and ERDT classifiers. Additionally, the END,
ENDCB, and ENDDB frameworks with the ERDT classifier can achieve classification accuracy results
that are better than those attained by RaF, by using both the original raw bands and the MPs features
that were extracted from raw bands (see the results in Figures 7a and 7e). However, optimum results
can be reached by feeding the ExtraTrees to the END, ENDCB, ENDDB, and ENDRPS frameworks.
For effects from the ensemble size, increasing the ensemble size beyond 80 does not yield obvious
improvements in the OA values for the END, ENDCB, ENDDB, and ENDRPS frameworks with C4.5
and ERDT while using the considered features, while increasing the ensemble size beyond 30 does
not yield obvious improvements in the OA values for the END, ENDCB, ENDDB, and ENDRPS
frameworks with RaF and ExtraTrees.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 31 
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3.2.2. Computational Efficiency

Computational efficiency is always considered to be another key factor after the classification
accuracy when evaluating a classifier’s performance. In accordance with Figures 6 and 7, Figure 8
shows the CPUTime (in seconds) in the training phase for various classifiers in different multiclass
classification frameworks and using all of the considered features, while Figure 9 shows the results for
the END, ENDCB, ENDDB, and ENDRPS frameworks with different ensemble sizes.

When comparing the charts in Figure 8, direct ERDT is at least 10 to 1000 times faster than the
C4.5, RaF, ExtraTrees, CVRaF, and RoF classifiers, ExtraTrees is faster than RaF, CVRaF, and RoF,
which is in accordance with our previous findings [98]. The extremely fast operability of ERDT is
inherently available in the ND, NDCB, NDDB, NDFC multiclass classification frameworks, and in
their ensemble versions, as shown in Figures 8e and 8f. Specifically, using ERDT in the ND, NDCB,
NDDB, NDFC multiclass classification frameworks is at least 10 times faster than using C4.5 and at
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least 100 times faster than using RaF and ExtraTrees. It is reasonable that the ensemble size of RaF and
ExtraTrees is set to 100 as the default in those frameworks.

In contrast with results from the ECOC frameworks, as shown in Figures 8c and 8d, C4.5, ERDT,
RaF, and ExtraTrees in the ND, NDCB, NDDB, NDRPS, and NDFC frameworks are slightly faster
than their corresponding frameworks in the ECOC:1vs1, ECOC:1vsAll, and ECOC:RC frameworks.
As expected, the worst computational efficiency is shown by the ECOC frameworks with SVM-B
and SVM-G parameter optimization techniques. Specifically, SVM-B is 10 times faster than SVM-G,
whereas the former is at least 1000 times slower than ERDT in the ND frameworks and at least 100
times slower than ERDT in the END frameworks.

Critical tree parameters, including the minimum leaf size and the maximum depth, are also tuned
using Bayes optimization in the ECOC:DR, ECOC:Ordinal, and ECOC:SR frameworks to identify the
computational effects from parameter optimization. As shown in Figures 8c and 8d, the computational
burden from the parameter tuning process is also severe for C4.5. For instance, the ECOC:SR framework
with C4.5 took approximately 1000 seconds of CPUTime on the four original raw bands, while less than 5,
10, and 100 seconds are usual in the direct, ND, NDCB, NDRPS, NDDB frameworks, and their ensemble
version frameworks. If we correspondingly look back at the OA results that are shown in Figure 6,
obvious improvements in the OA values are not indicated. In other words, the computational complexity
that was brought by parameter optimization could be further eliminated in more sophisticated ECOC
multiclass classification frameworks without an obvious reduction in the accuracy.

According to the results that are shown in Figure 9, it is clear that the direct classifier
ExtraTrees is faster than RaF, and RaF is faster than the END, ENDCB, ENDRPS, ENDDB multiclass
classification frameworks while using C4.5, ERDT, RaF, and ExtraTrees as the base learners. Moreover,
the computational efficiency of ENDCB and ENDDB over END is also clear, while all of the
computational costs of END, ENDCB, ENDRPS, and ENDDB frameworks linearly increase as the
ensemble size increases. Interestingly, both the adopted classifier and the ND frameworks can influence
the computational efficiency. For instance, the worst computational efficiency is shown by ENDRPS
with ERDT while using both the regional raw and MPs datasets (see Figures 9a and 9e), while END
with C4.5, RaF and ExtraTrees showed the worst computational efficiency. According to the results
that are shown in Figure 7, ENDRPS with ERDT might not be the optimal choice for both accurate and
efficient classification with respect to the performance of the END, ENDCB, and ENDDB frameworks.
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3.2.3. Robustness to the Data Dimensionality

Data quality is also a critical factor that controls the classification performance of adopted
classifiers, and many approaches can be used to increase the discrimination and identification
quality of the provided data by introducing new features. However, increasing the number of data
dimensions by introducing new features could limit the training samples large enough to mitigate
the Hughes phenomenon on the one hand and increase the computational complexity of feature
space splitting-based classifiers (e.g., C4.5, RaF, and RoF) on the other hand. Hence, it is of interest to
comparatively investigate the robustness of ND and END to the data dimensionality.

