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Abstract: Remote sensing image retrieval (RSIR), a superior content organization technique, plays an
important role in the remote sensing (RS) community. With the number of RS images increases
explosively, not only the retrieval precision but also the retrieval efficiency is emphasized in the
large-scale RSIR scenario. Therefore, the approximate nearest neighborhood (ANN) search attracts
the researchers’ attention increasingly. In this paper, we propose a new hash learning method,
named semi-supervised deep adversarial hashing (SDAH), to accomplish the ANN for the large-scale
RSIR task. The assumption of our model is that the RS images have been represented by the proper
visual features. First, a residual auto-encoder (RAE) is developed to generate the class variable and
hash code. Second, two multi-layer networks are constructed to regularize the obtained latent vectors
using the prior distribution. These two modules mentioned are integrated under the generator
adversarial framework. Through the minimax learning, the class variable would be a one-hot-like
vector while the hash code would be the binary-like vector. Finally, a specific hashing function is
formulated to enhance the quality of the generated hash code. The effectiveness of the hash codes
learned by our SDAH model was proved by the positive experimental results counted on three public
RS image archives. Compared with the existing hash learning methods, the proposed method reaches
improved performance.

Keywords: hash learning; large-scale remote sensing image retrieval

1. Introduction

With the development of Earth observation (EO) techniques, remote sensing (RS) has entered the
big data era. The number of RS images collected by the EO satellites every day is increased explosively.
How to manage these massive amounts of RS images in the content level becomes an open and tough
task in the RS community [1]. As a useful management tool, remote sensing image retrieval (RSIR) is
always adopted to organize the RS images according to their contents [2]. The main target of RSIR is
finding similar target images from the archive according to the query image provided by users. RSIR
is a complicated technology that consists of a series of image processing methods [3], such as feature
extraction, similarity matching, etc. It is also a comprehensive technology that covers a large number
of techniques [4], such as feature representation, metric learning, image annotation, image caption, etc.

The basic framework of RSIR is summarized in Figure 1. Feature learning focuses on obtaining
useful image representation while similarity matching aims at measuring the resemblance between
images. The process of RSIR can be formulated as Y = sort (dist (q,Z)), where q indicates the
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query RS image, Z means a set of RS images within archive (target images), dist(-) denotes a certain
distance measure, sort(-) illustrates the sort function, and Y is the retrieval results. Two assessment
criteria, i.e., precision and efficiency, are always selected to assess the retrieval performance [2,5].
The ideal scenario is that the developed retrieval algorithms can search for more correct results
with the minimal time cost. In the very beginning, researchers always paid close attention to
develop effective feature learning methods [1,2,6]. The similarity matching was always accomplished
in an exhausting manner using the simple or dedicated distance measures. From the precision
aspect, this kind of retrieval methods performs well since the continuous and dense image features
learned by the specific algorithms are useful enough [7-10]. From the efficiency aspect, this kind of
approaches is feasible as the volume of RS images within the archive is not large. Nevertheless, in the
current RS big data era, the volume of RS images within the archive becomes large. The traditional
exhausting search mechanism cannot reach the demands of the timeliness in this large-scale scenario.
Thus, the approximate nearest neighbor (ANN) search [11] draws researchers’ attention. Note that
the large-scale mentioned in this paper means there are many RS images within the archive.
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Figure 1. Framework of basic remote sensing image retrieval.

ANN, as an approximate searching strategy, aims at finding the samples that are near to the
query under certain distances [12]. For a query image q, ANN can be mathematically formulated as
ANN (q) = {I|dist (q,I) < 4,1 € T}, where ¢ is a distance threshold. Many ANN approaches are
proposed in the last decades, including time-constrained search methods [13,14], and error-constrained
neighbor search algorithms [15-17]. During the search, the time-constrained ANNs aim to reduce the
time-, cost-, and error-constrained ANNs from pouring attention into the accuracy. Among the diverse
ANN methods, hashing is a successful solution for many applications, which focuses on mapping
the images from the original feature space to the hash space. Through transforming an image item
into compact and short binary codes, not only the room for storing the images could be reduced but
also the similarity matching speed could be enhanced [18]. For an image I, hashing can be defined
asb = [h (I),hy(I),--- ,hg (I)], where {h; (-),i =1, --- ,K} indicates the K hash functions, while b
means the K-dimensional binary hash code with the value {0,1} or {—1,1}. The crucial problem in
hashing is formulating or learning the hash functions.

In the beginning, locality sensitive hashing (LSH) [16,19] and its variations [20-24] play a
dominant role in the hashing community. By introducing the random projection, the different hashing
functions are generated first. Then, the hash codes of images can be obtained using those functions.
Accompanying with the proper searching schemes, the LSH family achieves successes in the large-scale
retrieval community. However, this kind of data-independent hashing methods needs long bits to
ensure retrieval precision [18]. To overcome the mentioned limitation, data-dependent hashing
becomes popular recently, which aims at learning the hash functions from the specific dataset so
that the retrieval results based on the obtained hash codes are as similar as the results based on the
original features [25]. In general, there are three key points in learning to hash [26], including similarity
preserving, low quantization loss, and bit balance. The similarity preserving means the resemblance
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relationships between images in the original feature space should remain to the binary code space.
The low quantization loss indicates that the performance gap between the hash code before and after
the binarization should be minimized. The bit balance denotes that the bits within a hash code should
have approximate 50% chance to be 0 or 1. There are many hash learning methods [27-29] that have
been proposed during the last decades, and they achieve successes in their own applications. However,
their performance is still limited by the original low-level features.

Due to the strong capacity of feature representation, deep learning [30], especially the
convolutional neural network (CNN) [31], is bringing a technical revolution for image processing.
Hash learning, of course, also benefits from the CNN model. Since the features obtained by CNN
(which is recorded deep features in this paper) can capture more useful information from images,
the behavior of hash codes learned by those deep features is superior to that of the binary codes learned
by handcrafted features. Many deep hash learning methods are proposed [32-35]. Most of them
embed the hash learning into the CNN framework, i.e., a hash layer is added in the top of the CNN
model. When the network is trained, the hash codes are the outputs of the hash layer. Although deep
hashing achieves astounding results in large-scale image retrieval, there are still some issues that
could be improved. First, due to the characteristic of the CNN model, many labeled data should be
used to complete the network training. This is tough work for many practical applications, such as
the RS related tasks. Second, the hash codes are the discrete binary vectors. Since they do not have
derivatives, the CNN model cannot be trained using the conventional optimization methods (e.g.,
stochastic gradient descent) directly. Some researchers adopt the algebraic relaxing scheme to avoid
this limitation [35-39]. Nevertheless, this scheme always reduces the final hash codes’ performance.
Third, bit balance, one of the key points in hash learning, is always accomplished by the penalty term
within the objective function. This would influence the other two points (i.e., similarity preserving and
quantization loss) as the optimization results are the trade-off between different penalty terms.

In the RS community, learning to hash is also an important technique to mine the contents of RS
images in the large-scale scenario [5,40]. However, due to the specific properties of RS images, it is
improper to directly use the hash learning algorithms proposed in the natural image community to deal
with the large-scale RSIR task. For example, the number of labeled RS images is not enough for many
successful deep hash learning methods. In addition, the contents within an RS image are more complex
compared with a natural image. The diverse objects with multi-scale information enhance the difficulty
of hash learning. Consequently, there is a need for the effective deep hash learning method to address
the large-scale RS image retrieval task. In this paper, considering the limitations (for the existing deep
hashing techniques) and difficulties (for the RS images) discussed above, we propose a new deep
hashing method to accomplish the large-scale RSIR, named semi-supervised deep adversarial hashing
(SDAH). First, we assume that the proper visual features of RS images have been obtained, so that
our main work is mapping the continuous and high dimensional visual features into the discrete
and short binary vectors. This can increase the practicability of our method. Second, we introduce
adversarial auto-encoder (AAE) [41] to be the backbone of our SDAH. The residual auto-encoder
(RAE) is developed to generate hash codes with minimal information loss. The uniform discriminator
is used to impose the uniform binary distribution on the generated hash codes, which ensures that
the obtained hash codes are bit balanced. Third, to decrease the number of labeled data, a category
discriminator is added to guarantee that our hashing can be accomplished in a semi-supervised manner.
Through defining the specific objective function, the learned hash codes are similarity preserving,
low quantization loss and discriminated. Finally, the normal hamming distance is used to get the
retrieval results rapidly. The proposed hash learning model can be formulated as b = H (f) =
H (M (I)), where b and f indicate the hash code and visual feature of the image I, M (-) denotes the
visual feature extraction,  (-) means the nonlinear hash functions learned from a certain number of
RS images using the SDAH network. Based on the hashing model, the retrieval process can be defined
as'Y = sort (disty, (H (M (q)), H (M (Z)))), where disty, () illustrates the hamming distance.
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Our main contributions can be summarized as follows.

e  To ensure our hashing method is practical, we adopt a two-stage scheme to replace the end-to-end
learning framework. Thus, any useful RS feature learning methods can be used to learn effective
visual features.

o To get the bit balanced hash codes, we embed our hash learning in the generative adversarial
framework. Through the adversarial learning, the prior binary uniform distribution can be
imposed on the generated codes. Thus, SDAH can ensure the coding balance intuitively.

o To learn the effective binary code with minimal costs, we expand SDAH to the semi-supervised
framework. In addition, the hashing objective function is developed to ensure the binary vectors
are not only similarity preserving and low quantization loss but also discriminative.

The rest of the paper is organized as follows. Section 2 reviews some published literature related to
RSIR and hash learning. Both preliminaries (e.g., AAE model) and our SDAH are introduced in Section 3.
Two RS image archives used to testify our method are presented in Section 4. The experimental results
and related discussion are displayed in Section 5. Section 6 provides the conclusion.

2. Related Work

2.1. Remote Sensing Image Retrieval

RSIR is a popular research topic in the RS community, and there are many successful methods
that were proposed in the last decades. Here, we divide them into two groups for review. In the first
group, the proposed methods aim to develop effective content descriptors or similarity measures for
RSIR. Datcu et al. [42] presented a knowledge-driven information mining method in 2003. In this
method, the stochastic model (Gibbs Markov random field) was used to extract the RS images’ texture
features from the content aspect. Meanwhile, the unsupervised clustering scheme was developed to
reduce the feature vectors’ dimension. In addition, Bayesian networks were introduced to capture
the users’ interests from the semantic level. Combining them together, satisfactory retrieval results
could be acquired. Yang et al. [43] presented an RSIR method based on the bag-of-words (BOW) [44]
features. Several key issues for constructing the BOW features are discussed in detail for RS images,
such as scale invariant feature transform (SIFT) [45], codebook size, etc. Based on the BOW features,
the retrieval results could be obtained using the common distance measures. With the help of CNN,
Tang et al. [46] proposed an unsupervised deep feature learning method for RSIR. Both the complex
contents and the multi-scale information of the RS images were taken into account in this method.
Apart from the mentioned feature extraction/learning methods, there are still many algorithms that
focus on similarity measures. A region-based distance was proposed for Synthetic Aperture Radar
(SAR) image content retrieval [47]. In this method, SAR image was segmented into several regions
using the texture, brightness and shape features first. Then, the distances between SAR images were
formulated as the integration of the dissimilarities of multiple regions. Tang et al. [48] introduced a
fuzzy similarity measure to complete the RSIR. Similar to the approach presented in [47], the SAR
image was divided into different regions first. Then, the fuzzy theory was chosen to represent
different regions, which could decrease the negative influence of segmentation uncertainty. Finally,
the formulation of resemblance between SAR images was transformed into calculating the similarities
between fuzzy sets. Li et al. [49] developed a collaborative affinity metric fusion method to measure
the similarities between high-resolution RS images for RSIR. First, the contributions of handcrafted
and deep features were combined under the graph theory. Then, the resemblance between RS images
was defined as the affinity values between the nodes within the graph.
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In the second group, the researchers concentrate their efforts on improving the initial retrieval
results. Some of them use the supervised relevance feedback (RF) framework to enhance retrieval
performance. Ferecatu and Boujemaa [50] proposed an active learning (AL) driven RF method to
improve retrieval performance. To ease the users’ burden of sample selection, AL was introduced
in the RF iteration. Meanwhile, the authors proposed the most ambiguous and orthogonal (MAO)
principle under the support vector machine (SVM) paradigm to ensure the selected samples are
useful. Finally, the initial retrieval results were reranked using the SVM classifier. Another AL driven
RF method was introduced in [51]. Besides the uncertainty and diversity (which correspond to the
MAQO principle), the density of samples was also taken into account during the sample selection.
To overcome the limitation of a single AL method, a multiple AL-based RF method was proposed
in [48]. Diverse AL algorithms were embedded in the RF framework to generate different reranked
results. Then, those results were fused in the relevance score level to obtain the final retrieval results.
Apart from the RF methods, other researchers select the unsupervised reranking techniques to improve
the initial retrieval results. Tang et al. [52] developed an image reranking approach for SAR images
based on the multiple graphs fusion. First, diverse SAR-oriented visual features were extracted,
and the relevant scores were estimated in multiple feature spaces. Then, a model-image matrix was
constructed based on the estimated scores for calculating the similarities between SAR images. Finally,
a fully connected graph was established using the obtained similarities to accomplish the image
reranking. Another image reranking method was developed for RS images [53], in which the retrieval
improvement was achieved in a coarse-to-fine manner.

2.2. Learning to Hash

We roughly divide the existing learning to hash methods into two groups according to if the deep
neural network is added in hash learning or not. The methods within the first group aim to develop
effective hashing functions without the help of deep learning, and we name them non-deep hashing.
Weiss et al. [26] proposed the spectral hashing to obtain the binary codes with the consideration of
the semantic relationships between data-points. The authors transformed the hash learning into the
graph partitioning and developed the spectral algorithm to complete the coding problem with the
relaxation. Based on the spectral hashing, the kernelized version was proposed [54]. Through adding
the kernel functions, the image contents represented by the original visual features could be fully
mapped to the hash codes, which enhances the hashing performance. Heo et al. [55,56] proposed
the spherical hashing to learn the hash functions for mapping more spatially coherent images into
similar binary codes. In addition, the spherical hamming distance was developed to match up the
spherical hashing. Shen et al. [57] developed the supervised discrete hashing to simplify the hash
optimization (NP-hard problem in general) by reformulating the objective function using an auxiliary
variable. Through dividing the NP-hard hashing into several sub-problems, the normal regularization
algorithm (such as cyclic coordinate descent) could be used to optimize the binary codes. A two-step
hash learning algorithm was introduced in [58]. The first step aimed to define a unified formulation
for both supervised and unsupervised hashing. The second step focused on transforming the bit
learning into the binary quadratic problem. In the RS community, Demir and Bruzzone [5] selected
the kernel-based nonlinear hashing method [59] to complete the large-scale RSIR. The comprehensive
experiments proved the feasibility of hash learning for RS images. Although the methods discussed
above are reasonable and feasible, their performance is still limited due to the input data which is the
handcrafted visual feature.

In the second group, the deep neural network is incorporated to accomplish hash learning,
we name them deep hashing. The earliest deep hash learning method might be semantic hashing [60],
in which the restricted Boltzmann machine (RBM) was introduced to map the documents from
the original feature space to the binary space. The learning process was completed by two steps,
i.e., pre-training and fine-tuning, which aim to generate the low-dimensional vectors and binary-like
codes, respectively. Xia et al. [36] proposed another two-stage deep hashing method named supervised
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hashing. In the first stage, the approximate hash codes of the training images were obtained by
decomposing the pairwise similarity matrix without considering the visual contents. Then, a CNN
model was developed to learn the deep features and final hash codes with the guidance of semantic
labels and obtained approximate hash codes. An end-to-end deep hashing approach was presented
in [34] to deal with multi-label image retrieval. Both the semantic ranking and CNN model were
combined to learn hash functions so that the obtained hash codes could remain the multiple similarities
between the images in the semantic space. Do et al. [61] developed a binary deep neural network to
learn the hash codes in an unsupervised manner. Considering the key points within the hash learning,
the authors designed the specific loss function and utilized the alternating optimization algorithm
with algebraic relaxation to solve it. Then, they expanded the proposed network to the supervised
version to reach the stronger performance. To reduce the time cost of hash learning, Jiang and Li [62]
introduced an asymmetric deep supervised hashing model. In this model, only the query images’
hash functions were learned via CNN. The target images” hash codes were learned by the asymmetric
pairwise loss function directly. From this point, the whole hash learning process could be speeded up
obviously. In the RS community, Li et al. [40,63] proposed a set of deep hashing methods to deal with
the single source and multi-source RSIR tasks. In [40], with the consideration of the characteristics of
single source RS images, the authors developed the deep CNN model with the pairwise loss function to
learn the hash codes. Two scenarios, i.e., the labeled images were limited or sufficient, were taken into
account during the network training. In [63], the source-invariant deep hashing CNN was proposed to
cope with the cross-source RSIR task. Besides the normal intra-source pairwise constraints, authors
developed the specific loss term for inter-source. Then, the alternating learning strategy was proposed
to train the network. The experimental results verified the effectiveness of the proposed method.

3. Methodology

The proposed SDAH network is discussed in this section. Before explaining our SDAH,
the adversarial auto-encoder (AAE) is introduced first.

3.1. Adversarial Autoencoder

AAE model [41] is an expansion of auto-encoder (AE). Through the adversarial learning (which is
proposed in GAN [64]), AAE can not only learn the latent feature but also impose a certain distribution
on the learned feature. From this point, AAE can be regarded as the probabilistic AE. The basic
framework of AAE is shown in Figure 2.

Generator G

Discriminator D

Figure 2. Framework of basic adversarial auto-encoder model.
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There are two networks within the AAE model, including the generator G and discriminator D.
The generator G is actually an AE, which aims at learning the latent feature z from the input data x
according to the reconstruction error. From the view of distribution, the encoding can be formulated as

1(2) = [ a(z1x)pa (x)dx, 0

where g (z) indicates the aggregated posterior distribution of the latent feature z, g (z| x) means the
encoding distribution, and p, (x) denotes the data distribution. The decoder uses the latent feature z
to generate the reconstructed data X. The generator G can be trained by minimizing the error between
x and X, which is often measured by the mean square error (MSE). The discriminator D is a normal
multi-layer network, which is added on the top of the learned feature z for guiding g (z) to match an
arbitrary prior distribution p (z). The goal of D is distinguishing if the input vector follows the prior
distribution p (z) or not. The AAE model can be trained in the minimax optimization manner which is
proposed in [64]. The solution of the minimax optimization is formulated as

mGianax V(D,G) = Expu(x) 108 D (x)] + Ex-p.z) [log (1 = D (G (2)))].- ()

Apart from the basic model, there are still other two models in the AAE framework. One is
supervised AAE, and the other is semi-supervised AAE. For supervised AAE, the label information
is incorporated in the decoding stage. First, the label is converted into the one-hot vector. Then,
both the label vector and the latent feature z are fed to the decoder of G to reconstruct the input data
x. For semi-supervised AAE, the label information is embedded through the adversarial learning.
Suppose there are two prior distributions, i.e., categorical and expected distributions. For generator G,
after the encoding, two vectors are generated, including the discrete class variable y and the continuous
latent feature z. Then, they are used to reconstruct the input data by the decoder. For discriminator D1,
the prior categorical distribution is imposed to regularize y for ensuring the discrete class variable
do not carry any information of latent feature z. For discriminator D,, the expected distribution is
imposed to force the the aggregated posterior distribution of latent feature z matches the predefined
distribution. The reconstructed error, regularization loss and the semi-supervised classification error
should be considered under the adversarial learning framework.