According to the results in Figures 6 and 7, the improved data quality by introducing new features
is clear. For various single and ensemble methods, direct and ND-based classifiers, C4.5 is more
robust than ERDT to the data dimensionality in the direct, ND, NDCB, NDDB, NDRPS, and NDFC
frameworks. For example, ND with ERDT achieves OA values between 92% and 99% after features
from MPs, MPPR, OMPs, OMPsM, and EOMPs are introduced, while ND with C4.5 achieves OA
values that are between 95% and 99% (see Figure 6a). The ensemble versions of C4.5 and ERDT are less
robust than the RaF, RoF, CVRaF, and ExtraTrees, both in direct and various ND. When compared with
the results from direct and various ND frameworks, uniformly better robustness to data dimensionality
is shown by all of the ECOC frameworks, especially with the RaF, ExtraTrees, and SVM classifiers.
Taking the ECOC:RC framework with C4.5 as an example, the OA values range between 95% and 99%
for ND with C4.5 and they shrink to a range between 98% and 99% after features from MPs, MPPR,
OMPs, OMPsM and EOMPs are introduced.

As expected, the ECOC frameworks with SVM show better robustness to data dimensionality
than the ECOC frameworks with C4.5, ERDT, RaF, and ExtraTrees, whereas the SVM is capable of
overcoming the Hughes phenomenon that is caused by the data dimensionality with kernel trick [64,65].
When comparing the OA values from various END-based multiclass classification frameworks, it is
clear that 1) various END frameworks have better robustness to the data dimensionality than various
ND frameworks; 2) differences in the robustness to the data dimensionality between C4.5 and ERDT,
C4.5, and RaF, and ERDT and ExtraTrees in various END frameworks are much smaller than those from
various ND frameworks; and, 3) similar and even better than ECOC frameworks on the robustness
to the data dimensionality can be reached by the END frameworks. For instance, END with C4.5
showed an OA ranging between 98% and approximately 99.8% after various considered features are
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introduced, while most of the ECOC frameworks with SVM show an OA that ranges between 97% and
approximately 99.8%.

As shown in Figure 8, the computational complexity that was brought by the data dimensionality
is clear for all classifiers in all of the multiclass classification frameworks. Especially for the C4.5,
ERDT, ExtraTrees, RoF, and CVRaF classifiers that adopt feature splits or selection criteria in feature
spaces that control the complexity of adopted DTs. For example, a higher computational cost is always
shown for ERDT and ExtraTrees in the END frameworks by using Raw_OO (with 524 dimensions) and
Raw_EOMPs (with 604 dimensions) features, while a similar and lower computational cost is shown
by using Raw_MPs, Raw_MPPR, Raw_OMPs, and Raw_OMPsM features (see Figure 8e). RaF is
more robust than the C4.5, ERDT, ExtraTrees, RoF, and CVRaF classifiers to the data dimensionality.
From a computational efficiency point of view, the best robustness to the data dimensionality is always
shown by ERDT in the direct, ND, ECOC and END frameworks. Additionally, because of the kernel
trick, differences in the robustness to the data dimensionality from SVM in ECOC frameworks are
smaller than those from the DT-based classifiers that were adopted in the END frameworks.

3.3. Final Vegetation Map

Figure 10 shows the classification map using the proposed method and the considered products to
show the superiority of the Sentinel-2 MIL1C products over the MODIS LUCC and GLC30 datasets in
arid region. To further compare the findings of END-ERDT capable of reaching the best classification
accuracy with a very high computational efficiency, Table 3 reports the classification accuracy values
(the user accuracy (UA), AA, OA, and kappa statistics) with CPUTime in seconds for END-ERDT and
ECOC:1vsAll with SVM-G optimization.