Due to the characteristic of the AAE model, especially the semi-supervised version, it can be used
to learn the hash code inherently. First, the hash code can be adversarial leaned through imposing a
prior uniform distribution with binary values. Second, under the semi-supervised learning framework,
the semantic information (labels) of samples can be embedded, which can guarantee the learned binary
features are discriminative. In addition, the volume of the labeled data is not large, which leads the
hashing method feasible in practice.

3.2. Proposed Deep Hashing Network

Based on the semi-supervised AAE model, we propose our SDAH in this section. Its framework
is exhibited in Figure 3, which consists of three components, they are, residual auto-encoder (RAE)
based generator G, category discriminator D, and uniform discriminator D,. Now, we introduce
them in detail.

To illustrate the generator G clearly, we first introduce RAE network. Similar to the AE model,
there are three components in our RAE, including encoder, hidden layer and decoder. Nevertheless,
the following modification is carried out for developing RAE. First, to reduce the difficulty of training
and enrich the information of the latent features (i.e., the outputs of the encoder), the residual
module [65] is introduced into our RAE. Through adding the residual module, not only the problems
of gradient vanishing and degradation can be mitigated but also the layer-wise information loss would
be decreased. Second, we divide the hidden layer into two parts, including the class variable y and the
hash code b. The class variable y is used to accomplish the semi-supervised learning, while the hash



Remote Sens. 2019, 11, 2055 8 of 36

code b is our final target. The work flow of RAE can be summarized as follows. When users input the
visual feature v, the encoder with the residual module maps it into y and b. Then, both y and b are
fed into the residual decoder for the reconstructed data ¥. The generator G of our SDAH model is the
encoder of RAE, which focuses on generating the class and hash variables.

/78 \
/[ 22 One-hot Matrix
I 2E with . —————— ~
\\ S8 Categorical Distribution [ ) \I
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777777777777777777777777777777777777 : Mean-Square Error I
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Figure 3. Framework of the proposed semi-supervised deep adversarial hashing network.

Generally speaking, the class information is always described by the one-hot vector (single class
scenario). However, the generated class variable y in our SDAH is continuous. Thus, the category
discriminator D, is developed to impose the categorical distribution [66] on y. Note that the categorical
distribution is a discrete probability distribution, which describes the results of a random variable that
belongs one of c categories. The category discriminator D, is a normal multi-layer neural network with
the softmax output. Its main function is distinguishing if a sample generated by G or not. To this end,
we construct a one-hot matrix with the categorical distribution as the “true” input of D.. Apart from
regularizing y to follow the categorical distribution, D, can also ensure the generated y only contains
the class information. Thus, these generated label representations can be used to accomplish the
semi-supervised learning directly.

Besides D, another multi-layer network is also developed to regularize the generated latent hash
code b. Here, we record it uniform discriminator D,. Due to the characteristic of the back propagation
algorithm, the generated b is actually a continuous variable rather than a discrete binary code with
value 0/1. To obtain the expected binary code, we impose the binary uniform distribution on b using
D,,. First, a binary matrix with uniform distribution is constructed to be the “true” data for D,,. Second,
D, forces the generated b to follow the prior binary uniform distribution by the adversarial learning.
Through adding the uniform discriminator D,,, we can not only learn the pseudo-binary codes but
also ensure the codes keep bit balanced. Here, the pseudo-binary code means the values of each bit in
b are concentrated around 0 and 1.

3.3. Learning Strategy of Proposed Hashing Network

After introducing the components of our SDAH model, the learning strategy is discussed in this
section. The network training can be divided into three parts, including unsupervised reconstruction,
adversarial regularization and semi-supervised learning. Before describing them in detail, we first
define some important notations for clarity. Suppose there is an image dataset Z = {I;,- - - Iy} with N
RS images. The visual features V = {vy,- - - , vy} of those images have been obtained. The semantic
labels {s1,- - - , s} of a small number of RS images are provided, where n < N.
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3.3.1. Unsupervised Reconstruction

The main target of unsupervised reconstruction is to train the generator G using all of N samples,
and this step is accomplished by the RAE model.

Similar to the traditional AE model, we assume that the encoder of RAE is represented by f (),
while the decoder of RAE is denoted by g (-). Thus, for an input sample v, the RAE model can be
defined as

ly,b]=f(v;0r), ¥ =g(y,b;0,), @)

where ¥ means the reconstructed sample, and ©, indicates the weights of RAE. To estimate
the encoding and decoding functions, we minimize the mean squared error between v and ¥.
The optimization can be formulated as

N N
Lrap =argmin ) [[vi—¥;]); =argmin }_ |vi — g (f (v;©,);0,) |3, 4)
o, i=1 O, i=1

Different from the conventional AE model, the basic unit of RAE is the residual block rather than
the normal fully connection block. Suppose the input of the /th residual block is ¢;, and the weights

corresponding to the /th residual block is @lr = {@l,’i, 1<i<n }, where n; denotes the number of
layers in the residual block. Therefore, the output of the /th residual block is

9= ¢+ F(p;0)), 5)

where F (-) means the residual function that completed by several fully connection layers. After the
element-wise addition, the input of the (I + 1)th residual block can be defined as ¢;, 1 = active (¢;),
where active (-) denotes the activation function. If we select the linear activation function, the input of
the (I + 1)th residual block can be written as

Pre1=¢r+F (<Pl;®lr> : (©)
Consequently, the recurrence formula of the L residual blocks can be defined as
L-1 ‘
¢.= ¢+ Y F(4s0}). @)
i=l

When we use the backward propagation algorithm to optimize L4, the chain rule of derivative
should be adopted, i.e.,

0LrAE  OLraAp 9¢r  OLRAE 0 = i
o opr op Oy (1 ) ,; g <¢l/®r)> . ®

To further explain the residual block, we exhibit a comparison between the fully connection block
and the residual block in Figure 4. Figure 4a shows a normal fully connection block. The output of the
(I)th block ¢; can be obtained using mapping function F (-) directly. In contrast, the output of the (I)th
residual block (displayed in Figure 4b) should be acquired by the summation of ¢; and results of F (-).

After training the RAE, we can obtain the generator G of our SDAH model, which is actually the
encoder of RAE.
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Figure 4. Comparison between the normal fully connection block and the the residual block: (a) normal
fully connection block; and (b) residual block.

3.3.2. Adversarial Regularization

When we learn the generator G, two latent variables y and b can also be obtained. As mentioned
in Section 3.2, we wish that y could reflect the semantic label information and b could be the
expected binary code. To this end, two discriminators D, and D, are developed to impose the
certain distributions on y and b.

Now, the problem is how to construct the “true” input data with the proper distribution for two
discriminators. For D, we construct the “true” input data as follows. First, 11, one-hot column vectors
mg,; € R¥1 are generated randomly, where ¢ means the number of semantic class. Then, we combine
them together to construct a matrix My, € R°*"=_ It is not difficult to find that the constructed M,
follows the category distribution naturally. For D,, we construct the “true” input data under the
following conditions. First, we define a matrix My, € REXMun with the uniform distribution, where K
indicates the length of expected hash code. In addition, the elements within M,;;, are 0 or 1. Then,
we further let M, - ML, =1-(K/2).

When the “true” input data for discriminators is decided, the next step is imposing the prior
distributions on the generated latent variables through the adversarial learning. For clarity, we separate
the generator G into G, and G, which correspond to y and b, respectively. Then, the adversarial
regularization procedure can be formulated by Equations (9) and (10).

minmax Ex. 1, 108 De (x)] + Eyp(y) llog (1 — De (Ge (3))] ©)
minrrlljax Exp(Myn) 108 Du (X)] + Epp(p) [10g (1 — Dy (Gu (b)))] (10)

There is another point we want to explain further: the value of n., and n,,. The data used for
training the deep neural network are usually divided into several batches. For different batches,
we would construct different “true” data with the same distribution for D, and D,,. Thus, the values of
n¢q and ny,, are equal to the batch size 1.

3.3.3. Semi-Supervised Learning

After the unsupervised reconstruction and the adversarial regularization, we can obtain the
latent variable y with the category distribution and the binary-like variable b with the uniform
distribution. Nevertheless, since there are no other specific operations, the current code b does not
have any discriminative information, which is not proper for the retrieval task. Thus, we develop the
semi-supervised learning part to improve b.
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First, to ensure b is discriminative, we adopt the classification loss function to embed the semantic
information. As mentioned at the beginning of this section, there are #n samples with the semantic
labels {s1, - - - ,su}. Assume that the class variables {y, - - -, y» } corresponding to those samples have
been obtained. Then, the cross entropy function is selected to measure the classification error, and the

formula is
n

Lgs = — 2 (Si 10g Yi)- (11)

1

Note that there are two common formats of the cross entropy function [66-68], and we select the
current version (Equation (11)) since the softmax function is selected to accomplish the classification.

Second, to remain the similarity relationships between samples from the original feature space
to hash code space, and further introduce the semantic label information, we design the similarity
preserving loss function as follow,

£sim = Z

n
i=1

n
Y- (ri i = yll5 + (1= ry) max (m — [[b = b;[3,0) ), (12)
=1

b; — b; ||§ measures the distance
between two samples, and m > 0 denotes the margin parameter. For r;;, when two samples belong to

where 7;; indicates the semantic relationships between two samples,

the same semantic class 7;; = 1 and otherwise r;; = 0. This function constrains the similar samples
should be mapped into similar hash codes.

To solve the proposed similarity preserving loss function using the back propagation algorithm,
some characteristics of Lgj,, should be analyzed, including the convexity and the differentiability.
For convexity, there are two terms within the objective function Lg;,;, and both of them are the convex
functions. In addition, since the value of ;; is equal to 0 or 1, the coefficient (1 — ;j)is nonnegative.
Thus, the linear combination of two terms, i.e., L, is also a convex function. For differentiability,
due to the max operation, the object function is non-differentiable at some certain points [35].
To optimize Equation (12) smoothly, the sub-gradients is selected to replace the normal gradients.
In addition, we define the sub-gradients to be 1 at such differentiable points. In detail, the two terms
within Ly;,, are recorded Lgim and ngim for short. Then, their sub-gradients can be formulated by
Equations (13) and (14). After calculating the sub-gradients over the batches, the back propagation
algorithm can be carried out normally.

oLl L2
a;lim = 21’i]' (bi — b]) , a];z]m = —21’1‘]‘ (bi — b]) . (13)

a/;i.m:{—Z(l—ri]') (bl—b]) ’ ||bl—b]’|§<m

i 0 , otherwise
» (14)
ocz, _ J2(1—ry) (bi=bj) , |[bi=bjl[; <m
ob; 0 , otherwise

Third, to decrease the quantization error, we introduce the following loss function in bit level [69],

Louan = — i_ileZlb{F log (b{-‘) n (1 - bf»‘) log (1 - b{f), (15)

where bf.‘ indicates the kth bit in the hash code. Through minimizing this function, the hash bits can be
pushed toward 0 or 1. This can help to reduce the loss of quantization.

Finally, the discussed loss function is linearly combined together and the semi-supervised learning
can be formulated as

Ligsn = arg min ()\cﬁcls + AsLsim + Aqﬁquun) ’ (16)
y,b
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where A., As and )\q are the free parameters for adjusting the contribution of each term.

3.3.4. Flow of Learning Strategy

We adopt the stochastic learning method to train our SDAH model. The three parts discussed
above are trained alternatively. In particular, the unsupervised reconstruction loss function Lr4r is
optimized first to initial the parameters of the generator G. Then, the parameters of the generator
G and discriminators D, and D, are updated by Equations (9) and (10). Third, the generated latent
variables y and b are optimized using Ly,q,. The first two steps are accomplished using all N samples,
while the third step is achieved using n labeled samples. It is note that the learned variable b is a
binary-like vector that the elements within the vector are near 1 or 0. To obtain the real discrete binary
code, we set a threshold t. When b; > t, b; = 1, and otherwise b; = 0. In this paper, we set t = 0.5
unless otherwise stated.

4. Dataset Introduction

To testify our SDAH model is effective for RSIR task, we selected three published RS image
sets. The first one is a high resolution land-use image set constructed by University of California
Merced [43,70]. We refer to it as UCM in this paper. There are 2100 RS images with the pixel resolution
of one foot in UCM. Their size is 256 x 256. All of those images are equally divided into 21 semantic
categories, including “agricultural”, “airplane”, etc. The examples of RS images corresponding to each
category are exhibited in Figure 5, and the names and volume of different scenes are summarized in
Table 1. The second one is an aerial image dataset constructed by Wuhan University and HuaZhong
University of Science and Technology [71]. Here, we name it AID for short. In AID, there are 10,000
aerial images with the fixed size of 600 x 600, and their pixel resolution covers from 0.5 m to 8 m.
All of the images are partitioned into 30 semantic scenes, including “Airport”, “Bare Land”, etc.
The number of images within each scene is not balanced. The scene with the minimal images (220)
is “Baseball Field”, while the categories with maximum images (420) are “Pond” and “Viaduct”.
Some examples of different scenes are exhibited in Figure 6, and their names and volume are
displayed in Table 2. The last one is a 45-scene-class RS image dataset published by Northwestern
Polytechnical University [72], and we name it NWPU for short in this paper. There are 700 images for
each scene category, and the spatial resolution of those images ranges from 0.2 m to 30 m. The size
of images within NWPU is 256 x 256. Some examples of different classes are displayed in Figure 7,
and the names and volume of these scenes can be found in Table 3.

Scene 4

A omanY \W‘I."\)

Scene 9 Scene 10

-

T

Scene 15 Scene 16 Scene 17 Scene 18 Scene 19 Scene 20 Scene 21

Figure 5. Examples of different scenes in UCM dataset. The names of scenes can be found in Table 1.
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Figure 6. Examples of different scenes in AID dataset. The names of scenes can be found in Table 2.
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Figure 7. Examples of different scenes in NWPU dataset. The names of scenes can be found in Table 3.
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Table 1. Names and volume of different scenes in UCM dataset.

NSuc;rll;r Scene Volume Nsucr:;;r Scene Volume
1 Agricultural 100 12 Intersection 100
2 Airplane 100 13 Medium Residential 100
3 Baseball Diamond 100 14 Mobile Home Park 100
4 Beach 100 15 Overpass 100
5 Buildings 100 16 Parking Lot 100
6 Chaparral 100 17 River 100
7 Dense Residential 100 18 Runway 100
8 Forest 100 19 Sparse Residential 100
9 Freeway 100 20 Storage Tanks 100
10 Golf Course 100 21 Tennis Court 100
11 Harbor 100
Table 2. Names and volume of different scenes in AID dataset.
Scene Scene Volume Scene Scene Volume
Number Number
1 Airport 360 16 Mountain 340
2 Bare Land 310 17 Park 350
3 Baseball Field 220 18 Parking 390
4 Beach 400 19 Playground 370
5 Bridge 360 20 Pond 420
6 Center 260 21 Port 380
7 Church 240 22 Railway Station 260
8 Commercial 350 23 Resort 290
9 Dense Residential 410 24 River 410
10 Desert 300 25 School 300
11 Farmland 370 26 Sparse residential 300
12 Forest 250 27 Square 330
13 Industrial 390 28 Stadium 290
14 Meadow 280 29 Storage tanks 360
15 Medium Residential 290 30 Viaduct 420

Table 3. Names and volume of different scenes in NWPU dataset.

NsuC::IlJeer Scene Volume Nsucr:ll:er Scene Volume
1 Airplane 700 24 Medium Residential 700
2 Airport 700 25 Mobile Home Park 700
3 Baseball Diamond 700 26 Mountain 700
4 Basketball Court 700 27 Overpass 700
5 Beach 700 28 Palace 700
6 Bridge 700 29 Parking Lot 700
7 Chaparral 700 30 Railway 700
8 Church 700 31 Railway Station 700
9 Circular Farmland 700 32 Rectangular Farmland 700
10 Cloud 700 33 River 700
11 Commercial Area 700 34 Roundabout 700
12 Dense Residential 700 35 Runway 700
13 Desert 700 36 Sea Ice 700
14 Forest 700 37 Ship 700
15 Freeway 700 38 Snow Berg 700
16 Golf Course 700 39 Sparse Residential 700
17 Ground Track Field 700 40 Stadium 700
18 Harbor 700 41 Storage Tank 700
19 Industrial Area 700 42 Tennis Court 700
20 Intersection 700 43 Terrace 700
21 Island 700 44 Thermal Power Station 700
22 Lake 700 45 Wetland 700
23 Meadow 700

14 of 36
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5. Experiments

5.1. Experimental Settings

To generate the hash code using our SDAH, some preparatory work should be completed in
advance. First, the structure of SDAH should be decided. Suppose the dimension of input data is
d, the number of semantic classes is c, and the bit of expected hash codes is K. Then, our hashing
network structure is summarized in Table 4. Second, the training data for SDAH need to be prepared.
We randomly selected 20% of images from the original dataset to be the training data. The influence
of training data with different proportions is discussed in Section 5.4. Third, the visual features of
the RS images need to be extracted. Here, to prove the effectiveness of SDAH, we adopted five
common visual features. The details of the performance based on these visual features are discussed in
Section 5.2. Fourth, the values of some parameters need to be decided, including the margin parameter
m (Equation (12)), and the weighting parameters A, As and A; (Equation (16)). All of the parameters
were tuned by the k-fold cross-validation in this study. For various RS image archives and diverse visual
features, the optimal parameters are different. The details are displayed in Section 5.2. In addition,
we used the Adam algorithm [73] to optimize our adversarial hashing network. The learning rate and
iteration were set to 1 x 10~* and 50, respectively. All experiments were accomplished using an HP
840 high-performance computer with GeForce GTX Titan X GPU.

Table 4. Structure of our semi-supervised deep adversarial hashing.

Encoder (Generator) d — <d/z =4/ — d/z) — (d/4 — /4 — d/4>

Residual Auto-Encoder Latent ¢, K
Decoder (d/4—>d/4—>d/4) —><d/2—>d/2—>d/2> —d
Category Discriminator c—9/y 54/ 4
Uniform Discriminator K=/, =14/,

We selected precision—recall (P-R curve) and mean average precision (MAP) to verify SDAH’s
retrieval behavior numerically. Assume that we obtain n, retrieval results for a query image q.
The number of correct retrieval results is 7., and the number of the correct target images within the
archive is n,;. Thus, the precision and recall can formulated as "/, and "</, ,. Here, we define that a
retrieved /target image is correct if it belongs to the same semantic category as query. Furthermore,
let us impose the labels {I1,lp,---,1,,} on the results. If the retrieved image is correct, I; = 1,
and otherwise [; = 0. Then, MAP can be defined as

1 13l
= Sy hiyy
Q% (nr 1; i]; l>, {17

1
where Q means the number of query images.

5.2. Retrieval Performance Based on Different Visual Features

The performance of our SDAH model based on different visual features was studied. Considering
the characteristics of RS images, we selected five visual features to represent RS images:, SIFT-based
BOW features [70], the outputs of the seventh fully connected layer of Alexnet [31] and VGG16 [74],
and the outputs of the seventh fully connected layer of fine-tuned Alexnet and VGG16. These features
are common in the RS community [43,75,76]. Here, we refer to them as BOW, AlexFC7, VGG16FC7,
AlexFineFC7, and VGG16FineFC?7, respectively, for short. Among those features, BOW is mid-level
and theothers are high-level features. To be fair, their dimension was set to 4096. In addition, 80% of
images from RS archives were selected randomly to fine tune two deep networks for feature extraction.
As mentioned above, the parameters (11, A, A5, and A;) of our model depend on the different input
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visual features. After the k-fold cross-validation, the optimal parameters for different features and
different RS image archives are displayed in Table 5.