According to the results in Figure 10, it is apparent that Sentinel-2A MIL1C is better than MODIS
LUCC and GLC30 for vegetation diversity mapping in arid regions in Central Asia. Specifically,
19 different vegetation types were recorded by Sentinel-2A MIL1C for our study area, while 15
and eight land cover types were recorded by MODIS LUCC and GLC30 products without specific
vegetation taxonomic names. For instance, vegetation species, such as Alhagi sparsifolia, Haloxylon
ammodendron, and Artemisia lavandulaefolia are classified as shrubs or herbaceous, while Iris lactea
Pall. & Sophora alopecuroides and Sophora alopecuroides are classified into grassland in the MODIS
LUCC and GLC30 products. From a vegetation species taxonomy and distribution mapping point
of view, the land cover taxonomy classification system might not be appropriate. For example,
the vegetation species richness, which is defined as the numbers of different species that are present
in a certain study zone, for the Bakanas and Bakbakty irrigation zones that are depicted by blue
and green rectangles, respectively, in Figure 10a is four (crops, forest, grass, and shrubs) from the
GLC30 product (see Figures 10f and 10g), five (crops, tree, grass, herbaceous, shrubs) from the MODIS
LUCC product, and 12 (rice, cloves, wheat, corn, reeds, Alhagi sparsifolia, Carex duriuscula, shrubs,
Haloxylon ammodendron, grass, tamarisk, Iris lacteal Pall., and Sophora), and 13 (rice, cloves, wheat,
corn, desert steppe, reeds, Alhagi sparsifolia, Carex duriuscula, shrubs, Haloxylon ammodendron,
grass, tamarisk, Iris lacteal Pall., and Sophora alopecuroides) from the Sentinel-2 MIL1C classification
with END-ERDT while using spectral and spatial features.

Based on the results in Table 3, again, it can be clearly seen that the END-ERDT method is capable
of achieving the best results (OA = 99.85%) while using the stacked raw and EOMPs features with the
highest model training efficiency (15.20 seconds) with respect to the results from RBF kernel-based
SVM-G optimization teaching in the ECOC:1vsAll multiclass classification framework, which confirms
the previous findings that END-ERDT could be an alternative to an SVM for generalized classification
accuracy, computationally efficient operations, and easy to deploy points of view, especially in the
case of sufficient samples with advanced features that are readily available. When the original
raw data were adopted, OA values of 87.80% and 88.71% were achieved by the END-ERDT and
SVM classifiers, respectively. Furthermore, END-ERDT showed the worst UA of 15.14% for Alhagi
sparsifolia, while SVM showed the worst UA values of 2.75% for Alhagi sparsifolia and 1.79% for
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Sophora alopecuroides. After the advanced features were included, almost all of the land cover
classes were correctly classified with a > 95% UA value by both classifiers, and especially after the
OO and EOMPs were included. However, only on the raw data, the END-ERDT model was trained
in several to more than ten seconds, the optimum RBF kernel-based SVM model took more than ten
thousand seconds.Remote Sens. 2018, 10, x FOR PEER REVIEW  22 of 31 
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classifier for our study area (a) and subareas (b, c) and corresponding examples from the 2015 MODIS
LUCC products (d, e) and the 2017 GLC30 (f, g) products (for the legends, refer to that in Figure 1).
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Table 3. Classification accuracy values (user accuracy (UA), average accuracy (AA), OA, and kappa) for the considered methods in the study area.

Class No.
END-ERDT ECOC:1vsAll (SVM-G)

Raw Raw_MPs Raw_MPPR Raw_OMPs Raw_OMPsM Raw_OO Raw_EOMPs Raw Raw_MPs Raw_MPPR Raw_OMPs Raw_OMPsM Raw_OO Raw_EOMPs

1 54.01 92.27 96.21 96.06 98.50 99.64 99.64 62.53 93.52 93.59 92.95 96.39 97.57 98.85
2 98.12 99.63 99.84 100.00 100.00 100.00 100.00 97.64 99.59 99.86 100.00 99.91 100.00 100.00
3 99.86 99.86 99.88 99.95 99.96 100.00 100.00 99.66 99.52 100.00 99.88 99.86 100.00 100.00
4 63.65 92.99 97.62 98.31 99.85 100.00 100.00 55.58 97.80 97.10 98.86 99.96 100.00 100.00
5 79.79 96.25 98.03 97.59 99.97 100.00 100.00 82.44 96.73 97.98 97.61 99.92 99.92 99.92
6 95.46 99.32 99.88 100.00 100.00 100.00 100.00 97.77 99.11 99.98 100.00 100.00 100.00 100.00
7 89.62 97.65 98.64 99.14 99.14 97.57 98.02 94.28 98.27 99.05 99.63 98.89 97.32 97.32
8 25.28 92.90 97.44 100.00 100.00 100.00 100.00 37.50 99.43 98.86 99.15 99.72 100.00 100.00
9 88.68 98.60 99.03 99.90 99.97 100.00 100.00 88.18 98.75 98.44 99.77 99.69 100.00 100.00
10 15.14 75.23 95.41 94.95 96.79 98.17 100.00 2.75 92.66 97.71 94.95 92.20 100.00 100.00
11 79.52 98.40 99.32 99.54 99.89 100.00 100.00 88.82 98.75 99.83 99.77 99.89 100.00 100.00
12 77.42 94.96 93.61 97.59 98.49 98.33 99.97 79.25 94.47 93.90 94.67 99.16 98.30 98.30
13 58.19 97.23 97.86 99.37 99.24 99.87 99.87 87.41 97.98 96.98 99.12 99.37 99.87 99.87
14 90.56 97.03 98.21 98.99 99.66 99.90 99.96 91.86 98.12 98.82 99.09 99.71 100.00 100.00
15 43.17 91.06 95.46 97.84 99.42 99.28 99.28 37.11 93.89 94.12 98.88 99.46 98.97 99.06
16 53.40 93.54 96.48 97.07 98.71 99.77 99.77 56.57 94.13 95.66 96.71 99.41 99.77 99.77
17 33.33 76.74 95.16 90.50 93.99 95.54 96.12 58.91 91.47 96.32 88.18 92.05 95.16 95.16
18 75.86 97.90 93.98 98.39 99.72 100.00 100.00 73.20 98.25 99.16 98.53 99.51 100.00 100.00
19 99.43 99.94 99.89 99.90 99.98 99.98 100.00 99.36 99.94 99.95 99.92 99.98 100.00 100.00
20 96.12 98.95 99.32 99.63 99.32 99.54 99.51 97.13 98.86 99.17 99.88 99.45 99.54 99.54
21 20.89 76.79 76.79 93.39 97.32 97.50 97.50 1.79 87.50 90.00 90.71 96.61 97.50 97.50
22 89.61 99.31 99.34 99.73 99.96 99.82 99.93 89.94 99.47 99.89 99.78 99.82 99.76 99.89
23 99.92 99.94 99.93 99.93 100.00 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00

AA 70.74 94.20 96.84 98.16 99.13 99.34 99.55 73.03 96.88 97.67 97.74 98.74 99.29 99.36
OA 87.80 97.82 98.62 99.17 99.71 99.75 99.85 88.71 98.42 98.74 99.01 99.60 99.67 99.72

Kappa 0.87 0.98 0.98 0.99 1.00 1.00 1.00 0.88 0.98 0.99 0.99 1.00 1.00 1.00
CPUTime 1.14 2.61 2.16 2.32 3.52 11.22 15.20 11333.50 18625.80 18746.10 20524.90 22582.60 11898.40 62736.90
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4. Discussion

For arid land vegetation mapping while using Sentinel-2 MSIL1C image task, the superior
performance of the proposed EOMPs over conventional OO, MPs, MPPR, OMPs, and OMPsM is
confirmed, both statistically and visually. Additionally, as expected, possible side effects from very
large segments could be controlled and even overcome by simply containing the mean pixel values of
the objects and the object profiles, such as the compactness, roundness, and shape index. To overcome
these potential drawbacks, multiple scale parameter λ should be provided in OOBR and OCBR. On the
other hand, those that have been repeatedly proven effective object profiles should also be considered.

With respect to the results from various classifiers in direct, ECOC, ND, and END frameworks,
END with ERDT (END-ERDT) always capable of reaching the highest OA values. This finding could
be explained by the “diversity” foundation for constructing an effective EL system, which says that
“weaker” classifiers (ERDT here) always have a better chance of reaching the trade-off between diversity
and accuracy than “stronger” classifies (C4.5 here) [85,128,129]. Additionally, according to statistical
theory regarding EL, reduced numbers of dichotomies in ENDCB, ENDDB, and ENDRPS are still large
enough to ensure that there is a high level of diversity among END members to facilitate improvement
by the ensemble. Hence, investigating the performance of other weak classifiers in END framework
will be an interesting topic.