The experimental results are exhibited in Table 6, which are from three datasets using the
Top 50 retrieval results. The “Baseline” in the table indicates the retrieval performance of visual
features. For measuring the similarities between visual feature vectors, we selected Cosine (BOW) and
L2-norm (AlexFC7, VGG16FC7, AlexFineFC7, and VGG16FineFC7) distances. The retrieval results
were obtained according to the distance orders. For our hash codes, we set their length to be 32, 64,
128, 256, and 512, respectively, to study their retrieval behavior. Moreover, we selected the hamming
distance to weigh the resemblance between hash codes. The retrieval results were also obtained in
accordance with the distance orders.

Table 5. Optimal parameters for different visual features and different image archives.

BOW AlexFC7 VGGI16FC7 AlexFineFC7 VGG16FineFC7

Ac 0.50 0.20 0.90 0.60 0.40

As 0.50 0.75 0.70 0.95 0.80

ueM Aq 0.65 0.05 0.05 0.20 0.10
m 2.60 1.40 1.00 2.60 4.00

Ae  1.00 0.45 0.50 0.30 0.35

AID As 085 0.95 0.85 0.80 0.70
Ag 001 0.01 0.01 0.01 0.01

m 1.60 2.40 1.40 2.40 2.20

Ac 0.90 0.95 0.80 0.25 0.90

As 0.10 0.55 0.45 0.60 0.10

NWPU Aq 0.05 0.01 0.01 0.01 0.05
m 3.00 3.00 2.00 3.00 3.00

Table 6. Retrieval mean average precision counted on three archives based on different visual features
using Top 50 retrieval results.

BOW  AlexFC7 VGGI16FC7 AlexFineFC7 VGG16FineFC7

Baseline 0.3338 0.4815 0.4613 0.6551 0.8027

32 0.4362 0.7064 0.6414 0.8164 0.8994

UCM 64  0.4429 0.7314 0.7001 0.8214 0.9173
Hash codes bits 128  0.4503 0.7319 0.7316 0.8286 0.9225

256  0.4734 0.7471 0.7369 0.8319 0.9277

512 0.4801 0.7572 0.7503 0.8428 0.9269

Baseline 0.2783 0.4683 0.4240 0.8276 0.9516

32 0.3850 0.5975 0.6234 0.9230 0.9623

AID 64  0.4943 0.7228 0.6625 0.9379 0.9673
Hash codes bits 128  0.5018 0.7346 0.7064 0.9394 0.9754

256  0.5114 0.7519 0.7284 0.9448 0.9755

512 0.5159 0.7641 0.7319 0.9466 0.9779

Baseline 0.2284 0.4128 0.4123 0.6981 0.9044

32 0.3469 0.6020 0.6181 0.8715 0.9324

NWPU 64  0.3609 0.6557 0.6234 0.8816 0.9572
Hash codes bits 128  0.4048 0.6717 0.6523 0.8856 0.9614

256  0.4524 0.6727 0.6708 0.8916 0.9688

512 0.4676 0.6823 0.6795 0.8988 0.9710

In Table 6, we can easily find the following points. First, our SDAH model can generate useful
hash codes based on different visual features. The strongest hash codes were obtained from the
VGG16FineFC7 features, while the weakest binary vectors were learned using BOW features. This
illustrates that the original visual features are important to hash learning. In other words, we could
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obtain the satisfactory hash codes if the original visual features can represent the complex contents
within RS images well. The current visual features, from the mid-level to the high-level, capture the
RS images’ contents from different aspects. Nevertheless, it is obvious that the fine-tuned VGG16
explores more useful information from images, which can be proved by the “Baseline” scores. Thus,
the hash codes based on VGG16FineFC7 features achieve the best retrieval performance. Second,
the retrieval performance of hash codes is better than that of the original visual features. The reason
is that we introduce the semantic information into our hashing network, which can enhance the
discrimination of the hash codes. Third, the hash codes’ retrieval behavior becomes stronger with
the increase of the bit, which demonstrates that longer codes perform better. This is owing to our
adversarial learning framework and the specific hashing function, which ensures the obtained binary
codes are bit-balanced and low quantization loss. Thus, the longer codes bring richer information so
that better performance can be reached. The encouraging experimental results displayed in Table 6
prove that our SDAH is useful to hash learning. For clarity, we fix AlexFineFC7 to be the input data for
the rest of the experiments.

5.3. Retrieval Behavior Compared with Diverse Hashing Methods

To study the performance of our SDAH deeply, we selected six popular hash learning methods
for comparison:

o  Kernel-based supervised hashing (KSH) [59]. KSH is a classical and successful hash learning
method, which aims to map images into the compact binary codes by minimizing/maximizing
the hamming distances between similar/dissimilar data pairs. The target hash functions and their
algebra relaxation are formulated in the kernel version.

e  Bootstrap sequential projection learning based hashing (BTNSPLH) [77]. BTNSPLH develops
a nonlinear function for hash learning, which can also explore the latent relationships between
images. Meanwhile, a semi-supervised optimization method based on the bootstrap sequential
projection learning is proposed to obtain the binary vectors with the lowest errors during the
hash coding.

e Semi-supervised deep hashing (SSDH) [78]. SSDH proposes a semi-supervised deep neural
network to accomplish the hash leaning in the end-to-end fashion. The developed hashing
function minimizes the empirical error on both labeled and unlabeled data, which can preserve
the semantic similarities and capture underlying data structures simultaneously.

o  Deep quantization network (DQN) based hashing [79]. DQN embeds a hash layer on the top
of the normal CNN model to learn the image’s representation and hash codes at the same time.
To obtain the useful hash codes, the pairwise cosine loss is developed to remain the similarity
relationships between images while the product quantization loss is introduced to reduce the
quantization errors.

e  Deep hashing network (DHN) [38]. Similar to DQN, another deep neural network with the
hashing layer is developed. DHN also develops the specific loss functions to deal with the issues
of similarity preserving and quantization loss.

e Deep supervised hashing (DSH) [35]. Based on the usual CNN framework, DSH devises a
new hashing network to generate the high discriminative hash codes. Besides preserving the
similarity relationships using the supervised information, the designed hash function can also
reduce the information loss in the binarization stage by imposing the regularization on the
real-valued outputs.

Among the comparison methods, KSH and BTNSPLH are the non-deep hashing techniques,
while others are the deep hashing methods. In addition, BTINSPLH and SSDH are semi-supervised
models and others are supervised algorithms. All of the approaches were accomplished by the codes
published by the authors except SSDH. The parameters were set according to the original literature.
Note that, to be fair, the proportion of the training to testing set was 2:8 for all methods. Moreover,
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the training iteration was set to 50. The experimental results based on different hashing methods are
exhibited in Figures 8-13.

For UCM dataset, the P-R curves of different hashing methods are exhibited in Figure 8, and the
MAPs of diverse hash learning approaches counted by different number of retrieval results are shown
in Figure 9. From the observation of figures, we can find that the performance of all hashing models is
acceptable, and the hash codes generated by our SDHA outperform others in all scenarios. When the
bit of the hash codes is less than 128, the performance of DSH is the weakest. This is because the
training data for DSH is limited. As a deep supervised hashing method, DSH needs abundant samples
to guarantee its performance. Nevertheless, we only have 420 labeled images (20% of total data), which
are not enough for the DSH model, thus its behavior is not as good as expected. The same phenomenon
also appears on DHN and DQN models. Their performance is weaker than other compared methods,
especially when the bits increases. In contrast, another supervised method, KSH, performs better in
most cases. The reason for this is that KSH is a non-deep model, which does not need a large number
of training samples to ensure its behavior. The performance of KSH is even better than that of two
semi-supervised comparison methods when the length of binary codes equals 512, which illustrates
its effectiveness. For BTNSPLH and SSDH, their behavior is better than that of the supervised ones
in most situations. This is because not only the supervised information but also the data structure is
used to train the models. In addition, the performance of SSDH is stronger than that of BINSPLH,
which demonstrates that the deep hashing is more suitable for UCM dataset. Although the comparison
mehods’ behavior is positive, our SDAH can achieve better performance. Taking 128 bits hash codes
as the examples, the highest improvements of retrieval precision resulted from our model are 4.64%
(SSDH), 8.87% (BTNSPLH), 8.95% (KSH), 13.47% (DQN), 19.12% (DHN), and 26.98% (DSH), while
the largest enhancements of retrieval recall achieved by SDAH are 3.46% (SSDH), 10.40% (BTNSPLH),
8.26% (KSH), 12.57% (DQN), 17.97% (DHN), and 26.00% (DSH). Meanwhile, the biggest promotions of
retrieval MAP achieved by SDAH are 4.56% (SSDH), 8.79% (BTNSPLH), 9.42% (KSH), 13.73% (DQN),
21.11% (DHN), and 28.26% (DSH).
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Figure 8. Retrieval precision—recall curve of different hashing methods counted on UCM archive:

(a) the length of hash codes is 32 bits; (b) the length of hash codes is 64 bits; (c) the length of hash codes

is 128 bits; (d) the length of hash codes is 256 bits; and (e) the length of hash codes is 512 bits.
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Figure 9. Mean average precision counted on different number of retrieval images using diverse
hashing methods for UCM archive: (a) the length of hash codes is 32 bits; (b) the length of hash codes
is 64 bits; (c) the length of hash codes is 128 bits; (d) the length of hash codes is 256 bits; and (e) the
length of hash codes is 512 bits.

For the AID archive, the P-R curves of diverse hashing algorithms are shown in Figure 10, and their
MAPs counted on a different number of retrieval results are shown displayed in Figure 11. Among the
comparison methods, the behavior of DHN and DQN is weaker than others. The performance of
DSH and SSDH is close. When the bit length less than 64, SSDH outperforms DSH. Otherwise,
the behavior of DSH is better than that of SSDH. A noticed observation is that the performance of
DSH increases dramatically when the binary codes get longer, which demonstrates that this deep
supervised hashing method needs long bit hash code to ensure its behavior for the AID dataset.
Two non-deep hashing approaches, BINSPLH and KSH, outperform other comparison methods.
This is an interesting observation. The reason for this issue is that the iteration times for the deep
models are not enough. We believe that the performance of deep models can be enhanced with the
increasing iterations. However, time costs may be too large to accept. Compared with the hashing
methods discussed above, our model achieves the best performance in all cases. Taking the hash codes
with 128 bits as the examples, the largest enhancements of retrieval precision caused by SDAH are
25.83% (SSDH), 14.57% (BTNSPLH), 9.06% (KSH), 35.54% (DQN), 42.15% (DHN), and 20.64% (DSH),
while the biggest growth of retrieval recall achieved by SDAH is 26.27% (SSDH), 14.12% (BTNSPLH),
9.51% (KSH), 35.55% (DQN), 41.08% (DHN), and 21.72% (DSH). Meanwhile, the highest promotions
of retrieval MAP achieved by SDAH are 24.38% (SSDH), 13.11% (BTNSPLH), 5.75% (KSH), 32.93%
(DQN), 38.95% (DHN), and 19.45% (DSH).
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Figure 10. Retrieval precision-recall curve of different hashing methods counted on AID archive:
(a) The length of hash codes is 32 bits; (b) the length of hash codes is 64 bits; (c) the length of hash codes
is 128 bits; (d) the length of hash codes is 256 bits; and (e) the length of hash codes is 512 bits.
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Figure 11. Mean average precision counted on different number of retrieval images using diverse
hashing methods for AID archive: (a) the length of hash codes is 32 bits; (b) the length of hash codes is
64 bits; (c) the length of hash codes is 128 bits; (d) the length of hash codes is 256 bits; and (e) the length

of hash codes is 512 bits.
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For the NWPU archive, the P-R curves of different hashing methods are exhibited in Figure 12,
and the MAPs of diverse hash learning approaches counted by different number of retrieval results
are shown in Figure 13. We can find a similar conclusion, i.e., our SDAH model achieves the best
performance compared with all comparison methods. For non-deep comparison methods, the behavior
of BTINSPLH is stronger than that of KSH when the length of hash codes is 32, 64, 128, and 256 bits.
Furthermore, the performance of KSH is improved as the code length increases. When the length
of hash codes is 512, KSH outperforms BTNSPLH. This indicates that the KSH can achieve positive
results as long as the length of generated codes is large enough. For deep comparison methods,
the behavior of SSDH is stronger than that of DQH and DHN and is a little weaker than that of DSH.
This demonstrates that both of the supervised knowledge and the data structure can help the hashing
model to learn the useful hash code. Similar to the AID dataset, the non-deep models outperform the
deep models in most cases. The reason for this is that the volume of images within AID and NWPU is
relatively large. Deep models should be trained further to reach better performance. However, this
would result in much more time costs. Compared with the other methods, the best retrieval results can
be obtained using the hash codes learned by our SDAH model. In addition, let us take the hash codes
with 128 bits as the examples; the highest enhancements of retrieval precision resulted from our model
are 21.07% (SSDH), 13.86% (BTNSPLH), 18.78% (KSH), 44.27% (DQN), 33.05% (DHN), and 36.44%
(DSH), while the largest improvements of retrieval recall achieved by SDAH are 20.26% (SSDH),
9.08% (BTNSPLH), 17.85% (KSH), 41.63% (DQN), 30.87% (DHN), and 34.83% (DSH). Meanwhile,
the biggest promotions of retrieval MAP achieved by SDAH are 17.30% (SSDH), 8.93% (BTNSPLH),
10.93% (KSH), 39.09% (DQN), 27.38% (DHN), and 32.84% (DSH).
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Figure 12. Retrieval precision-recall curve of different hashing methods counted on NPWU archive:
(a)The length of hash codes is 32 bits; (b) the length of hash codes is 64 bits; (c) the length of hash codes

is 128 bits; (d) the length of hash codes is 256 bits; and (e) the length of hash codes is 512 bits.
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Figure 13. Mean average precision counted on different number of retrieval images using diverse
hashing methods for NPWU archive: (a) the length of hash codes is 32 bits; (b) the length of hash codes
is 64 bits; (c) the length of hash codes is 128 bits; (d) the length of hash codes is 256 bits; and (e) the
length of hash codes is 512 bits.

The encouraging results discussed above prove that our method is effective for RS image retrieval.
To further study the SDAH model, we count the MAP values across the diverse semantic categories
within three datasets using the Top 50 retrievals, and the results are summarized in Tables 7-9.
From the observation of tables, we can easily find that the proposed method performs best in most of
the categories. For the UCM archive, compared with other hashing methods, the highest enhancements
achieved by SDAH appear in “Medium-density Residential” (SSDH, DHN), “Parking Lot” (BTNSPLH),
“Buildings” (KSH, DQN), and “Freeway” (DSH). For the AID archive, the largest improvements of our
model appear in “Commercial” (SSDH), “Park” (BTNSPLH), “Square” (KSH), “Resort” (DQN, DHN),
and “School” (DSH). For the NWPU dataset, the biggest superiority of our method can be found
in “Tennis Court” (SSDH, DHN), “Railway Station” (BTNSPLH), “Palace” (KSH), “Basketball Court”
(DQN), and “Mountain” (DSH). Moreover, an encouraging observation is that SDAH remains relatively
high performance in some categories which other comparison methods’ behavior is unsatisfactory,
such as “Dense Residential” (UCM), “Resort” (AID) and “River” (NWPU). It is worth noting that our
SDAH cannot achieve the best retrieval results on a few of categories, such as “Baseball Diamond”
(UCM), “Pond” (AID) and “Bridge” (NWPU). Nevertheless, its behavior remains in the Top 2 position,
which demonstrates the proposed method performs steadily. These favorable results illustrate the
usefulness of the proposed method again.

Apart from the numerical assessment, we also study the structure of the learned hash codes using the
t-distributed stochastic neighbor embedding (t-SNE) algorithm [80] in this part. In addition, the structure
of the hash codes obtained by the comparison methods is provided for reference. Here, the hamming
distance is selected to complete the t-SNE algorithm, and the hash codes” dimension is reduced from
128 to 2. The visual results of different hash codes are exhibited in Figures 14-16. From the observation
of the figures, we can easily find that the structure of the hash codes learned by our SDAH model
(Figures 14a and 15a) is the clearest among all of the results, in which the clusters are obviously separable
and the distances between different clusters are distinct. For the comparison methods, similar to the
numerical analysis, the results of non-deep hashing (KSH and BTNSPLH) are better than those of deep
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hashing (DQH, DHN, and DSH), and the results of the semi-supervised hashing (SSDH and BTNSPLH)
is better than those of the supervised hashing (DQH, DHN, and DSH) in general. These positive results
prove the effectiveness of our model again.

Table 7. Retrieval Mean average precision of different hash learning methods across 21 semantic
categories in UCM archive counted by Top 50 results. The retrieval results are obtained by the hash
codes with 128 bits. The values in bold mean that highest mean average precision of different methods.

SDAH SSDH BTNSPLH KSH DQN DHN DSH

Agriculture 0.9487  0.9416 0.9349 09304 09386 0.9376 0.7457
Airplane 0.9438  0.8373 0.8191 0.8510 0.9245 0.9340 0.4622
Baseball Diamond 0.8931  0.9313 0.9378 0.8197 0.9050 0.8597 0.6699
Beach 0.9497  0.9952 0.9955 0.9607 0.9647 0.9303 0.9383
Buildings 0.6772  0.5353 0.7938 03125 0.2699 0.3037 0.3152
Chaparral 0.9723  0.9654 0.9451 09685 0.9611 0.9562 0.7813
Dense Residential 0.4796  0.3436 0.1834 02533 0.1522 0.1645 0.2382
Forest 0.9487  0.9902 0.9700 0.9973 0.9803 0.9442 0.8299
Freeway 0.9642  0.8115 0.6650 0.8253  0.7518 0.5310 0.4530
Golf Course 0.7673  0.6357 0.7634 0.6226  0.6445 0.5373 0.4514
Harbor 0.9452  0.9233 0.7023 09747 0.8725 0.7559  0.8240
Intersection 0.7813  0.7696 0.7787 0.5906 0.4692 0.3567 0.5202
Medium-density Residential ~ 0.8182  0.5740 0.5877 0.7210 0.4176 0.3805 0.3175
Mobile Home Park 0.7295  0.7157 0.6530 0.5304 0.5477 0.4064 0.4911
Overpass 0.8070  0.8017 0.7314 0.6044 0.5313 0.3983 0.6388
Parking Lot 0.9436  0.9809 0.4928 0.9824 0.9730 0.8294 0.7406
River 0.8102  0.7906 0.7210 0.6256  0.5285 0.4558 0.4457
Runway 0.9188  0.9099 0.8665 09146 0.8282 0.6644 0.8025
Sparse Residential 0.8842  0.8072 0.9641 0.7247 0.6282 0.6098 0.4173
Storage Tanks 0.5743  0.5643 0.2403 0.5059 0.5387 0.4735 0.2197
Tennis Courts 0.6434  0.4696 0.7879 0.6373 0.5588 0.5184 0.1638

Average 0.8286  0.7759 0.7397 0.7311 0.6851 0.6166 0.5460
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Table 8. Retrieval Mean average precision of different hash learning methods across 30 semantic
categories in AID archive counted by Top 50 results. The retrieval results are obtained by the hash
codes with 128 bits. The values in bold mean that highest mean average precision of different methods.