Ensembling randomly generated ND is an effective approach to multiclass classification problems,
as proven by the results in Figure 6 and by the works of Frank and Kramer [85]. However, the equal
sampling strategy that was adopted in END could limit the classification accuracy by generating a very
limited depth of trees that is controlled by the number of classes; moreover, a very unbalanced tree can
negatively affect the runtime. To remedy such limitations, NDCB, NDDB, and their ensemble versions
(ENDCB and ENDDB, respectively) were proposed by Dong et al. [75]. According to their results,
the runtime efficiency of ENDCB and ENDDB were slightly better than that of END in the same cases,
and no obvious improvements were observed by setting the ensemble size to a constant value. Hence,
it is of interest to comparatively investigate the performances of END, ENDCB, ENDDB, and ENDRPS
with various sets of ensemble sizes. Our experiments confirmed that the positive effects from ensemble
size are larger for END frameworks with weak classifiers than those with strong classifiers.

In studies that involve RS for biodiversity searches, land cover classification is considered the
first-order analysis for species occurrence and mapping [10,23]. In general, coarse-spatial-resolution
satellite imagery (e.g., MODIS, TM, and ETM+) and land cover products (e.g., the MODIS land use
and cover change (LUCC) and Global Land Cover 30 (GLC30) datasets) are useful in detecting and
evaluating ecosystems and habitat structures on a large scale, while HR/VHR satellite imagery products
are useful for estimating habitat quality, predicting taxonomic groups, determining species richness,
and mapping diversity [130–132]. In arid and semiarid regions, sparsely distributed vegetation species
are crucially important in regional ecosystems, but they are easily mixed into dominant land cover
types (e.g., bare land) in coarse-resolution satellite imagery. Spectral unmixing and subpixel mapping
techniques could eventually solve these problems; however, vegetation species diversity mapping
at a fine scale using coarse-resolution satellite images from MODIS, TM, ETM+, and OLI sensors is
still quite challenging. For example, spectral unmixing can determine the fractions of classes within
mixed pixels, but it fails to predict the spatial location. Our experiment also showed that the Sentinel-2
MIL1C products proved to be a more valuable data source than MODIS LUCC and GLC30 datasets for
arid land vegetation mapping. Hence, Sentinel-2 products with 10m, 20m, and 60m spatial resolution,
13 bands spanning from the visible and the near-infrared (VNIR) to the short-wave infrared (SWIR)
portion of the spectrum 12 spectral bands, and with a five-day revisit time over land and coastal areas,
are better choice than MODIS, TM, ETM+, and OLI for arid land vegetation mapping.

Based on this work, we also envisage future perspectives. Further calculating more advanced
vegetation species diversity indices, such as the spectral variation hypothesis (SVH), alpha-diversity,
and beta-diversity, to show the superiority of Sentinel-2 MSIL1C images over MODIS and Landsat
images should be an interesting future direction, especially at large regional or national scales.
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Since END-ERDT showed a state-of-the-art classification performance, statistical and more empirical
experiments should both also be conducted. Finally, we will deploy the END-ERDT method on a Spark
platform to support big data processing to facilitate its application.

5. Conclusions

Sentinel-2 MSIL1C images of the Ili River delta region of Kazakhstan were classified while
using spectral and EOMPs to investigate the performance of the Sentinel-2A MSIL1C products for
vegetation mapping in an arid land environment with respect to land cover products from MODIS
and Landsat and to answer the question of “is ND and END are superior to state-of-the-art direct and
ECOC-based-multiclass classification approaches?” and an accurate classification purposes.

According to the results, several conclusions can be drawn. First and foremost, the proposed
EOMP features are better than all of the features, while the OO features are better than the spatial
features from the MPs, MPPR, OMPs, and OMPsM for Sentinel-2 MSIL1C image classification.
Furthermore, some previous findings of the ND, NDCB, NDDB, NDRPS, and NDFC frameworks
showed superiority to direct multiclass classification, and the ECOC approaches are arguably useful
in the Sentinel-2 MSIL1C image classification task. This finding can be explained by the fact that
the final classification performance is controlled not only by the robustness of the adopted classifier
but also by the discrimination capable of providing data. Additionally, the superiority of the END,
ENDRPS, ENDCB, and ENDDB frameworks over the ND, NDCB, NDDB, and NDRPS frameworks
is confirmed, and one can obtain compatible and even better OA results than the direct and ECOC
frameworks by using weak and simple classifiers in the END, ENDRPS, ENDCB, and ENDDB
frameworks. For example, END-ERDT can be an alternative to RBF kernel-based SVM in the ECOC
framework from the generalized classification accuracy, computationally efficient model training,
and easy deployment points of view. Finally, from both greater numbers of species identification and
a high classification accuracy point of view, the Sentinel-2A MSIL1C product is more suitable than
the global land cover products that are generated from MODIS and Landsat imagery for arid-land
vegetation species mapping.
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