SDAH SSDH BTNSPLH KSH DQON DHN DSH

Airport 0.9661  0.5831 0.8448 0.9403 0.3597  0.4588  0.6298
Bare Land 0.9873  0.7902 0.6731 0.9842 0.3624 0.5352  0.8339
Baseball Field 09771  0.8307 0.8910 09804 05775 0.4645 0.8126
Beach 0.9562 0.7687 0.9680 09653  0.8312 0.7224  0.8459
Bridge 0.9649  0.7765 0.9339 0.9632 0.8186 0.7168  0.8117
Center 0.9098  0.6577 0.7360 0.5305 0.2414 0.3002 0.7136
Church 09126  0.5572 0.7094 0.8153 0.2017  0.2519  0.6206
Commercial 0.9379  0.4750 0.7527 0.9271 0.3041 0.2671  0.6330
Dense Residential 0.9827  0.6908 0.9288 09784  0.7900 0.6719 0.7718
Desert 0.9651  0.8194 0.5360 09344 04661 05230 0.8857
Farmland 0.9481 0.6925 0.9402 0.9520 0.8535 0.7893  0.6895
Forest 09717  0.9183 0.8995 0.9566 0.8876  0.8631  0.9263
Industrial 0.9353  0.5745 0.7946 0.9129 0.4837 0.3854  0.6467
Meadow 0.9707  0.9188 0.8049 0.9691 0.8213  0.8295 0.9186
Medium Residential ~ 0.9281  0.6719 0.7780 0.8668 0.4677  0.4404 0.6896
Mountain 0.9686  0.7784 0.9675 0.9600 0.8929  0.7606  0.8622
Park 0.8884  0.5717 0.3321 0.6658 0.1991  0.2667  0.6503
Parking 0.9894 09116 0.9436 0.9763 09946 09459 0.9513
Playground 0.9502 0.7330 0.9309 09704 0.7496 0.6440 0.7991
Pond 0.9254 0.6867 0.8809 0.9693  0.7867 0.5993 0.7784
Port 0.9648  0.7400 0.8018 0.9642 0.5954 05181 0.7700
Railway Station 0.9087  0.5789 0.8138 0.8120 04146 0.3852  0.6367
Resort 0.8493  0.4789 0.5710 0.4257 01178 0.1069  0.5182
River 0.9646  0.6312 0.8880 0.9628 0.6448 0.3307  0.6979
School 0.7914  0.3656 0.6237 0.6386  0.1042 0.1127 0.3917
Sparse residential 0.9828  0.8575 0.9724 0.9798 0.9227  0.8608  0.8533
Square 0.8582  0.3666 0.4750 0.3565 0.1937  0.1285  0.5231
Stadium 0.9541 0.8922 0.9382 0.9780 0.8740 0.7585  0.9034
Storage tanks 0.8767  0.7668 0.7632 0.8741 0.8134 0.5935 0.8577
Viaduct 0.9958  0.8023 0.9390 09846 09793 09370  0.8550

Average 0.9394  0.6962 0.8011 0.8732 0.5917  0.5389  0.7493
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Table 9. Retrieval Mean average precision of different hash learning methods across 45 semantic

categories in NMPU archive counted by Top 50 results. The retrieval results are obtained by the hash

codes with 128 bits. The values in bold mean that highest mean average precision of different methods.

SDAH SSDH BTNSPLH KSH DON DHN DSH
Airplane 0.9264 0.8064 0.9258 0.8801 0.6249 0.7801 0.7700
Airport 0.8661 0.5673 0.3985 0.6475 0.2310 0.4976 0.2910
Baseball Diamond 0.9259 0.7089 0.9470 0.8753 0.2754 0.4615 0.5786
Basketball Court 0.8508 0.5391 0.9312 0.5563 0.1251 0.3489 0.4095
Beach 0.9381 (0.7883 0.8797 0.8549 0.4300 0.6506 0.5875
Bridge 0.8905  0.7999 0.9525 0.8708 0.6461 0.7402 0.6834
Chaparral 0.9754 0.9689 0.9384 0.9667 0.9391 0.9447 0.7546
Church 0.7778  0.4859 0.6902 0.3849 0.0706 0.2138 0.2426
Circular Farmland 0.9516 0.8773 0.9125 0.9241 0.9091 0.9270 0.7249
Cloud 0.9723  0.9232 0.9728 09711 0.9519 0.9347 0.9370
Commercial Area 0.7857  0.4903 0.8125 0.4987 0.1928 04174 0.3659
Dense Residential 0.8434  0.6357 0.8755 0.7972 03967 0.4670 0.3909
Desert 0.9383 0.8891 0.8939 09001 0.8394 0.8425 0.8296
Forest 0.9486 0.8668 0.5751 0.9332 0.8569 0.8289 0.6403
Freeway 0.8778 0.5866 0.7960 05119 03270 0.3471 0.4567
Golf Course 0.8735  0.7455 0.9145 0.8255 0.6063 0.7205 0.6424
Ground Track Field 09170 0.6986 0.9046 09094 0.2855 0.4943 0.6375
Harbor 0.9534 0.8231 0.8851 0.8970 0.7680 0.8096 0.6062
Industrial Area 0.8811 0.6543 0.5709 0.7620 0.5537 0.6051 0.4530
Intersection 0.8843 0.7279 0.8414 0.8160 0.3174 0.6676 0.6722
Island 0.9335 0.8925 0.8758 0.9227 0.7559 0.7886 0.8098
Lake 0.9291 0.8056 0.8137 0.8394 0.7151 0.7447 0.7410
Meadow 0.9376  0.8690 0.4655 0.8756 0.7802 0.7495 0.7957
Medium Residential 0.7869  0.5356 0.6655 0.5448 0.2460 0.3478 0.2664
Mobile Home Park 0.8670 0.7240 0.9051 0.8599 0.2915 0.5411 0.5180
Mountain 0.9021 0.7057 0.8992 0.8381 0.6495 0.6674 0.2659
Overpass 0.9403  0.7429 0.9022 0.8205 0.4358 0.6185 0.5801
Palace 0.6588  (0.4539 0.5326 0.2617 0.0659 0.1053 0.2487
Parking Lot 09466 0.7914 0.8986 0.8985 0.5695 0.7066 0.7377
Railway 0.8916 0.6106 0.7079 0.7709 0.4158 0.4429 0.5240
Railway Station 0.8418 0.6499 0.2873 0.6035 0.1968 0.3925 0.4480
Rectangular Farmland 0.8750  0.6560 0.7838 0.8194 0.6961 0.7155 0.3041
River 0.8336  0.5890 0.7924 05617 03015 0.4767 0.3939
Roundabout 0.8343 0.7346 0.9212 0.8879 0.6344 0.7619 0.6350
Runway 0.8465 0.7236 0.7872 0.7054 0.3776 0.5210 0.6405
Sea Ice 0.9812 0.9467 0.9795 09606 0.9085 0.9146 0.9311
Ship 0.8679  0.5999 0.9194 0.8160 0.2772 0.6068 0.4182
Snowberg 0.9553  0.8950 0.9369 0.9447 09071 0.8867 0.7867
Sparse Residential 0.9285 0.6838 0.3809 0.8631 0.3858 0.6606 0.4903
Stadium 0.8854  (0.7499 0.8782 0.8302 0.6231 0.6526 0.7206
Storage Tank 0.9184 0.7841 0.8226 0.7864 0.6635 0.7739 0.6866
Tennis Court 0.7918  0.4402 0.8991 0.6653 0.0959 0.1987 0.2357
Terrace 0.8542 0.6699 0.7217 0.8051 0.3727 0.5907 0.3062
Thermal Power Station  0.8513  0.6147 0.8334 0.7251 0.2971 0.5558 0.5132
Wetland 0.8116 0.6574 0.5818 05126 0.2484 0.4064 0.3991
Average 0.8855 0.7135 0.7958 0.7756 0.4946 0.6117 0.5571
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Figure 14. Two-dimensional scatterplots of different hash codes (128 bits) obtained by t-SNE over
UCM with 21 semantic scenes. The relationships between number ID and scenes can be found in
Table 1: (a) SDAH (Our method); (b) SSDH; (c) BTNSPLH; (d) KSH; (e) DQH; (f) DHN; and (g) DSH.
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Figure 15. Two-dimensional scatterplots of different hash codes (128 bits) obtained by t-SNE over AID
with 30 semantic scenes. The relationships between number ID and scenes can be found in Table 2:
(a) SDAH (Our method); (b) SSDH; (c¢) BINSPLH; (d) KSH; (e) DQH; (f) DHN; and (g) DSH.

We also display some retrieval examples obtained by different hashing methods in Figures 17-19.
Here, we adopted the 128 bits hash codes learned by diverse hashing methods and hamming distance
metric to obtain the retrieval results. Three RS images were randomly picked up from three archives,
which belong to “Storage Tanks” (UCM), “Square” (AID) and “Forest” (NWPU), respectively. Due to
the space limitation, only the Top 10 retrieval images are exhibited. The first images within each row
are the queries, and then the retrieval results are listed according to the hamming distances’ order.
The incorrect results are tagged in red for clarity. In addition, the number of correct results within the
Top 50 retrieval images is also provided for reference. It is obvious that our SDAH performs best.
For the “Storage Tanks” query, the Top 10 results obtained by SDAH are totally correct, and there are
only nine incorrect results within the Top 50 results. For the “Square” and the “Forest” queries, the Top
50 retrieval results obtained by our model are totally correct.
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Figure 16. Two-dimensional scatterplots of different hash codes (128 bits) obtained by t-SNE over
NWPU with 45 semantic scenes. The relationships between number ID and scenes can be found in
Table 3: (a) SDAH (Our method); (b) SSDH; (c¢) BTINSPLH; (d) KSH; (e) DQH; (f) DHN; and (g) DSH.
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Figure 17. Retrieval examples of “Storage Tanks” within UCM dataset based on the 128 bits hash
codes learned by the different hash learning methods. The first images in each row are the queries.
The remaining images in each row are the Top 10 retrieval results. The incorrect results are tagged in
red, and the number of correct results among Top 50 retrieval images is provided for reference.
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Figure 18. Retrieval examples of “Square” within AID dataset based on the 128 bits hash codes learned

by the different hash learning methods. The first images in each row are the queries. The remaining

images in each row are the Top 10 retrieval results. The incorrect results are tagged in red, and the

number of correct results among Top 50 retrieval images is provided for reference.
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Figure 19. Retrieval examples of “Forest” within NWPU dataset based on the 128 bits hash codes
learned by the different hash learning methods. The first images in each row are the queries.

The remaining images in each row are the Top 10 retrieval results. The incorrect results are tagged in

red, and the number of correct results among Top 50 retrieval images is provided for reference.
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5.4. Influence of Different Parameters

The influence of different parameters on our SDAH model is discussed in this section.
As mentioned in Section 5.2, there are four free parameters within our hashing function (Equation (16)),
including three weighting variate A¢, As and A, and one margin parameter . Besides those parameters,
there are still two factors that impact our model: the threshold ¢ for the binarization (introduced in
Section 3.3.4) and the percentage of the samples T for training SDAH network. To study their influence
on our method, we first fixed the length of hash codes to be 128 bits here. Then, we tuned the values of
different parameters with certain limits to observe the variation of our method. For the UCM dataset,
we set Ac € [0.50,0.70], A5 € [0.80,1.00], A, € [0.10,0.30], and m € [2.2,3.0]. For the AID dataset, we
set Ac € [0.20,0.40], As € [0.70,0.90], A; € [0.01,0.20], and m € [2.0,2.8]. For the NWPU archive, we
set A. € [0.15,0.35], As € [0.80,1.00], A; € [0.01,0.20], and m € [2.6,3.4]. Moreover, the range of the
other two parameters was unified as t € [0.1,0.9] and T € [10,50] (%) for the three image databases.
Note that only one parameter was changed at one time, and the others were fixed according to Table 5.

The results on the UCM image database using the Top 50 retrieval images are exhibited in
Figure 20. From the observation, we found that the free parameters within the hash function (A, As,
Aq and m) impact our SDAH model slightly, which demonstrates that our method is robust to the
UCM dataset. In detail, for A, when A, < 0.60 SDAH’s performance is enhanced with the value
of A, grows. When A, > 0.60, the behavior of SDAH is reduced slightly. For A;, the whole trend
of SDAH’s behavior is upward with the increased As. The peak value appears at A; = 0.95. For A,
the best performance of SDAH can be obtained when A; = 0.20, and the behavior is affected with
small degrees when the A; value is larger or less than 0.20. The results of different m are similar to
As. SDAH can reach the peak value when m is equal to 2.6, and the performance is decreased in other
cases. For the other two parameters, i.e., the binarization threshold ¢ and the training data percentage
T, the following conclusion can be summarized. The performance of SDAH almost remains with the
varied t, which indicates that our method is not sensitive to t. Furthermore, it also means that the
elements within vectors before the binarization are close to 0 or 1, which demonstrates the superiority
of our model. For training data percentage T, it is obvious that better performance can be achieved
with more training data. However, more training data would result in larger time costs. Thus, in this
study, we kept the percentage of the training data at 20%.
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Figure 20. Influence of different parameters on our hash learning model. The results are counted on
the UCM dataset using the 128 bits hash codes: (a) A¢; (b) As; (c) Ag; (d) m; (e) t; and (f) T.

The results counted on the AID dataset using the Top 50 retrieval images are shown in Figure 21.
For A, the peak value appears at A, = 0.3. When A, < 0.3, the SDAH’s performance is increasing.
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When A, > 0.3, the performance of SDAH first goes down and then goes up. For A, the best behavior
can be obtained when A; = 0.8. Otherwise, SDAH’s performance is decreased more or less. For A,
the performance of SDAH is decreasing when the value of A; grows. For m, when m < 2.4, the model’s
performance is ascending and the peak value appears at m = 2.4. When m > 2.4, the behavior of SDAH
falls slightly. Although the above four parameters impact our model at different levels, their influence
remains in an acceptable range. Similar to the UCM dataset, the performance of SDAH varies within a
narrow range with different f. This means that the outputs of our model are the binary-like vectors,
which proves the usefulness of our SDAH for hash learning. For T, it is obvious that more training
data leads to better performance. Taking the time consumption into account, we kept T = 20%.
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Figure 21. Influence of different parameters on our hash learning model. The results are counted on
the AID dataset using the 128 bits hash codes: (a) A¢; (b) As; (c) A4; (d) m; (e) ; and (f) T.

The results on the NWPU image archive using the Top 50 retrieval images are exhibited in
Figures 22. Similar to the results of other two datasets, the impact of A¢, A5, A; and m on SDAH is not
drastic. The SDAH’s performance peak values appear at A, = 0.25, A; = 0.60, /\q = 0.01, and m = 3.0.
When their values change, the behavior of SDAH fluctuates in a small range. In addition, for training
data percentage T, we can find the same results, i.e., the larger training data the better performance.
To keep the trade-off between training time costs and performance, we chose T = 20% for NWPU.
An interesting observation is that our model is sensitive to the binarization threshold t for NWPU.
The weakest performance is 0.8257 when t = 0.9 while the strongest behavior is 0.8856 when t = 0.5.
The reason for this is that the elements of the vectors before the binarization are not close enough to 0
or 1, which indicates that our model still has the space for the enhancement.
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Figure 22. Influence of different parameters on our hash learning model. The results are counted on
the NWPU dataset using the 128 bits hash codes: (a) A¢; (b) As; (c) A4; (d) m; (e) t; and (f) T.

5.5. Computational Cost

In this section, we discuss the computational cost of our model from the following aspects,
including the time cost of hash learning and the retrieval efficiency.

The time cost of hash learning can be divided into two parts, i.e., SDAH network training and
hash codes generation. For model training, the time costs depend on the volume of the training set
directly. Suppose we still select 20% images from the archive to construct the training set. Thus,
the numbers of training data corresponding to different archives are 420 (UCM), 2000 (AID), and 6300
(NWPU). In addition, as mentioned in Section 5.2, we chooe AlexFineFC7 as the input visual feature.
Therefore, the dimension of the training data was fixed to 4096. Under these conditions, we need
around 6 min (UCM), 15 min (AID), and 25 min (NWPU) to accomplish the network training for the
128-bit hash codes. It is noted that the time consumption of model training is similar when the length
of hash codes varies between 32 and 512. When the SDAH model is trained, the hash codes generation
is fast, needing approximately 0.1 ms for input data.

To deeply study the retrieval speed of SDAH, we changed the archive size and calculated the
similarity and ranking time costs under the different lengths of hash codes. In detail, based on the
NWPU image dataset, we constructed the target archives with the size of 1000, 5000, 10,000, 15,000,
20,000, 25,000, and 31,500. Then, 300 images were randomly selected to be the queries, and the final
retrieval speed was the average value counted on these query images. Meanwhile, the retrieval times
based on the original features (AlexFineFC?) are also provided as a reference. Note that the similarities
between hash codes were calculated by hamming distance while the resemblance between AlexFineFC7
features was computed by Euclidean distance.

The results are summarized in Table 10. It is obvious that the retrieval based on the hash codes
is much faster than the search on the basis of AlexFineFC7 features, especially when the size of
the dataset is large. The reasons can be summarized as follows. The AlexFineFC7 features are
continuous and dense. To obtain the similarities between these vectors, the distance metric should
calculate the differences between every element pairs, which is a time-consuming procedure. Moreover,
the dimension of AlexFineFC7 features is 4096, which increases the time costs of similarity computation.
In contrast, the hash codes are discrete and their elements are 0 or 1. To measure the resemblance
between them, the hamming distance metric only needs to count the number of different element pairs.
Furthermore, the dimension of hash codes is low. Consequently, the time costs of similarity matching
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based on the hash codes are small. The retrieval efficiency results demonstrate that the hash codes are
more suitable for the large-scale scenario.

Table 10. Retrieval cost of similarity calculation and matching based on original features and hash
codes with different length (unit: millisecond).

Target Image Archive Size 1000 5000 10,000 15,000 20,000 25,000 31,500

AlexFineFC7 31.79 152.71 306.00 454.86 563.74 765.99 949.25
32 0.60 1.36 2.81 3.14 3.74 5.46 6.25
64 0.81 247 4.23 6.58 7.99 11.03 13.08

Hash codes bits 128 1.28 4.76 9.68 13.97 18.09 2343  29.56
256 241 10.40 21.45 3278  43.40 54.36 68.28
512 476 2216 45.70 64.16 7911  106.32 132.72

6. Conclusions

Under the paradigm of generative adversarial learning, a new semi-supervised deep hashing
method named SDAH is presented in this paper. The generator G of SDAH is the encoder of RAE,
which focuses on learning the class variable y and hash code b using the input visual features.
Two discriminators (D, and D,) aim to impose the categorical distribution and binary uniform
distribution on y and b, respectively. Through the regularization, the class variable y could be
the approximate one-hot vector that reflects the class information, while the hash code b could be
the bit-balanced vector with the binary-like values. The generator and the discriminators can be
trained using the total data with the reconstruction loss function and minimax loss function under
the generative adversarial learning framework. Furthermore, to improve the performance of hash
code, a specific hashing function is developed. Only a small number of labeled data should be used
to optimize the hashing function. Integrating the generator, discriminators, and hashing function
optimization together, the discriminative, similarity preserving and low quantization error hash code
can be obtained.

We selected three published RS archives (UCM, AID, and NWPU) to verify the usefulness of
our SDAH. First, our model can learn the hash codes from different visual features, including the
mid-level BOW vectors and the high-level deep vectors (AlexFC7, VGG16FC7, AlexFineFC7, and
VGG16FineFC?7). In addition, the retrieval performance of learned hash codes is better than that of
the original visual features. In general, enhancements of around 10% can be achieved. Second, we
compared our SDAH with six other popular hash learning methods (SSDH, BTINSPLH, KSH, DON,
DHN, and DSH). Fixing the input feature (AlexFineFC7) and the length hash codes (128 bits), the MAP
values of our SDAH counted on Top 50 retrieval results are 0.8286 (UCM), 0.9394 (AID), and 0.8855
(NWPU), which are higher than those of the comparison methods. Third, the learned hash codes can
obviously speed up the retrieval efficiency compared with the original visual features. The promising
experimental results counted on different RS image datasets prove that our SDAH is effective to the
RSIR task.
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